
1. INTRODUCTION

Since the term of "Big Data" presented by NASA scientists in 

1997 (Cox and Ellsworth 1997), the meaning or definition of 

big data has seemed to be another 'big data' as stated by Press 

(Press 2014). In general, big data implies massive data that 

challenge traditional processing techniques. The analysis of big 

data is related with the process of exploring huge data which 

can be structured or unstructured to unearth hidden patterns and 

correlations that conventional approach cannot find out (Erl 

2016). Three major characteristics of big data are volume, 

velocity and variety (Hilbert 2016; Laney 2001). Landsat 

imagery (USGS 2015) satisfies these characteristics because of 

massive data archive since 1972, continuous temporal updates, 

and various spatial resolutions from different sensors.  

Since the Landsat scenes were available to the public, free of 

charge on December 18, 2008, Landsat imagery has been used 

for various applications such as landuse/landcover change, 

software development, education, climate science, agriculture, 

ecosystem monitoring, forestry, water and fire, to name a few. 

However, attention was seldom given to Landsat big data 

analysis. Considering the paradigm shifting role of big data 

analysis in Geography and other fields (Wyly 2014), the vast 

archive and long-term time-series Landsat big data opens new 

opportunities for researchers to explore new methodologies and 

findings in remote sensing and geospatial analyses. 

This research focuses on analyzing reflectance changes on 

water surfaces. While many remote sensing research projects 

have been performed with long-term MODIS, AVHRR and 

Landsat datasets, their focuses have mostly been on plant 

phenology, urban dynamics and large ocean water bodies. Little 

attention has been given on the long-term water quality analysis 

using Landsat imagery.  

The Han River (a.k.a. "HanGang") in South Korea was 

analyzed in this research. The Han River watershed has 

experienced dramatic land cover change over the last some 

decades. Particularly, multiple algal blooms have been reported 

in 2015. Various research projects have been carried out about 

the Han River. Some examples are the simulation of water 

quality with pollution sources (Lee and Kim 2008), algal 

characteristics analyses (Kim et al. 1998), the big data mapping 

of algal amounts measured at water quality monitoring stations 

(Seoul City 2015), and modeling algal amounts in association 

with field measurements (Suh et al. 2006). None of these 

research projects, however, tackled the analysis of long-term 

Landsat time-series analysis. 

Considering the significance of examining the Han River water 

quality over a long term period, this research aims at identifying 

locational variance of reflectance, analyzing seasonal difference, 

finding long-term trend, and modeling algal amount variation 

using Landsat big data.  

2. STUDY AREA, DATA AND METHODOLOGIES

Figure 1 shows the Han River, Seoul and vicinity. The yellow 

labels indicate eleven sampling points along the river. The river 

flows from the right-hand side (east) to the left (west), into the 

Yellow Sea. In the figure, the upstream (i.e. P09 – P11) are 

much darker than the downstream (i.e. P01 and P02). There are 

two overflow dams. One is the ShinGok overflow dam between 

P02 and P03, and the other is JamSilDaeGyo near to P07. One 

major dam (a.k.a. PalDang Dam) is located below P09, creating 

a large reservoir to supply water for metropolitan Seoul. 
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Seoul and vicinity where Han River flows through are covered 

by one Landsat scene (World Reference System -2 Path 116 and 

Row 034). A total of 776 scenes (May 10, 1984 ~ November 17, 

2015) were downloaded from the U.S. Geological Survey 

website (http://EarthExplorer.USGS.gov). The Landsat Surface 

Reflectance High Level Data Products were downloaded in this 

research for data consistence among different sensors (i.e. TM, 

ETM+ and OLI) and for simplification of data processing. The 

reflectance datasets also resolved the different quantization 

issues between OLI and the other sensors. The Bulk Download 

tool in the EarthExplorer did not work with the reflectance 

datasets, so the ESPA Bulk Download Client 

(http://landsat.usgs.gov/CDR_LSR.php) was used.  

 

Downloaded files were in the *.tar.gz format. The ESTsoftTM 

Alzip tool (http://www.altools.com) was used to uncompress 

the *.gz files to make *.tar files. The Alzip tool was very useful 

because it supported the command-line user interface with a 

batch file.  

 

Each tar file contains many bands and additional files. The blue, 

green, red, near infrared and CFmask layers were extracted 

using the Alzip tool. Extracted files were renamed and grouped 

into five folders – Blue, Green, Red, near infrared (NIR) and 

CFmask. With each folder containing 776 TIF files, QGIS 

version 2.12 (http://www.qgis.org) was used to create five VRT 

files, i.e. one for each folder (QGIS  Raster  Miscellaneous 

 Build Virtual Raster). During the creation of VRT files, the 

"Source No Data" option was checked and set to 0. The 

"Separate" option was checked too. The "Load into canvas 

when finished" option was unchecked due to an error when it 

was checked. 

 

The pixel values at the eleven sampling locations (i.e. P01 ~ 

P11 in Figure 1) were identified using the Value Tool plugin in 

QGIS. Table 1 shows the sampling locations. 

 

Point x-coordinate y-coordinate 

P01 294,600.65 4,176,086.56 

P02 301,702.39 4,166,854.61 

P03 307,312.97 4,162,882.64 

P04 311,794.92 4,159,663.62 

P05 318,690.80 4,154,894.15 

P06 324,060.01 4,154,942.31 

P07 331,740.20 4,154,971.22 

P08 339,894.16 4,161,651.61 

P09 349,193.05 4,152,683.60 

P10 353,051.82 4,155,466.64 

P11 351,884.81 4,158,342.54 

 

Table 1. Sample point locations 

(Unit: meters in UGS84 UTM zone 52N) 

 

 

The identified pixel values were re-arranged and filtered in 

Excel. First of all, the CFmask layer was used to filter cloud-

free pixels. The CFmask layer contains six number flags 

indicating Fill (255), Clear (0), Water (1), Shadow (2), Snow (3) 

and Cloud (4). The datasets with the Clear or Water flags were 

used in this research. The surface reflectance values beyond the 

valid range (0 ~ 10000 with the scale factor of 0.0001) were 

removed too. There were one or two cases of reflectance values 

larger than 10000 in each sample point and they were mostly 

from L7 and occasionally from L5. There were two cases of 

abnormal outliers (3000 or larger in reflectance) and they were 

removed too with a consideration that the spectral reflectance 

from water is mostly less than 30%. After data cleanup, about 

Figure 1. The Han River, Seoul and vicinity. This Landsat 8 imagery was composited using the 

infrared, red and green bands for red, green and blue colors, respectively. This image was taken in 2015. 
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31% of original datasets were identified as 'clean' and they were 

used for further analyses. Finally, the Excel worksheets were 

converted to comma-separated value (CSV) files and they were 

imported into the R package for further statistical analyses.  

 

 

3. RESULTS 

 

3.1 Change of Reflectance along the Han River 

 

Figure 2 shows the boxplots of the reflectance values of the 

blue, green, red and infrared bands at the sample points 01 

through 11. In the case of the blue, green and red bands, three 

distinctive groups are apparent. The first group (Group 01) is 

P01 and P02 at the downstream that are located below the 

ShinGok overflow dam. The second group (Group 02) is 

composed of P03 through P08 that are located between the 

ShinGok overflow dam and the PalDang Dam. The last group 

(Group 03) consists of P09 through P11 at the upstream that are 

located above the PalDang Dam.  

 

Reflectance values in the blue, green and red bands decrease 

significantly toward the upstream as shown in Table 2. The 

table also shows that the reflectance values are distinctively 

different among three sampling location groups in the blue, 

green and red bands. In the case of the near infrared band, 

Group 02 and Group 03 sample points are not significantly 

different as shown by the TukeyHSD analysis (p-value = 0.229). 

The ANOVA F statistic values also indicate that the largest 

difference among groups appears in the red band, followed by 

green, blue and NIR bands.  

Figure 2. Boxplots of reflectance values at the sample points P01 through P11 
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Table 2. ANOVA analyses of reflectance values among 

different sample locations 

 

 

3.2. Seasonal change of reflectance values 

 

In order to analyze the seasonal change of reflectance values, 

data were grouped into four seasons: winter (December, 

January and February), spring (March, April and May 31), 

summer (June, July and August) and fall (September, October 

and November). The seasonal changes were analyzed at three 

different locations – Downstream (P01 and P02), Mid-stream 

(P03 ~ P08) and Upstream (P09 ~ P11) because of the 

significant locational factor that was identified in Section 3.1. 

 

 

Downstream 

Band Season 

Mean 

Reflectance 

(%) 

ANOVA TukeyHSD p-value 

Blue 

Spring 9.04 F value: 

16.92 

p-value: 

0.000 

Summer-Fall: p=0.980  

Winter-Spring: p=0.195 

Others: p<0.007 

Summer 7.41 

Fall 7.28 

Winter 8.44 

Green 

Spring 10.7 F value: 

12.83 

p-value: 

0.000 

Spring-Others: p<0.001 

Summer-Fall: p=0.126 

Winter-Fall: p=0.265 

Winter-Summer: p=0.994 

Summer 9.67 

Fall 8.96 

Winter 9.59 

Red 

Spring 10.4 F value: 

12.80 

p-value: 

0.000 

Spring-Others: p<0.003 

Summer-Fall: p=0.962 

Winter-Fall: p=0.446 

Winter-Summer: p=0.686 

Summer 8.82 

Fall 8.65 

Winter 9.21 

NIR 

Spring 8.93 F value: 

19.25 

p-value: 

0.000 

Spring-Others: p=0.000 

Summer-Fall: p=0.999 

Winter-Fall: p=0.435 

Winter-Summer: p=0.398 

Summer 6.48 

Fall 6.46 

Winter 7.16 

Mid-stream 

Band Season 

Mean 

Reflectance 

(%) 

ANOVA TukeyHSD p-value 

Blue 

Spring 7.10 F value: 

20.58 

p-value: 

0.000 

Fall-Others: p<0.003 

Summer-Spring: p=0.000 

Winter-Spring: p=0.344 

Winter-Summer: p=0.114 

Summer 6.33 

Fall 5.61 

Winter 6.78 

Green 

Spring 7.96 F value: 

36.06 

p-value: 

0.000 

Spring-Summer: p=0.272 

Others: p<0.005 

Summer 8.29 

Fall 6.25 

Winter 7.03 

Red 

Spring 6.78 F value: 

35.37 

p-value: 

0.000 

Spring-Summer: p=0.980 

Others: p=0.000 

Summer 6.70 

Fall 4.77 

Winter 5.76 

NIR 

Spring 6.60 F value: 

46.75 

p-value: 

0.000 

Spring-Others: p=0.000 

Summer-Fall: p=0.882 

Winter-Fall: p=0.913 

Winter-Summer: p=0.999 

Summer 4.43 

Fall 4.22 

Winter 4.42 

Upstream 

Band Season 

Mean 

Reflectance 

(%) 

ANOVA TukeyHSD p-value 

Blue 

Spring 5.98 F value: 

14.49 

p-value: 

0.000 

Winter-Spring: p=0.999 

Summer-Fall: 0.312 

Others: p<0.007 

Summer 5.09 

Fall 4.66 

Winter 5.95 

Green 

Spring 6.89 F value: 

16.24 

p-value: 

0.000 

Fall-Others: p<0.002 

Summer-Spring: p=0.872 

Winter-Spring: p=0.369 

Winter-Summer: p=0.136 

Summer 7.09 

Fall 5.25 

Winter 6.41 

Red 

Spring 5.41 F value: 

14.63 

p-value: 

0.000 

Fall-Others: p=0.000 

Summer-Spring: p=0.959 

Winter-Spring: p=0.500 

Winter-Summer: p=0.807 

Summer 5.28 

Fall 3.72 

Winter 5.00 

NIR 

Spring 6.71 F value: 

47.05 

p-value: 

0.000 

Spring-Others: p=0.000 

Summer-Fall: p=0.243 

Winter-Fall: p=0.701 

Winter-Summer: p=0.922 

Summer 4.19 

Fall 3.58 

Winter 3.97 

 

Table 3. Effect of seasonal factor on band reflectance 

 

 

The effect of seasonal factor on band reflectance is summarized 

in Table 3. The low p-values of the ANOVA analysis results 

indicate that the band reflectances are associated with the 

seasons very significantly. In the case of upstream, fall is 

significantly different in the green and red bands, while spring 

is significantly different in the NIR band. Winter and spring 

reflectances are quite identical in the blue band. In the case of 

mid-stream, fall reflectances are different in the blue band. 

Spring and summer reflectances are similar in the green and red 

bands. NIR reflectances are particularly high during the spring 

season. In the downstream, spring reflectances are significantly 

high in the four bands and summer and fall are similar in most 

bands. 

 

3.3. Time-series change of reflectance values 

 

The time-series changes of reflectance values were analyzed in 

the Downstream, Mid-stream and Upstream. Figure 3 shows 

how the reflectance values have changed since 1984. In the 

figures, each point indicates a reflectance value at a sample 

point in a Landsat scene. Since there are multiple sample points 

in a scene and four bands (i.e. Blue, Green, Red and NIR bands) 

are plotted, multiple points appear virtically lined up in the 

figures.  

 

The LOESS fit lines show the trend of reflectance value 

changes. In the case of the Downstream, the green band 

reflectnace vlaues have not been changed much, but the other 

bands show about 1~2% increase of reflectance values during 

the the study period. In the case of the Mid-stream, about 2% 

decreases appear in the green and red bands, while the blue 

band reflectance values are rather constant. A significant 

increase of near-infrared reflectance values appears during the 

1990s. In the case of the Upstream area, 2~3% decreases appear 

in the red, green and blue bands with short-term increases 

around 2005. In the case of the NIR band, it shows an increase 

untill the late 1990s, but decrease during the 2000s.  

 

The R2 values of the LOESS models in Table 4 are low because 

of the large amounts of residuals. Overall, the R2 values 

increase significantly towards the Upstream. The highest R2 

value appears in the green band at the Upstream, while the 

lowest R2 value appears in the green band at the Downstream.  
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Figure 3. Temporal change of reflectance values at the 

Downstream, Mid-stream and Upstream areas 

 

 

Table 4. R2 values of the LOESS models shown in Figure 3 

 

 

3.4. Modeling Chlorophyll-a Amounts and Secchi Depths 

 

Many chlorophill or Secchi disk depth estimation models have 

been developed using Landsat imagery (e.g. Brezonik et al. 

2005; Moreno 2013; Hellweger et al. 2004; Han and Jordan 

2005; Vincent et al. 2004; Krizanich and Finn 2009; Trescott 

2012; Hoyer et al. 2002). In this research, Trescott's models 

(Trescott 2012, p.40 & p.45) were used to estimate the trends of 

Chlorophyll-a (Chl-a) and Secchi depth (SD) changes over time 

because they were derived by field measurements from mid-

latitude fresh water bodies: 

 

Chl-a (μg/L) = -46.51 + 105.30 (B2/B1) – 40.39(B3/B1)         (1) 

 

SD(m) = 26.07 – 23.26 (B2/B1) – 17.19 (B3/B1)                   (2) 

 

B1, B2 and B3 are the blue, green and red band reflectance 

values, respectively. In this research, the estimated values with 

the LOESS models in Section 3.3 were used with Equations (1) 

and (2). Figure 4 and Figure 5 show the changes of estimated 

amounts. In general, the models show decreasing trends of 

chlorophyll-a amounts and Secchi disk depth. In the case of 

sample points P05 and P11, increasing amounts of chlorophyll-

a appear after 2010 and the Secchi disk depths increase too.  

 

Considering that decreasing chlorophyll amounts increase 

Secchi disk depth in general, the opposite results shown in 

Figures 4 and 5 seem be attributed to (1) the dissolved organic 

substances or compounds that change water color, (2) non-algal 

particulates such as clay or sand, or (3) aquatic macrophytes 

like water plants (For more information, refer to Florida 

LAKEWATCH 2001).  

 

  

 
 

Figure 4. Temporal change of the estimated chlorophyll-a 

amount at the eleven sample points 
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Figure 5. Temporal change of the estimated Secchi disk depth 

(m) at the eleven sample points

4. CONCLUSIONS

This research has demonstrated how long-term Landsat big data 

can be used for investigating freshwater quality and the changes 

over a long time period. A total of 776 Landsat scenes were 

analyzed in this research to identify the locational variance of 

reflectance along the Han River, its seasonal differences and the 

long-term trend. The temporal changes in chlorophyll-a and 

Secchi disk depth were also examined to estimate algal amount 

variation.  

The results showed that there were distinctive reflectance 

differences among the downstream, mid-stream and upstream of 

the Han River. The red, green, blue and near-infrared values 

decreased significantly toward the upstream. It was also found 

that the reflectance values were significantly associated with 

seasons. In the downstream, most of the bands exhibited much 

higher reflectance values in spring than in other seasons, while 

there were relatively little differences between summer and fall. 

In the mid-stream, spring and summer reflectance values were 

similar in the green and red bands but not in the blue and NIR 

bands. In the case of the upstream, the reflectance values in the 

green and red bands were lower in fall compared to the rest of 

the year and a similar difference was found in the NIR band for 

spring. 

The long-term time series trends in Section 3.3 indicate that the 

red, green, blue and NIR reflectance values have slightly 

increased in the downstream of the Han River, while they have 

decreased in the mid-stream and upstream. The modeling of 

chlorophyll-a and Secchi disk depth in Section 3.4 implies that 

water clarity has decreased over the years, and chlorophyll-a 

amounts have also decreased. The decreasing water clarity 

seems to be attributed to other reasons than chlorophyll-a such 

as dissolved organic substances or compounds that change 

water color and non-algal particulates like clay or sand. Further 

research may reveal the reason for decreasing water clarity 

more clearly.  

ACKNOWLEDGMENTS 

The project described in this publication was supported by 

Grant Number G14AP00002 from the Department of the 

Interior, United States Geological Survey to AmericaView 

(http://www.AmericaView.org).  Its contents are solely the 

responsibility of the authors; the views and conclusions 

contained in this document are those of the authors and should 

not be interpreted as representing the opinions or policies of the 

U.S. Government. Mention of trade names or commercial 

products does not constitute their endorsement by the U.S. 

Government. 

REFERENCES 

Brezonik P., Menken, K.D. and Bauer, M., 2005. Landsat-based 

remote sensing of lake water quality characteristics, including 

chlorophyll and colored dissolved organic matter. Lake and 

Reservoir Management 21(4): 373-382. 

Cox, M. and Ellsworth, D., 1997. Application-controlled 

demand paging for out-of-core visualization, VIS '97 

Proceedings of the 8th conference on Visualization '97, pp.235-

244. IEEE Computer Society Press, Los Alamitos, CA, USA.

Erl, T., Khattak, W., and Buhler, P., 2016, Big Data 

Fundamentals: Concepts, Drivers & Techniques, Prentice Hall. 

Laney, D., 2001, 3D Data Management: Controlling Data 

Volume, Velocity and Variety. In "Application Delivery 

Strategies," by META Group. http://blogs.gartner.com/doug-

laney/files/2012/02/ad1074-The-Great-Enterprise-Balancing-

Act-Extended-Relationship-Management-XRM.pdf. 

Florida LAKEWATCH, 2001. A Beginner's Guide to Water 

Management – Water Clarity. University of Florida. URL: 

http://lakewatch.ifas.ufl.edu/circpdffolder/103_WATER_CLAR

ITY_3rd_2004Red.pdf.  

Han, L. and Jordan, K.J., 2005. Estimating and mapping 

chlorophyll-a concentration in Pensacola Bay, Florida using 

Landsat ETM+ data. International Journal of Remote Sensing 

26(23): 5245–5254. 

Hancock, M.J., 2015. Predicting water quality by relating 

Secchi disk transparency depths to Landsat 8. Masters Thesis. 

Department of Geography, Indiana University.  

Hellweger, F.L., Schlosser, P., Lall, U., Weissel, J.K., 2004. 

Use of satellite imagery for water quality studies in New York 

Harbor. Estuarine, Coastal and Shelf Science 61: 437–448.  

Hilbert, M., 2016. Big Data for Development: A Review of 

Promises and Challenges. Development Policy Review, 34(1), 

135–174. http://doi.org/10.1111/dpr.12142. 

Hoyer, M.V., Frazer, T.K., Notestein, S.K. and Canfield, D.E. 

Jr., 2002. Nutrient, chlorophyll, and water clarity relationships 

in Florida’s nearshore coastal waters with comparisons to 

freshwater lakes. Canadian Journal of Fisheries and Aquatic 

Sciences 59: 1024–1031. 

Kim, Y.J., Kim, M.W. and Kim, S.J., 1998. Ecological 

Characteristics of Phytoplankton Community in the Mid- and 

Downstream of the Han River. Algae 13(3): 331-338. 

Krizanich, G.W. and Finn, M.P., 2009. Table Rock Lake Water-

Clarity Assessment Using Landsat Thematic Mapper Satellite 

Data. U.S. Geological Survey, Scientific Investigations Report 

2009–5162, 9p.  

Lee, C.Y. and Kim, K.H., 2008. Development of GIS based 

Water Quality Simulation System for Han River and Kyeonggi 

Bay Area. Journal of Korea Spatial Information Society 10 (4): 

77-88. 

Moreno, J.P., 2013. Evaluation of Secchi Depth by Remote 

Sensing Techniques in Deer Creek Reservoir, Utah. Master of 

Science Thesis. Department of Civil and Environmental 

Engineering, Brigham Young University, Provo, Utah. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1/W1, 2017 
ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17,  6–9 June 2017, Hannover, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprs-annals-IV-1-W1-83-2017 88



Press, G., 2014. 12 Big Data Definitions: What's Yours?, Forbes 

news article (September 3, 2014). URL: http://www.forbes.com 

/sites/gilpress/2014/09/03/12-big-data-definitions-whats-

yours/#75d75d9121a9 

Seoul City, 2015. Algal Map. URL: http://m.arisu.seoul.go.kr 

/_sudo_news/report_detail.jsp?nID=327. 

Suh, M.Y., Gil, H.K., Kim, K.S., Jeong, H.J., Kim, J.Y., Yoon, 

J.C., Lim, G.C., Lee, J.H., Lee, S.C., Kim, H.S., Bae, K.S. and

Eom, S.W., 2006. Fluctuation of Environmental Factors &

Dynamics of Phytoplankton Community in the Han River.

Report of Seoul Research Institute of Public Health & Env.

42:453~464. URL: https://opengov.seoul.go.kr/research/6410377

Trescott, A., 2012. Remote Sensing Models of Algal Blooms 

and Cyanobacteria in Lake Champlain. Masters Thesis, Univ. of 

Massachusetts–Amherst. URL:  http://scholarworks.umass.edu 

/cee_ewre/48.  

USGS (US Geological Survey), 2015, Landsat 8 (L8) Data 

Users Handbook. URL: https://landsat.usgs.gov/documents 

/Landsat8DataUsersHandbook.pdf 

Vincent, R.K., Qin, X, McKay, M.L., Miner, J., Czajkowski, K., 

Savino, J. andBridgeman, T., 2004. Phycocyanin detection from 

LANDSAT TM data for mapping cyanobacterial blooms in 

Lake Erie. Remote Sensing of Environment 89: 381– 392. 

Wyly, E., 2014. The New Quantitative Revolution. Dialogues in 

Human Geography, 4(1): 26–38. URL: http://dhg.sagepub.com 

/content/4/1/26.full.pdf+html

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1/W1, 2017 
ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17,  6–9 June 2017, Hannover, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprs-annals-IV-1-W1-83-2017 89




