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ABSTRACT:

In this paper, we investigate the potential of estimating the soil-moisture content based on VNIR hyperspectral data combined with
LWIR data. Measurements from a multi-sensor field campaign represent the benchmark dataset which contains measured hyperspectral,
LWIR, and soil-moisture data conducted on grassland site. We introduce a regression framework with three steps consisting of feature
selection, preprocessing, and well-chosen regression models. The latter are mainly supervised machine learning models. An exception
are the self-organizing maps which combine unsupervised and supervised learning. We analyze the impact of the distinct preprocessing
methods on the regression results. Of all regression models, the extremely randomized trees model without preprocessing provides
the best estimation performance. Our results reveal the potential of the respective regression framework combined with the VNIR
hyperspectral data to estimate soil moisture measured under real-world conditions. In conclusion, the results of this paper provide a
basis for further improvements in different research directions.

1. INTRODUCTION

Precise data about spatial distributions and dynamics of soil mois-
ture is valuable in many scopes of environmental applications.
Hydrological as well as meteorological processes are influenced
by soil moisture. Besides soils, microbes, and plants depend
heavily on it (Farrelly et al., 2011; Cavagnaro, 2016; Tian et al.,
2018). Apart from this, soil moisture emerges as one of the key
variables relating to hydrological disasters such as flash floods
on a catchment scale (Gill et al., 2006). Soil-moisture data of
e.g. catchments areas functions as input variable for estimating
and mitigating flood impacts to enhance flood models (Massari et
al., 2014). In many regions, the soil-moisture distribution varies
during the season of a year. Thus, e.g. summer soil-moisture
availability serves as a relative indicator of a potential rate of fire
spread, fire intensity, and fuel consumption (Girardin and Wotton,
2009). In addition, measured soil-moisture data is used to model
the germination of seedbeds after such wildfires (Flerchinger and
Hardegree, 2004). Other studies have been conducted which refer
to the linkages between soil moisture and wind erosion (Wang et
al., 2014). All these fields of application have in common that
they require soil-moisture estimations under almost real-world
conditions such as a soil surface covered with vegetation.

The demand for spatial coverage and temporal resolution of soil
moisture varies widely in the fields of application. Small-scale
measurements, e.g. field site scale (pedon-scale), are performed
with handheld sensors in combination with point-wise in situ soil-
moisture measurements. One advantage of this scale is a high
temporal resolution. Large-scale observations rely on airborne
and satellite-based remote sensing solutions (cf. Maggioni et al.,
2006; John, 1992; Finn et al., 2011; Colini et al., 2014). There-
fore, they cover catchments and larger areas with a limited tem-
poral resolution. Hence, a gap between the spatial coverage and
temporal soil-moisture resolution as well as spatial coverages oc-
curs (Robinson et al., 2008).

Developments in hyperspectral remote sensing during the last
four decades have enhanced the data acquisition regarding e.g.
spectral resolution for evaluating the soil-moisture dynamics.
Terrestrial hyperspectral remote sensing sensors mounted on
drones can cover a pedon-scale and are able to retrieve spectral
signatures of the soil-moisture distribution in-between the top-
soil layers (Kaleita et al., 2005). The surface of such sites is char-
acterized by inhomogeneous covers including different vegeta-
tion, soil, and rock. This inhomogeneity of the soil surface results
in overlaying reflectance spectra and poses a challenge to iden-
tify the soil-moisture state and dynamic (Salisbury and D’Aria,
1992). Since the datasets dealing with soil-moisture content are
conducted expensively in field campaigns or laboratory measure-
ments, most of them are of limited size.

When it comes to the estimation or modeling of soil-moisture
contents based on remote sensing data, two trends can be deduced
generally. First, hyperspectral sensors, which combine a fine spa-
tial resolution and narrow bandwidths, outperform multispectral-
retrieved data, especially in heterogeneous areas. Second, the
short-wave infrared (SWIR) hyperspectral sensors obtain better
results in estimating soil-moisture contents than the visible and
near infrared (VNIR) sensors (Dalal and Henry, 1986; Finn et al.,
2011). Crucial disadvantages of the SWIR sensors are the high
acquisition cost, the need for active cooling, and, as direct con-
sequence, the large weight and complex handling when mount-
ing on e.g. a drone. Referring to these barriers and despite the
knowledge of the great potential of such SWIR sensors, we seek
to address the estimation of soil-moisture dynamics based on hy-
perspectral data in the wavelength of 450 nm to 950 nm (VNIR1).
Furthermore, long-wavelength infrared (LWIR) data measured
with an thermal camera is used.

For our investigations, we chose a dataset which has been mea-

1We refer to this range of wavelength as visible and near infrared
(VNIR) range due to reasons of simplicity.
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sured in a multi-sensor field campaign on a pedon-scale with
defined surface conditions and precise monitoring of the soil-
moisture dynamics. Real-world conditions, such as a vegetation
cover, and therefore the ability to transfer applied methods are
sustained. To provide a first impression, Keller et al. (2018) have
described the multi-sensor field campaign. The underlying pedo-
hydrological processes monitored by several sensors as well as
preliminary estimations of soil-moisture values are presented. In
contrast to this, the present contribution exemplifies the potential
of the frequently underrated VNIR with respect to the subsur-
face soil-moisture retrieval. We evaluate a multitude of machine
learning models which are suitable to solve non-linear regression
problems with high-dimensional input data. Furthermore, we in-
vestigate the ability of the machine learning framework to link
the measured VNIR reflectance data of a vegetated soil surface
to the measured subsurface soil-moisture data without additional
domain-knowledge like spectral information of vegetation.

The main contributions of this paper are:

• a detailed investigation of the potential of VNIR hyperspec-
tral data combined with LWIR data to estimate subsurface
soil moisture;

• an appropriate regression framework based on ten regres-
sion models such as partial least square (PLS), an arti-
ficial neural network (ANN), and a self-organizing map
(SOM) framework which merges unsupervised and super-
vised learning;

• a comprehensive evaluation of the regression performance
and an analysis of the potential of the underlying sensor data
for the estimation of subsurface soil-moisture dynamics on
a field site scale in regards to hydrological application.

We give a short overview on related work in regards to estimat-
ing soil moisture based on hyperspectral data with and without
machine learning methods in Section 2. Subsequently, we de-
scribe the measured dataset used for the evaluation of the several
machine learning models of the framework. The presentation
of the methods follows in Section 4. In Section 5, we evaluate
the proposed machine learning models. Finally, we conclude our
studies in Section 6, respond to the overlying regression problem
and give an overview about future applications of the pedon-scale
soil-moisture estimation based on hyperspectral data.

2. RELATED WORK

Traditionally, soil-moisture as well as pedo-hydrological dynam-
ics and states are monitored with point-based in situ measure-
ments using e.g. time domain reflectometry (TDR) probes and
tensiometers. Temporally high-resolution data can be aggregate
based on these sensors. The advantages of these techniques are
the precise measurement of the vertical soil-moisture distribution
at specific point locations. However, to obtain area-wide insight,
the traditional efforts are limited, time-consuming, and, depend-
ing on the experimental setup, uncertain (Jackisch et al., 2017).

At this point, the employment of hyperspectral remote sensing
techniques, covering the visible and near-infrared (VNIR), near-
infrared (NIR), short-wave infrared (SWIR), and the LWIR range
comes into effect. The performance to estimate soil moisture
based on VNIR, NIR and SWIR data enhances with increasing
wavelengths (Finn et al., 2011). The data acquisition with hyper-
spectral sensors ranges from point measurements with spectrora-
diometers to snapshots recordings by (drone-compatible) sensors

or satellites. The former provides a high spectral resolution, the
latter advantages area-wide recordings. Referring to Haubrock
(2008), only few studies investigating surface soil moisture via
airborne or spaceborne platforms record optical reflectance data.

Two distinct approaches are explored in regards to the estima-
tion of soil-moisture contents especially with hyperspectral data.
The first approach focusses on engineering features by combing
specific spectral bands to perform a ratio-calculation (Vereecken
et al., 2014; Fabre et al., 2015; Oltra-Carri et al., 2015). The
second approach relies on data-driven machine learning models
which develop their potential when handling non-linear regres-
sion problems or processing large datasets like in case of satellite-
based hyperspectral data (Guanter et al., 2015). Most machine
learning models are based on supervised learning such as par-
tial least square (PLS) regression, random forest (RF), support
vector machine (SVM), or artificial neural networks (ANN). In
addition, Riese and Keller (2018) introduce a framework of self-
organizing maps for the regression of soil moisture which com-
bines unsupervised and supervised learning.

According to the results of the feature engineering approaches
(first approach), the SWIR spectrum includes the most impor-
tant wavelengths which respond to soil-moisture contents (Dalal
and Henry, 1986; Wang et al., 2007; Haubrock, 2008; Finn et al.,
2011). A detailed review of modeling biomass and soil mois-
ture with several remote sensing data and inter alia with ma-
chine learning is stated in Ifarraguerri and Chang (2000). Fur-
ther remote sensing data such as C-band polarimetric SAR or
microwave scanning radiometry is also applied to estimate soil
moisture in combination with machine learning (Baghdadi et al.,
2012; Pasolli et al., 2014; Xie et al., 2014). These datasets are
primarily conducted from satellite or airborne missions.

Generally, hyperspectral sensors provide spectral knowledge of
surface conditions. The soil surface represents a key factor for
the partitioning and redistributing of any precipitation before in-
filtrating into the subsurface (Jarvis, 2007; Brooks et al., 2015).
Subsurface soil-moisture dynamics and states are estimated based
on this spectral surface data combined with appropriate machine
learning models. Obviously, the spectral surface data repre-
sents an indirect approximation of the underlying physical soil-
moisture processes. Therefore, arising approximation uncertain-
ties add to the yet existing model uncertainties. In sum, the ben-
efits of hyperspectral applications prevail.

3. SENSORS AND DATASET

To evaluate the potential of VNIR hyperspectral sensors as in-
put data for the estimation of soil moisture, we rely on a dataset
which was conducted during a multi-sensor field campaign in
August 2017 in Linkenheim-Hochstetten, Germany. In this
pedon-scale field campaign, the vegetated surface as well as soil-
moisture states and dynamics have been monitored precisely.
Since real-world conditions are sustained, the ability to transfer
the applied regression methods is ensured. A detailed overview
of the field campaign with respect to the measurement setup as
well as its constraints and the analysis of the pedo-hydrological
processes can be found in Keller et al. (2018). Eight plots of an
undisturbed grassland site on loamy sand are the centerpiece of
the campaign. Figure 1a shows the plot setup. Each of these
plots covers an area of one square meter and is irrigated accord-
ing to a defined schema of various pulses (cf. Keller et al., 2018).
Multiple time domain reflectometry (TDR) probes measure the
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(a) (b) (c)

Figure 1. An example of (a) an RGB image, (b) a hyperspectral snapshot, (c) an LWIR image in false colors. The hyperspectral
snapshot of 50× 50 pixels is pan-sharped to 1000× 1000 only to improve visualization.

soil moisture in various depths from 2.5 cm to 20 cm. Based on
these sensors, pedo-hydrological states and dynamics after the ir-
rigation processes are surveyed. We refer to the TDR sensors in
5 cm depth as soil-moisture reference and ground truth within the
scope of the paper.

A Cubert2 UHD 285 hyperspectral snapshot sensor records the
hyperspectral image data (cf. Figure 1b). The measured re-
flectance includes the spectral signatures of among others the
soil surface covered with vegetation. The hyperspectral sensor
is installed on a stage at 10m distance to cover the entire test
site with one snapshot. Each hyperspectral snapshot contains
50 × 50 pixels and 125 spectral channels ranging from 450 nm
to 950 nm with a spectral resolution of 4 nm. The pan-sharpened
1000 × 1000 pixels image in Figure 1b only serves as improved
visualization of the measurement area, we use the raw hyperspec-
tral image for the regression framework. As shown in Figure 1b,
the measurement angles differ between the eight plots in the field
of view of the hyperspectral sensor due to the necessary setup of
the whole field campaign (cf. Keller et al., 2018). All reflectance
spectra in every image are normalized based on a white reference
resulting in reflectance values between 0 and 1. The spectralon as
white reference is positioned visually in each snapshot to ensure
this normalization after the recording. A thermal camera without
active cooling (FLIR 3 Tau 2 640) records the LWIR images (cf.
Figure 1c) and is installed next to the hyperspectral camera. The
LWIR images consist of 640×512 pixels, each characterized by a
temperature value in ◦C. With respect to the approximated posi-
tion of the TDR probes in the subsurface, average spectra of each
plot and recording are calculated for both remote sensing data.

4. METHODOLOGY

Our proposed regression framework consists of three steps: the
feature selection, the preprocessing, and the regression model to
estimate soil moisture. Figure 2 represents the schema of the
regression framework.

4.1 Feature selection

The regression is performed with the hyperspectral and LWIR
image data as input vector and the soil-moisture data as target
value. The complete dataset consists of 1332 high-dimensional

2Cubert GmbH, Ulm, Germany
3FLIR Systems. Inc., Portland, USA

datapoints. One datapoint is defined by 115 selected hyperspec-
tral bands, one LWIR value as well as one soil-moisture value as
ground truth (cf. Figure 2, top). Five bands at the beginning and
five bands at the end of the original 125 hyperspectral bands are
dismissed to avoid occurring sensor artifacts.

For the regression framework, the complete dataset is split ran-
domly into a training subset and a test subset. The training subset
includes 641 full datapoints, the test subset consists of 691 full
datapoints. Figure 3 shows similar distributions of the measured
soil-moisture values for the training and the test subsets. This
similarity enables a modeling of continuous soil-moisture values.

4.2 Preprocessing

Aiming to estimate soil-moisture values based on hyperspectral
and one-dimensional LWIR input data, we foster the regression
by applying two distinct preprocessing methods. The first method
is a Principle Component Analysis (PCA) to reduce the dimen-
sionality of the hyperspectral and LWIR input data (cf. Figure 2).
It is applied to a stack of the VNIR reflectance values and the
LWIR value. We use the first 20 principal components for the
regression, since they cover most of the dataset variances. As
second method, we apply a min-max scaling (cf. Figure 2). The
scaling normalizes the input data to a fixed range between 0 and
1. In contrast to the PCA, the min-max scaling uses all input data,
including the soil-moisture values.

During the preprocessing step, we pick either the PCA for di-
mensionality reduction, the min-max scaling for normalization
purposes, or no preprocessing (cf. Figure 2, 2nd step, left) is per-
formed. We refer to the regression without preprocessing as the
baseline framework.

Later, in the test phase of the regression model, the results of
the estimation based on each preprocessing method is compared
against the baseline prediction result without any preprocessing.

4.3 Regression models

To estimate soil moisture, we select appropriate regression mod-
els and include them to the framework (cf. Figure 2, 3rd step).
These are linear regression (least-squares), partial least squares
(PLS), random forest (RF), extremely randomized trees (ET),
adaptive boosting (AdaBoost), gradient boosting (GB), k-nearest-
neighbors (k-NN), support vector machines (SVM), artificial neu-
ral networks (ANN), and a framework of self-organizing maps
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Figure 2. Schematic representation of the regression framework.
* The PCA is applied only on the hyperspectral and LWIR data.

(SOM). References as well as the implementations of these mod-
els are listed in Table 2.

During the training phase, the regression models are trained on
the training subset by linking the hyperspectral and LWIR data
to the soil-moisture target values. Except for the SOM, all re-
gressors perform the training phase exclusively supervised. The
SOM model includes two self-organizing maps to solve the re-
gression problem, combining an unsupervised SOM with a su-
pervised SOM. Riese and Keller (2018) introduce the schema of
this SOM model.

The parameters of a regression model are divided into hyperpa-
rameters and model parameters. Model parameters are adapted
during the training phase while hyperparameters are chosen be-
forehand. The optimal setup of the hyperparameters changes de-
pending on the preprocessing methods in step 2 of the regression
framework. Table 2 shows exemplarily the setup of the hyper-
parameters for the baseline framework (no preprocessing in step
2). We obtain a basic grid search with 10-fold cross validation on
the training subset for each preprocessing method and regression
model.

During the subsequent test phase, the trained regression frame-
work estimates soil moisture on the basis of the hyperspectral and
LWIR data of the test subset. The estimated soil-moisture values
(model predictions) are compared to the measured soil-moisture
values. The coefficient of determination R2 and the root mean
squared error (RMSE) express the regression performance. Since
the framework in general relies on randomization, we obtain all
regression results by seven independent training procedures each
with different random seeds. The ensemble models RF, ET, Ad-
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Figure 3. Distribution of the regression target variable (soil mois-
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values. N represents the number of datapoints in the bin.

aBoost, and GB provide additional information regarding the im-
portance of the input variables (feature importance).

5. RESULTS AND DISCUSSION

By applying PCA-based dimensionality reduction, we obtain re-
gression results relying on the first 20 principle components. By
applying the min-max scaling to normalize the input data, the re-
gression models rely on features in the range of 0 to 1. Using
ten regression models with supervised or the combination of un-
supervised and supervised learning principles for estimating soil
moisture, the respective results are depicted in Table 1.

Both linear regression models (linear and PLS regressors) per-
form the worst. They are incapable of adapting to the high-
dimensional regression problem.

Within the ensemble models, RF and ET achieve good regression
results. ET as an extension of the RF provides the best perfor-
mance without preprocessing. An example of the relationship be-
tween the estimated and measured soil-moisture values of the ET
regressor is given in Figure 4. GB estimates soil moisture slightly
better than the AdaBoost. The influence of min-max scaling on
ensemble models is negligible. Figure 5 shows the feature impor-
tance of the input variables of the baseline framework provided
by the ensemble models. As expected, RF and ET as averag-
ing ensemble models prioritize similar features (input variables).
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Figure 5. Feature importance of the RF regressor, the ET regres-
sor, the AdaBoost regressor, and the GB regressor.

The distributions of the feature importance of both boosting mod-
els AdaBoost and GB differ. Therefore, the linkages between the
spectral features and the underlying physical processes ask for
a detailed further analyses. Strong correlations between the in-
put features (hyperspectral spectral and the LWIR values) appear
more challenging for the performance of both boosting models
than for the performance of the averaging models.

In addition, Figure 6 shows a combination of the hyperspectral
mean spectrum with the standard deviation and the feature im-
portance of the ET regressor. On the right side, the LWIR data
and its importance for the regression is illustrated. The spectral
bands in the area of 826 nm are significantly more important than
the remaining ones. While the variance of the mean spectrum
is relatively large in the upper third of the spectrum, the feature
importance distribution continually decreases after the identified
peak. Bands between 890 nm to 930 nm possess a minor fea-
ture importance and a large variance. This finding indicates that
these bands exhibit noise, e.g. occurring due to weather and sen-
sor conditions. The feature importance of the LWIR value plays
a minor role.

The k-NN model generally works well and improves with min-
max-scaled data due to the linkage between the integrated dis-
tance measure and the normalized data. With respect to the SVM,
ANN, and the SOM models, the same effects apply.

Considering the complete performance of the regression frame-
work, we state that the preprocessing with the PCA-based dimen-
sionality is insufficient of solving the present regression prob-
lem. The normalization with the min-max scaling seems more
favorable for estimating soil moisture based on hyperspectral and
LWIR data. This scaling yields the best regression results for
almost any regression model. We can address an additional pre-
processing method by combining a min-max scaling and a PCA
as well as other preprocessing techniques and their effects on
the regression performance in further studies. We would like to
point out that improving the tuning process of the hyperparame-
ters could further enhance the regression results.

In addition, we remark that the regression framework is data-
driven. It estimates soil-moisture values based on pure reflectance
spectra without relying on additional information, e.g. vegetation

spectra and information of the measurement angle. Another no-
table aspect of estimating soil moisture appears when focussing
on the spatial soil-moisture distribution. This distribution highly
depends on further factors such as coverages with mixed vege-
tation or soil structure. Thus, it could be extremely inhomoge-
neous even within small areas. Furthermore, we would like to
take a glance look on the accuracy of the measured soil-moisture
reference data. According to specification of the installed TDR
sensors, their soil-moisture measuring accuracy varies between
1 p.p. to 2 p.p. depending on the moisture values. Such mea-
surement errors result in a number of effects with respect to the
regression framework and finally to the estimation performance.
These effects should be investigated in further work.

6. CONCLUSION

In this paper, we address the estimation of soil moisture based
on a measured, pedon-scale dataset. In contrast to most datasets
applied in the context of estimating soil moisture with hyperspec-
tral data, the underlying data consists of VNIR hyperspectral data
combined with LWIR data. The hyperspectral data includes spec-
tral signatures of a vegetated soil surface to ensure an application
under real-world conditions prevailing e.g. at a catchment area.
Our main objective is to investigate the potential of solving the
regression problem solely with this data.

We introduce an appropriate regression framework involving
one (optional) preprocessing step and nine supervised regres-
sion models as well as one model which combines an unsuper-
vised SOM and a supervised SOM. The results of the regression
framework reveal the potential of respective data-driven models
in combination with the used input data under varying real-world
measurement circumstances. In this context, machine learning
provides a data-driven solution without exclusively relying on
domain-knowledge.

The following challenges are mastered satisfactorily:

• the limited size of data,
• their VNIR spectrum range which is suboptimal referring to

preceding studies,
• the fact that we estimate soil moisture with an actively vege-

tated surface which also is suboptimal to preceding studies,
and

• the measurement angles differing for each plot.

To conclude, we point out that it is possible to retrieve soil-
moisture content from measured VNIR hyperspectral data due
to the outweigh of the benefits.

As a direct consequence, we will approach further improvements
in different research directions which we point out in the discus-
sion section (cf. Section 5). In future work, we plan to analyze in
detail the impacts of inhomogeneous soil-moisture distributions
and the error propagation which starts with the soil-moisture mea-
suring accuracy of the sensors and relying on this data as refer-
ence. Thereby, we also intend to conduct a dataset on an ana-
log field experiment but using a SWIR sensor for the reflectance
measurements. Then, we are able to evaluate the performance of
the presented regression framework in this dataset and are able to
compare the performance with SWIR and VNIR input data.
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Table 1. Regression results for the soil-moisture estimation.

Model
baseline with PCA with scaling

R2 RMSE R2 RMSE R2 RMSE
in % in % soil moisture in % in % soil moisture in % in 1

Linear 50.7 2.5 49.3 2.6 50.7 0.1
PLS 52.0 2.5 49.3 2.6 48.3 0.1
RF 67.0 2.1 63.2 2.2 66.9 0.1
ET 73.0 1.9 69.1 2.0 72.8 0.1
AdaBoost 59.6 2.3 55.2 2.4 56.4 0.1
GB 65.2 2.1 58.8 2.3 65.3 0.1
k-NN 53.5 2.5 53.8 2.5 72.5 0.1
SVM 50.7 2.5 50.2 2.6 70.4 0.1
ANN 32.9 2.9 52.3 2.5 60.1 0.1
SOM 42.5 2.7 43.0 2.7 56.5 0.1
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Figure 6. Mean spectrum with the standard deviation as vertical error bars of the hyperspectral data (blue) and the LWIR data (red) of
the complete dataset. The feature importance of the ET regressor is shown in orange.
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APPENDIX

The appendix contains the setup of the hyperparameters for all
regression models without preprocessing, cf. Table 2.

Table 2. Hyperparameter setup for the regression framework without preprocessing. This setup is obtained by a basic grid search
algorithm with 10-fold cross validation on the training subset. The regressors are implemented mostly in scikit-learn (Pedregosa et al.,
2011) and TensorFlow (Abadi et al., 2016), while the SOM is implemented according to Riese and Keller (2018).

Model Reference Package Hyperparameter setup

Linear – scikit-learn –

PLS – scikit-learn n components = 10; max iter = 100; tol = 10−7

RF Breiman (2001) scikit-learn n estimators = 1000

ET Geurts et al. (2006) scikit-learn n estimators = 1000

AdaBoost Freund and Schapire (1997) scikit-learn learning rate = 3.0; loss = ”linear”; n estimators = 150

GB Breiman (1997) scikit-learn learning rate = 0.1; loss = ”huber”;
n estimators = 1000; max depth = 2

k-NN Altman (1992) scikit-learn n neighbors = 6; weights = ”distance”; leaf size = 1

SVM Vapnik (1995) scikit-learn C = 26827; γ = 0.00178

ANN Friedman et al. (2001) TensorFlow Keras sequential model with epochs = 70; batch size = 8; four
dense layers with {64, 128, 64, 32} neurons and RELU activations

SOM Kohonen (1990);
Riese and Keller (2018)

other SOM size = 30×70;NIterations, Input = 5000;NIterations, Output = 8000;
learning rates αStart = 0.4; αEnd = 0.005; exponential neighbor-
hood function (input and output); pseudo-gaussian neighborhood
distance weight
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