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ABSTRACT:

Motor actuated 2D laser scanners are key sensors for many robotics applications that need wide ranging but low cost 3D data. There
exist many approaches on how to build a 3D laser scanner using this technique, but they often lack proper synchronization for the
timestamps of the actuator and the laser scanner. However, to transform the measurement points into three-dimensional space an
appropriate synchronization is mandatory. Thus, we propose two different approaches to accomplish the goal of calculating timestamp
offsets between laser scanner and motor prior to and after data acquisition. Both approaches use parts of a SLAM algorithm but apply
different criteria to find an appropriate solution. While the approach for offset calculation prior to data acquisition exploits the fact
that the SLAM algorithm should not register motion for a stationary system, the approach for offset calculation after data acquisition
evaluates the perceived clarity of a point cloud created by the SLAM algorithm. Our experiments show that both approaches yield
the same results although operating independently on different data, which demonstrates that the results reflect reality with a high
probability. Furthermore, our experiments exhibit the significance of a proper synchronization between laser scanner and actuator.

1. INTRODUCTION

For many applications laser scanners are the most useful sensors
since they can provide accurate and wide ranging data (Wong
et al., 2011). Because of that, there are many approaches that
use data acquired by a laser scanner to solve the SLAM prob-
lem (Thrun et al., 2005). While in the past 2D laser scanners
were sufficient for the navigation of mobile robots in planar en-
vironments, recent SLAM approaches deal with 3D data to avoid
obstacles at all heights and simultaneously acquire a dense 3D
point cloud of the environment (Nuechter et al., 2007, Bosse and
Zlot, 2009, Bosse et al., 2012, Zhang and Singh, 2014). However,
3D laser scanners as the Velodyne HDL-64E that provide high
resolution and long ranges are expensive. Therefore, cheaper 2D
laser scanners, such as a SICK or Hokuyo, that are usually only
capable of acquiring scan points in a plane, are actuated by a
servo drive to gather 3D data (Wulf and Wagner, 2003).

To transform the measurement points into three-dimensional
space, it is required to know the appropriate encoder values of
the servo drive for every set of scan points. Because of that,
there exist two different approaches to determine these encoder
values. The first and most simple possibility is using a motor
that stops at discrete steps to let the laser scanner capture mea-
surement points (Mandow et al., 2010). This solution, however,
leads to a lower data rate since the laser scanner and the motor
have to wait for each other before performing a measurement or a
rotation. Another possibility is to continuously monitor and con-
trol the motion of the motor while acquiring measurement points
with a high scan frequency (Wulf and Wagner, 2003, Yoshida et
al., 2010). However, this can lead to a constant offset between the
timestamps of the laser scanner and the motor due to the latency
and transmission lags of sensors and computers. Therefore, it is
essential to achieve a proper synchronization between the times-
tamps of the laser scanner and its rotating motor as it is already
mentioned in (Hebert and Krotkov, 1992). If no synchroniza-
tion is present, the offset for the corresponding encoder values for

each set of scan points can lead to a large distortion in the result-
ing point cloud that is constructed by a SLAM approach (Wulf
and Wagner, 2003).

Thus, our aim is to correct distortion in point clouds acquired
by a rotating laser scanner that arises due to an erroneous offset
between the timestamps of an actuated laser scanner and its corre-
sponding motor. For this purpose, we assume that the timestamp
offset is constant throughout the entire measurement.

We present two different approaches to determine the timestamp
offset. The first approach can be used to calibrate the system be-
fore using it for an online algorithm that requires correctly trans-
formed 3D data. For this, it is necessary to not move the system
for a short period of time and wait for the calibration to finish.
The second approach makes it possible to determine the offset
between the timestamps after the acquisition of a large dataset.
Thereby it becomes possible to use the dataset for offline com-
putations although the initial synchronization between the laser
scanner and the motor is not optimal. To verify the results pro-
duced by both approaches, datasets are recorded after calculating
the desired offset with the first approach. Afterwards, the datasets
are used to calculate the offset again using the second approach
to check if both methods yield the same results.

Related work in the field of calibrating actuated laser scanners
was done by (Alismail and Browning, 2014). The authors present
an approach to calibrate the internal parameters (e.g. the mechan-
ical offset between the center of rotation of the laser scanner’s
mirror and the center of rotation of the actuation mechanism) of
an actuated spinning laser scanner. However, they do not incor-
porate the time offset that may occur between the timestamps of
the actuator and the laser scanner.

Another idea for an actuated laser scanner is presented
by (Morales et al., 2011). Within this work the authors describe
the design and development of a mechanical system that is used to
rotate the laser scanner. Furthermore, a motion controller that is
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responsible for the synchronization between the mechanical sys-
tem and the laser scanner is presented. The distinction is that our
method solely focuses on the time synchronization and thus can
be applied to arbitrary motor and laser scanner combinations.

Similar to our approach, the authors of the following paper (Shee-
han et al., 2010) try to design a 3D laser scanner that is capable
of automatic self-calibration. Their system consists of an arbi-
trary number of 2D laser scanners that are mounted on a rotating
plate. In addition to other extrinsic parameters they also deal with
the estimation of the clock skews between their devices. For this,
they initially try to learn the offsets between the clocks of all de-
vices. Afterwards, they use a second method to determine the
transport delays. For this purpose they evaluate the “crispness”
of resulting point clouds using different criteria than us. A fur-
ther distinction is that our approach focuses on one laser scanner
only, and thus it is not required to employ two separate algorithms
to detect the offset.

The remainder of this paper is organized as follows. Firstly, the
sensor system we used to evaluate the methods presented within
this paper is introduced in Section 2. In Section 3 we describe
our approach to calculate the timestamp offset between the laser
scanner and the motor. Since we developed two independent
methods this section is divided into two subsections: one for the
approach that calculates the offset prior to data acquisition and
one for the approach that deals with large datasets. Experiments
demonstrating both methods are presented in Section 4 for a num-
ber of datasets of different characteristics that are introduced as
well. Subsequently, we analyze and discuss the results of our ex-
periments in Section 5. Finally, a summary and future directions
conclude the paper in Section 6.

2. SYSTEM OVERVIEW

The idea of this paper is validated on a Hokuyo UTM-30LX laser
scanner that is actuated by a Dynamixel MX-64R motor. This
laser scanner can provide a 2D scan with a field of view of 270◦

and an angular resolution of 0.25◦. However, for our experi-
ments the field of view is limited to 180◦ to avoid detection of
the frame the laser scanner is attached to. Every measurement
of the laser scanner takes 25 ms which leads to a scan frequency
of 40 lines/sec. Furthermore, the laser scanner has a maximum
detection range of 30 m and a minimum detection range of 0.1 m.

The Dynamixel MX-64R robot actuator is able to operate at an
angle of 360◦ or at a continuous turn. Furthermore, the motor
supports the measurement of its own position and speed. For
this it provides a angular resolution of 0.088◦. To control the
motion of the actuator we use the Dynamixel motor package that
is available for the Robot Operating System (ROS).

Both devices are connected to a Kontron KTQM87 based embed-
ded PC which runs the motion controller for the actuator. More-
over, it collects the measurement data from the laser scanner as
well as the position data from the motor and timestamps them.
Due to latency and transmission lags of sensors and the embed-
ded PC, these timestamps may not be synchronized, and thus the
offset between them needs to be determined.

It is important to note that the devices are attached to different
ports of the embedded PC. While the motor is connected to the
USB port via a USB to RS485 converter the laser scanner is at-
tached to the LAN port. Thus, our assumption about a constant

offset remains valid since both devices do not interfere the mea-
surement data acquisition of each other due to the utilization of
different ports. Furthermore, our embedded PC does not oper-
ate at full computational load which further ensures a constant
timestamp offset.

The setup consisting of laser scanner and motor can be seen in
Figure 1. For our experiments we focused on the rolling scan
method for which the laser scanner is rotated around its center.
This gives the advantage of only one focus point in front of the
laser scanner (Wulf and Wagner, 2003).

Figure 1. An exemplary setup of an actuated laser scanner. We
will use data from this system for our experiments. The laser

scanner is a Hokuyo UTM-30LX scanning laser rangefinder that
is rotated by a Dynamixel MX-64R robot actuator.

The motor is set to control the laser scanner such that a sweep
lasts 0.5 s, where a sweep is the rotation from -90◦ to +90◦ or in
the inverse direction with the horizontal orientation as 0◦. This
yields a rotation frequency of 1 Hz since a sweep is half a full
rotation.

3. ESTIMATING TIMESTAMP OFFSETS BETWEEN
LIDAR AND MOTOR

Within this section we will present two different approaches to
compute the offsets between the timestamps of a laser scanner
and its corresponding motor. The first approach can be used to
determine the offset for a system that needs to be adequately
synchronized for following online computations. The second ap-
proach calculates the offset for a large dataset. This enables of-
fline computations for the dataset although the offset between the
timestamps of the laser scanner and motor was not known during
data acquisition. Before we start explaining our methods we give
an overview of the SLAM approach that is proposed by (Zhang
and Singh, 2014).

3.1 Overview of the utilized SLAM approach

For our methods we use the SLAM approach that is proposed
by (Zhang and Singh, 2014). It consists of two algorithms that
run separately. The first algorithm - lidar odometry - determines
the motion of the laser scanner between two consecutive sweeps,
where a sweep is the rotation from -90◦ to + 90◦ or in the inverse
direction with the horizontal orientation as 0◦. Furthermore, the
results from the first algorithm are used to correct distortion in
the point clouds that arises due to the motion of the laser scanner
during a sweep.
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To extract scan features, the curvature of every 2D scan point with
respect to its neighbors is calculated. Points with a large curva-
ture value are extracted as edge points while points with a small
curvature value are extracted as planar points. An example for
the feature extraction can be seen in Figure 2. Scan points with
a large curvature value are colored in dark orange while those
colored in light orange have a small curvature value.

Figure 2. An example of 2D laser scan points for which the
curvature is calculated. Dark orange points correspond to scan

points with large curvature values while light orange points
indicate a small curvature value. Circled points are extracted as
edge points. Since too many planar points were extracted they

are not depicted in this figure.

Afterwards, the lidar odometry algorithm determines the motion
of the laser scanner by matching extracted edge points to edges
and planar points to planar patches from the previous sweep. Sub-
sequently, an optimization algorithm is used to minimize the dis-
tance between the correspondences.

The second algorithm - lidar mapping - is responsible for match-
ing the edge points and planar points from the last sweep onto the
global map. Thereby, the second algorithm is able to correct for
drift over time. An example for a map can be seen in Figure 3.

Figure 3. An example of a map that is used within the lidar
mapping algorithm. Dark orange points were extracted as edge
points while light orange points were extracted as planar points.

To register an edge point from the most recent sweep onto the
map, the algorithm finds edge points within a certain region
around the newly extracted edge point in the map and fits an edge
through them. In a similar way, the corresponding planar patch
for a planar point is determined. Afterwards, both feature types
are combined in an optimization algorithm to minimize the dis-
tance from edge points to corresponding edges and from planar
points to corresponding planar patches.

3.2 Prior to data acquisition for online computations

To compute the offset between the timestamps of the laser scan-
ner and the motor, the system is set up as follows. The motor is set
to rotate the laser scanner at a constant angular velocity around
the center of the scanner. Furthermore, the devices are brought
into a fixed position and required to remain in place until a short
dataset is recorded.

The idea is to determine the offset that leads to the smallest move-
ment calculated by a SLAM approach that incorporates the de-
sired time offset between the timestamps of the laser scanner and
the motor. Since the system remains stationary for the compu-
tation, the movement calculated by a SLAM approach should be
zero. However, due to transformation errors caused by a false
timestamp offset the 3D data points do not match perfectly from
one scan to another and lead to erroneously computed movements
by the SLAM algorithm. We use the SLAM algorithm proposed
by (Zhang and Singh, 2014) that was introduced in the previous
subsection.

Since our system will not move within the map it is not necessary
to use the second algorithm - lidar mapping - for now. Instead,
we exclusively use the first algorithm - lidar odometry - which has
the further advantage that it matches consecutive sweeps acquired
in opposite directions (for one sweep the laser scanner is rotated
from -90◦ to 90◦ degree and for the following sweep the scanner
is rotated from 90◦ to -90◦ or vice versa). As a result, an offset
between the timestamps of the laser scanner and the motor leads
to an offset in the consecutive point clouds which in turn induces
a nonzero motion calculated by the first algorithm.

To determine the motion calculated by the first algorithm, it is
necessary to first compute the translational and rotational move-
ment separately. The translation can be computed as

t =
√
t2x + t2y + t2z, (1)

where tx, ty and tz are translations along the x-, y- and z- axes.
Similarly, the magnitude of the rotation can be computed as

θ =
√
θ2x + θ2y + θ2z , (2)

where (θx, θy, θz)
T is a vector representing the rotation axis

while simultaneously matching the magnitude of the rotation by
its length. Both the translational and rotational movement can be
combined in the following equation

d =
√
t2 + c · θ2, (3)

where c ≥ 0 is a weighting factor. For our experiments we set
c = 1.

To find an appropriate offset, we use a brute-force approach that
takes an initial offset, a required accuracy for the final offset and
a maximum number of steps. Thus, it is necessary to guess an
initial range that encloses the optimal offset. This range can be
arbitrarily large but must not exceed the duration of one motor ro-
tation to avoid multiple minimums that may arise from the cyclic
properties of the problem. The algorithm then iterates over possi-
ble offsets starting from the initial offset and taking steps in both
directions in the size of the required accuracy. For every offset
the lidar odometry algorithm is executed on the short dataset and
the corresponding motion d is computed. If d is smaller than the
current minimum, d and its associated offset are set as the new
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minimum. Once the maximum number of steps has been reached,
the current minimum is returned.

Instead of recording a small dataset to determine the offset, it is
possible to process live data that is measured by the laser scanner.
For our experiments, however, we decided to use the same small
dataset throughout the computations to be able to compare the
resulting motion d for different timestamp offsets without having
to take other influences (e.g. measurement noise that varies from
one run to the other) into account.

3.3 After data acquisition for offline computations

To determine the timestamp offset for a large dataset that is al-
ready recorded, we again use the SLAM approach that is pro-
posed by (Zhang and Singh, 2014). As opposed to the previous
subsection, the system is now allowed to move which makes it
impossible to use the same strategy as before. Instead, we use
both the lidar odometry and the lidar mapping of the SLAM ap-
proach and try to find the timestamp offset that induces the great-
est clarity in the resulting point cloud of the environment. For this
purpose, it is crucial to define adequate criteria that are viable to
evaluate the clarity of a point cloud.

Initially, we thought about using the loop closure error as a cri-
terion. This criterion, however, is not suitable since the loop clo-
sure error can be small although the SLAM algorithm performed
poorly between start and end pose. That is because the algorithm
may be able to close the loop by matching feature points detected
at the end pose to feature points from the map that were added
at the start pose. Nevertheless, the computed trajectory between
start and end pose may still deviate from reality. On this account,
we refrain from specifying the loop closure error for our algo-
rithm since it can be misleading.

The first suitable criterion is the amount of matches n that are
registered onto the map in the lidar mapping algorithm. This
is a meaningful criterion since more matches indicate that more
features could be integrated into the map and thus the clarity is
greater. However, if the amount of matches is low, it follows
that the extracted features were not close to their corresponding
edge lines or planar patches, which suggests that the clarity of
the resulting point cloud is low. Thus, the aim is to maximize this
criterion.

Before we can compute n, we need to define the setsDk
E andDk

H
that contain all matched edge points and planar points for sweep
k as

Dk
E := { i ∈ Ek+1 | dE (i, j, l) < δE ; j, l ∈ Qk } , (4)

where Ek+1 is the set of edge points that were extracted for sweep
k + 1, Qk is the set of all points that were integrated into the
global map until sweep k, dE (i, j, l) is the distance between an
edge point i and its corresponding edge line that is represented by
two points(j, l) in the global mapQk (cf. equation (2) in (Zhang
and Singh, 2014)) and δE is the maximum distance between an
edge point and its corresponding edge line to consider them as a
match. Dk

H is defined as

Dk
H := { i ∈ Hk+1 | dH (i, j, l,m) < δH; j, l,m ∈ Qk } ,

(5)
where Hk+1 is the set of planar points that were extracted for
sweep k + 1, dH (i, j, l,m) is the distance between an planar
point i and its corresponding planar patch that is represented
by three points(j, l,m) in the global map Qk (cf. equation (3)

in (Zhang and Singh, 2014)) and δH is the maximum distance
between an planar point and its corresponding planar patch to
consider them as a match. Using both sets we can derive an equa-
tion for the total number of matches n as

n =
∑
k∈S

(
|Dk
E |+ |Dk

H|
)
, (6)

where S is the set of all sweeps that were acquired during the
measurement and |A| is the cardinality of the set A.

The second criterion is the average error e for each match that
is registered onto the map. The lower the error the closer the
matches are to their corresponding edge lines or planar patches
which in turn suggests a greater clarity. Thus, the aim is to mini-
mize this criterion. The average error e can be computed as

e =

∑
k∈S

(∑
i∈Dk

E
dE (i, j, l) +

∑
i∈Dk

H
dH (i, j, l,m)

)
n

,

(7)
where dE (i, j, l) and dH (i, j, l,m) are the distances between
feature correspondences as depicted in equation (4) and (5).

Now, with these two criteria it is possible to determine an appro-
priate offset between the timestamps of the laser scanner and the
motor. The reasoning for this is that a more fitting offset induces
a point cloud that shows a greater clarity. This follows from the
fact that scan features transformed with the correct encoder val-
ues can be matched more straightforward than those that are not
correctly transformed. In contrast, if the timestamp offset does
not fit, features from consecutive sweeps do not align and thus
cannot be integrated into the global map.

To further confirm the relevance of our criteria, we carried out an
additional subjective test. For this, we compared the two criteria
to the authors’ perceived clarity of the point clouds that resulted
from running the SLAM approach using different timestamp off-
sets. To enable the reader to judge the clarity of different point
clouds as well, we show the results of our experiments in the fol-
lowing section.

Again, we use a brute-force approach that automates the process
of finding the offset for which the first criterion has a large value
and the second criterion a low value. For this, it is once more re-
quired to define an initial offset, an intended accuracy for the final
offset, a maximum number of steps, and thus an initial range en-
closing the optimal offset. Like in the previous subsection, the
algorithm iterates over different offsets but launches not only the
lidar odometry but also the lidar mapping algorithm on the large
dataset the offset shall be determined for. After each iteration the
two criteria are stored and compared to those of previous itera-
tions. Once the maximum number of steps has been reached, the
offset is returned for which the lidar mapping algorithm produced
the best criteria.

4. EXPERIMENTS

In this section we present the results of our experiments using the
system outlined in Section 2. At first, we display the results of
our first method discussed above. Afterwards, the datasets are
introduced before finally presenting the results of our second ap-
proach.

4.1 Prior to data acquisition

Before recording large datasets we acquired six datasets of
roughly four seconds each. For these datasets the system was
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(b) Experiment No. 4

Figure 4. Results generated by the approach to calculate timestamp offsets prior to data acquisition. The measurement graphs belong
to experiments whose results are depicted in Table 1.

kept in a fixed position to avoid motion during the measurement.
In order to minimize error influences due to measurement noise
and observed scenes, we chose to use six different positions in
the same room. The offset between the timestamps of the laser
scanner and the motor is determined using the method described
in Subsection 3.2. Initially, we ran the algorithm with a desired
accuracy of 1 ms in the range from 19 ms to 29 ms to determine
a first approximation of the solution. We worked with this initial
range since our algorithm did not succeeded with offsets outside
this range. These experiments revealed that the final solution lies
within the range of 22 ms to 26 ms which prompted us to carry out
an additional experiment with an accuracy of 0.1 ms within this
range. Further tests were not required since the final experiment
with an accuracy of 0.1 ms yielded results that did not improve
by a large margin from one step to another.

No. Offset [ms] Magnitude of motion d
1 24.3 0.0037
2 23.4 0.0314
3 23.9 0.0203
4 24.1 0.0070
5 23.8 0.0220
6 24.6 0.0194

Table 1. Results of the offset computation prior to data
acquisition.

The results for all six experiments can be seen in Table 1. It can
be seen that all calculated timestamp offsets vary around 24 ms
while the magnitude of motion d ranges from 0.0037 to 0.0314.
This can be explained by measurement noise that influences the
laser scanner. However, the calculated timestamp offsets still co-
incide which shows that the approach is prone to some measure-
ment noise. The average offset over all six datasets amounts to
24.0 ms.

Additionally, in Figure 4(a) and Figure 4(b) the resulting graphs
for experiment number one and four, respectively, are depicted.
These are exemplary for all six experiments. It can be seen
that the magnitude of motion d increases sharply if the observed
timestamp offset differs a few milliseconds from the optimum.
This leads to the conclusion that the offset between the times-
tamp of the laser scanner and the motor has a great influence on
approaches that use an actuated laser scanner.

4.2 Datasets

For our experiments we acquired four datasets of different char-
acteristics. Before we introduce and discuss the results that our
second approach yields, we want to present those datasets to
give the reader an impression. To create a representation of the
datasets, we used an extension of the previously discussed SLAM
approach that is presented by (Zhang and Singh, 2015). For this,
it is necessary to additionally use a RGB camera. However, since
this sensor is out of the scope of this paper we do not go into de-
tails regarding the camera. Also note that no georeferencing was
used and we were walking for all data recordings.

The first dataset contains data that was recorded in an abandoned
metro station. In a period of roughly 159 s we cover a distance
of around 117 m with a maximum velocity of 1.3 m/s and a max-
imum angular rate of 0.44 rad/s. Moreover, we finish the mea-
surement in the same spot that we started it in. The surrounding
point cloud that emerges when executing the extension of the pre-
viously mentioned SLAM approach (Zhang and Singh, 2015) on
this dataset can be seen in Figure 5(a).

For the second dataset we moved across a parking area. In a
period of roughly 208 s we cover a distance of around 155 m
with a maximum velocity of 1.5 m/s and a maximum angular rate
of 0.61 rad/s. Again, we finish in the same spot that we started in.
In Figure 5(b) the corresponding point cloud can be seen.

The third dataset was recorded on a cemetery. In a period of
roughly 287 s we cover a distance of around 236 m with a
maximum velocity of 1.4 m/s and a maximum angular rate of
0.74 rad/s. Once more, we finish in the same spot that we started
in. The surrounding point cloud that was created using the same
SLAM approach can be seen in Figure 5(c).

For the fourth dataset we choose an environment of several dif-
ferent characteristics. We started our measurement in an empty
lecture room and finished it in an outside area in which trees and
building facades were present. In a period of roughly 274 s we
cover a distance of around 184 m with a maximum velocity of
1.9 m/s and a maximum angular rate of 0.91 rad/s. This time we
do not finish in the same spot that we started in. Once again,
the surrounding point cloud that can be seen in Figure 5(d) was
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(a) Metro station (b) Parking area

(c) Cemetery (d) Lecture room

Figure 5. Maps generated using the discussed SLAM approach. Point clouds are color coded by elevation to generate 3D perception.

generated using the extension of the previously discussed SLAM
approach.

4.3 After data acquisition

For all introduced datasets we executed our approach to deter-
mine the offset between the timestamps of the laser scanner and
the motor that was presented in Subsection 3.3. The results are
depicted in Table 2. We strove for the same accuracy as in Sub-
section 4.1, and thus used the ranges for the timestamp offset as
depicted there.

Dataset Offset using the
total number of
matches n [ms]

Offset using the
average error per

match e [ms]
Metro station 23.9 24.2
Parking area 24.0 24.0

Cemetery 23.8 23.8
Lecture room 24.1 24.1

Table 2. Results of the offset computation for all four datasets
and for both criteria that were introduced in Subsection 3.3.

The results of our experiments can be seen in Table 2. The off-
sets presented are determined by evaluating the two criteria intro-
duced in Subsection 3.3, namely the total number of matches n
and the average error per match e in the lidar mapping algorithm.
It can be seen that both criteria lead to exactly the same results for
three out of four datasets with the only exception being the metro
station dataset. Equally as for our other method that determines
the timestamp offset prior to data acquisition, the average offset
over all four datasets amounts to 24.0 ms for both criteria.

Figure 6 displays the measurement graphs for both criteria eval-
uated on the parking area dataset. In Figure 6(a) it becomes evi-
dent that the total number of matches n approaches its maximum
at 24 ms. Similarly, in Figure 6(b) it can be seen that the average
error per match e has its minimum at 24 ms.

Those two graphs are exemplary for all four datasets, and thus it
can be concluded that the timestamp offset has a great effect on
the quality of results produced by the presented SLAM approach.
This can be observed by both the major drop of the total number
of matches n and the large growth of the average error per match
e if the offset deviates by more than 3 ms from the optimum.

5. DISCUSSION

As can be seen in the previous section the calculated timestamp
offset ranges from 23.4 ms to 24.6 ms for our first method (cf.
Section 4.1) and from 23.8 ms to 24.2 ms for our second approach
(cf. Section 4.3). Furthermore, both approaches yield the same
average of 24 ms over all experiments. Thus, it can be concluded
that the calculated timestamp offsets coincide for both methods
within an accuracy of 1 ms. This means that both approaches are
convenient to determine the timestamp offset between laser scan-
ner and motor. Furthermore, this shows that the results reflect
reality with a high probability since both methods operate inde-
pendently on different data and with different criteria while still
obtaining the same results.

Moreover, it is evident, considering especially the results for our
second method using those large datasets, that an accuracy of
1 ms is sufficient for our purpose. As can be seen from Fig-
ure 6, the criteria of our experiments stay around the same level
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Figure 6. Results generated by the approach to calculate timestamp offsets for large datasets. Both measurement graphs belong to the
parking area dataset, but they display different criteria to evaluate the clarity of the resulting point cloud.

for offsets between 23 ms and 25 ms which makes it sufficient to
choose an offset within this range for appropriate results of the
SLAM algorithm. Thus, it can be stated that a timestamp offset
within an accuracy of 1 ms is adequate.

In summary, the results indicate that both presented approaches
are able to achieve the goal of determining the timestamp off-
set between laser scanner and motor. The decision as to which
method should be used depends on the available data. If the
dataset, the offset should be calculated for, is already available,
the second method can be used to avoid setting up the system
again. However, if the timestamp offset is required for online cal-
culations, it is inevitable to run the first method before starting
those calculations.

To show the influence of the timestamp offset on the final re-
sult, we depict two point clouds that are obtained using different
timestamp offsets. While all other parameters remain unchanged,
the timestamp offset is set to 24 ms for Figure 7 and to 19 ms for
Figure 8. Both figures show point clouds that originate from the
metro station dataset in top view (compare to Figure 5(a)).

Figure 7. Map generated by the SLAM approach for the metro
station dataset using an appropriate timestamp offset of 24 ms.

Sharp edges indicate a great clarity for this point cloud.

The greatest difference is recognizable for the pillar in the center
of both figures. While for Figure 7 the pillar is easily observable
in the shape of a hexagon, it is not obvious for Figure 8. Likewise,
the stairs that can be seen on the left and right side for both point
clouds are more distinct for Figure 7. Thus, it can be stated that
the point cloud in Figure 7 indicates a greater clarity. Further-
more, it becomes evident again that the timestamp offset between

laser scanner and motor has a great effect on the resulting point
cloud as an adjustment of merely 5 ms leads to a lower perceived
clarity for our experiments.

Figure 8. Map generated by the SLAM approach for the metro
station dataset using an inappropriate timestamp offset of 19 ms.

Blurry edges indicate a small clarity for this point cloud.

6. CONCLUSION AND FUTURE WORK

Incorrect synchronization between encoder values and laser scan-
ner data can lead to distortion in the resulting point clouds when
using an actuated laser scanner. To solve this problem we pre-
sented two independent approaches to calculate the timestamp
offset between these two devices in this paper. Both use differ-
ent parts of a SLAM approach proposed by (Zhang and Singh,
2014) and distinct criteria to find an appropriate offset. Our ex-
periments have shown that both approaches yield similar results
within an accuracy of 1 ms. However, the experimental results
also showed that an accuracy of 1 ms is sufficient. Thus, it can
be stated that both methods are convenient to determine the de-
sired offset. Furthermore, we were able to demonstrate the nega-
tive effect an incorrect synchronization between motor and laser
scanner can have on the resulting point clouds.

Since the second approach can be used to calculate the timestamp
offset between arbitrary sensors that are fusioned for a SLAM ap-
proach, future work involves experiments to find out the signif-
icance of those offsets for the result. Additionally, an approach
similar to our first method should be developed for different sen-
sors in order to provide a reference to results from the second
approach.
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