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ABSTRACT:

Image-based localization or camera re-localization is a fundamental task in computer vision and mandatory in the fields of navigation
for robotics and autonomous driving or for virtual and augmented reality. Such image pose regression in 6 Degrees of Freedom (DoF)
is recently solved by Convolutional Neural Networks (CNNs). However, already well-established methods based on feature matching
still score higher accuracies so far. Therefore, we want to investigate how data augmentation could further improve CNN-based pose
regression. Data augmentation is a valuable technique to boost performance on training based methods and wide spread in the computer
vision community. Our aim in this paper is to show the benefit of data augmentation for pose regression by CNNs. For this purpose
images are rendered from a 3D model of the actual test environment. This model again is generated by the original training data set,
whereas no additional information nor data is required. Furthermore we introduce different training sets composed of rendered and real
images. It is shown that the enhanced training of CNNs by utilizing 3D models of the environment improves the image localization
accuracy. The accuracy of pose regression could be improved up to 69.37% for the position component and 61.61% for the rotation
component on our investigated data set.

1 INTRODUCTION

Image localization or re-localization is an important and popular
task in the computer vision community. In this work, we tackle
the problem of such pose estimation in 6 Degrees of Freedom
(DoF) by utilizing Convolutional Neural Networks (CNNs). Fur-
ther, data augmentation is introduced to support the training pro-
cess, whereas a 3D model of the test environment is utilized to
render arbitrary images.

Localization or pose estimation is of high interest in the fields of
autonomous navigation, robotics and augmented or virtual reality.
Recent vehicle navigation systems obtain the localization mainly
based on Global Navigation Satellite Systems (GNSSs). Multi-
path effects or shadowing make them vulnerable for safe and con-
tinuous navigation. Therefore, such navigation frameworks are
often fused with local navigation methods, like Inertial Naviga-
tion Systems (INSs) or Visual Odometry (VO) to overcome such
drawbacks. Alternative methods could increase safety and in-
tegrity of such navigation frameworks additionally. A promising
extension or supplement to existing navigation networks could be
introduced by utilizing Convolutional Neural Networks (CNNs).

Convolutional Neural Networks showed great success on com-
puter vision tasks like classification, object detection, segmenta-
tion, human pose regression or image matching in the last years.
In many fields, CNNs outperform conventional methods. Re-
cently also camera pose estimation by CNNs showed promising
results. After training on a set of images of a specific environ-
ment, such CNNs estimate poses from unseen query images of
the same environment. Even though classic image matching per-
forms better in most scenarios, the potential of CNNs in this field
is of high interest. Besides, developments on small CNNs tackle
pose regression with similar accuracy. However, the accuracy
needs to be further improved to compete with existing solutions.
Therefore, we introduce data augmentation on CNNs for pose re-
gression.
∗Corresponding author.

Data Augmentation could potentially improve pose regression.
Improving the performance of learning-based methods and CNNs
by augmenting the underlying training data sets is widely known
and well established. Augmenting training data is a popular tool
to overcome problems in several fields of computer vision. Such
data augmentation includes the modification of existing train-
ing data as well as the simulation of purely new data to expand
training sets. Common methods are to shift, rotate, scale, flip,
crop, transform, compress or blur the training images to extend
the training database. In this paper purely new images are ren-
dered in the target environment to augment a training image data
set. Therewith, training is carried out on a set of training im-
ages enriched with simulated images. CNNs and other learning-
based methods benefit from a high variety of training data. The
more different representations are included in the training sam-
ples, the more robust and accurate is a latter determination dur-
ing test time. Additionally an equal distribution of training data is
mandatory to train a well-adjusted network. Therefore, we intro-
duce data augmentation to overcome recent drawbacks on pose
estimation.

3D Models are utilized for our demands on data augmentation.
The amount of 3D models or 3D city models raised in the last
years and covers large parts of our environment nowadays. Si-
multaneously such models got more realistic concerning geome-
try and texture, and are updated more frequently. Taken this into
account navigation methods for future ground and aerial vehicles
could utilize this knowledge of the environment for localization
and subsequent for navigational purposes. We underscore that a
3D model is not utilized directly for our demands of localization,
since that would presume to provide the 3D model at runtime on-
board a vehicle. This is mandatory for navigation frameworks on
small Unmanned Aerial Vehicles (UAVs) or Micro Aerial Vehi-
cles (MAVs) due to limited storage. Rather we utilize a 3D model
to render additional images for training off-line. The on-board
processing is restricted to the execution of the CNN. Therefore, a
navigation application could run on a small on-board device, en-
abling autonomous navigation with no need of a ground or base
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station. However, this approach is not limited to UAV-based na-
vigation. Such data augmentation could be introduced to ground-
based navigation frameworks as well. The reconstruction of the
3D environment is realized by only accessing the existing training
data. Therefore, no additional data is necessary for our approach
on data augmentation.

After reviewing the related work in Section 2 we focus on image-
based pose regression by CNNs and feature matching in Sec-
tion 3, whereas the training process of the CNNs is described
subsequently in Section 3.2. In Section 4 the data utilized for this
work is presented. The experiments and their results are depicted
in Section 5. Subsequently the results are discussed in Section 6.
Finally we conclude in Section 7 and give an outlook that pro-
vides ideas for future work and research.

2 RELATED WORK

The focus on related work is set on image-based localization,
Convolutional Neural Networks to solve such localization, meth-
ods of data augmentation and how 3D models aid such augmen-
tation.

Localization and pose estimation based on imagery are funda-
mental tasks in computer vision and robotics. Pose determina-
tion in a global coordinate frame is provided by correlation based
methods that match aerial and UAV images to further localize the
aerial vehicle (Conte and Doherty, 2011). Feature-based methods
match remotely sensed data (Ma et al., 2015) or oblique images
(Huachao et al., 2012). Drawbacks of such methods, like mis-
matches, are successfully tackled by Locality Preserving Match-
ing (LPM) (Ma et al., 2017). Camera poses are also determined
by model-based approaches (Unger et al., 2016). Moreover real-
time indoor camera pose determination is solved by CAD model
matching (Urban et al., 2013). Convolutional Neural Networks
are utilized for matching aerial and UAV images (Altwaijry et al.,
2016) or terrestrial and UAV images (Lin et al., 2015).

Besides the absolute estimation of poses in a global reference
frame, local navigation methods determine relative poses in a lo-
cal frame. While the lack of global referencing is a drawback,
these methods still offer valuable relative positioning. Such local
navigation can be conducted by visual Simultaneous Localiza-
tion and Mapping (SLAM) or Visual Odometry (VO) approaches,
which reconstruct a trajectory based on image sequences. State-
of-the-Art solutions like ORB-SLAM (Mur-Artal et al., 2015),
Large-Scale Direct Monocular SLAM (LSD-SLAM) (Engel et
al., 2014) or Direct Sparse Odometry (DSO) (Engel et al., 2016)
provide satisfying solutions according to accuracy and real time
capability. Even though SLAM or VO solutions show impres-
sive results and do drift only slightly for short distances, they will
drift over long trajectories particularly if there are no loop clo-
sures. Additionally SLAM or VO fail if the track is lost. Restor-
ing a lost track is impossible without moving back to a known
or mapped position. Besides, latest results on CNN-based ego-
motion estimation provide satisfying results matching or outper-
forming ORB-SLAM (Mahjourian et al., 2018).

Convolutional Neural Networks recently became very popular
and scored impressive results in fields of computer vision like
classification or segmentation. Solving camera re-localization
was successfully introduced with PoseNet (Kendall et al., 2015),
a CNN to acquire a 6 Degrees of Freedom (DoF) camera pose
within a known environment. For this purpose a CNN is trained
with images and their corresponding poses in order to estimate
the pose of an unknown image during runtime. An enhance-
ment is the Bayesian PoseNet (Kendall and Cipolla, 2016) which

provides re-localization uncertainty by adding dropout layers af-
ter each convolutional layer and improves accuracy by averag-
ing over multiple forward passes. Enhanced accuracies in the
task of estimating poses were derived by further improvements
(Walch et al., 2016) using Long Short-Term Memory layers
(LSTM)(Hochreiter and Schmidhuber, 1997), a type of recurrent
neural net which was combined with CNNs in the past. LSTM
handles the problem of a dissolving gradient during the back-
propagation using so-called gates. A CNN for localization on
omnidirectional images is introduced with O-CNN which finds a
closest place exemplar in a data base and computes the relative
distance (Wang et al., 2018). Combining RGB data and depth
data in a dual stream CNN showed further improvements of the
localization results (Li et al., 2017). CNNs are also capable of es-
timating 3D positions per pixel and subsequently estimating the
cameras pose (Li et al., 2018).

Data Augmentation is a well established technique in computer
vision (Gharbi et al., 2016; Lemley et al., 2017). It is shown to
boost performance in fields of classification (Tu, 2005; Karpathy
et al., 2014; Ng et al., 2015), segmentation (Rajpura et al., 2017),
object recognition (Maturana and Scherer, 2015), object detec-
tion (Peng et al., 2015), hand gesture estimation (Molchanov et
al., 2015) or human pose estimation (Rogez and Schmid, 2016).
Data augmentation further supports learning based methods and
CNNs to handle invariance to e.g. shift and rotation which helps
to generalize and boost accuracy (Parkhi et al., 2015; Cui et al.,
2015). Recently data augmentation with Generative Adversarial
Networks (GANs) showed promising results (Sharma and Nam-
boodiri, 2018). Furthermore augmenting training data by gener-
ating synthetic images is a valuable process of data augmentation.
Synthetic images of text in clutter were generated to train a Fully-
Convolutional Regression Network (FCRN) (Gupta et al., 2016).

3D models have a high potential to serve for data augmentation.
Simulated or synthetic images rendered from 3D models have
long been used in computer vision to generate extensive training
data (Stark et al., 2010; Michels et al., 2005). Rendering images
from 3D objects is also practiced to expand training data and im-
prove performance of CNNs (Su et al., 2015; Gupta et al., 2015).
3D models support the learning process for deep object detectors
(Peng et al., 2015) or serve for data augmentation for segmenta-
tion (Rajpura et al., 2017). Furthermore such models are utilized
to augment data sets for dense 3D object reconstructions (Yang
et al., 2018) or human 3D pose estimation (Rogez and Schmid,
2016). It is also shown that CNNs trained on artificial images
generalize well to real images (Rogez and Schmid, 2016). In ad-
dition hand-gesture estimation is also supported by data augmen-
tation with 3D models (Molchanov et al., 2015; Limonchik and
Amdur, 2017). For our demands on pose regression a 3D model
of the target environment is utilized to render images. Generating
3D models is of high interest in researches communities like pho-
togrammetry, computer vision or geo-information sciences (Se
and Jasiobedzki, 2006; Poullis and You, 2009; Ivarsson, 2014).

3D Models or images with known 6 DoF poses are the basis to
train CNNs for pose regression. Therefore, pose estimation with
CNNs is limited by the coverage and possible lack of training
data. It was shown that pose regression in areas with less train-
ing data scores worse compared to areas with a dense distribu-
tion of training samples (Mueller et al., 2017). Utilizing a photo-
realistic model for data augmentation showed improvements re-
garding estimation accuracy (Mueller and Jutzi, 2018). However,
photo-realistic models are not as wide distributed or available as
triangulated 3D model. Furthermore generating simple triangu-
lated 3D models is a fully automated process. Therefore, it is
of interest whether or not triangulated 3D models may serve for
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data augmentation as well. Such models are often available for
city scale environments. In addition they are simple to gener-
ate with automatic and open source Structure-from-Motion (SfM)
pipelines. Researches focus on the reconstruction of such models
and its automation (Singh et al., 2013; Se and Jasiobedzki, 2006;
Pollefeys et al., 2000). Moreover, recently various benchmark
data sets for visual localization (Kendall et al., 2015) and with
varying conditions were published (Sattler et al., 2017).

3 METHODOLOGY

We apply CNN-based pose regression in Section 3.1 and describe
the training procedure subsequently in Section 3.2. For compar-
ison conventional feature matching is applied and described in
Section 3.3.

3.1 Convolutional Neural Networks for pose regression

For the demands on investigating data augmentation, we uti-
lize two different CNNs for reasons of generalized compari-
son. An adaption of the VGG16-Net (Simonyan and Zisserman,
2014), modified to solve for pose regression and SqueezePose-
Net (Mueller et al., 2017) an adaption of SqueezeNet (Iandola et
al., 2016), also modified to output poses. The original VGG16-
Net and SqueezeNet are designed to solve classification tasks,
whereas the modified nets solve pose regression. Both modified
nets differ especially in the number of weighting parameters. The
modified VGG16-Net has a model size of 527 MB and Squeeze-
PoseNet only 3.85 MB, which is therefore roughly a hundred
times smaller. Deeper or bigger networks usually tend to be more
accurate than small networks (Iandola et al., 2016). Whereas the
VGG16-Net mostly consists of sets of convolutional layers fol-
lowed by pooling layers, SqueezeNet is built of so-called fire
modules. The fire modules first decrease the number of input
channels from the previous layer by 1 × 1 convolutions in a so-
called squeeze operation. Thereafter, an expand operation that
is a combination of 1 × 1 and 3 × 3 filters increases the num-
ber of activation maps while keeping the number of parameters
low (Figure 1). Further for the modification of both nets a fully

Figure 1. Architecture of a Fire module. A so-called squeeze
operation is performed by the 1x1 convolutional layer. Subse-
quently an expand operation that is a combination of 1x1 and 3x3
filters increases the number of activation maps while keeping the
number of parameters low.

connected layer and another two dense layers for actual pose de-
termination are added to the end of the net. These layers increase
the model size of the original nets enormous. SqueezeNet origi-
nally has a model size of less than 0.5 MB, whereas the addition
of these layers, especially the fully connected layer, increases the
model size to 3.85 MB. This is a rise of 770%. However, this is
still considered as a small CNN. Furthermore the activation func-
tions used are set to Leaky Rectified Linear Units (Leaky ReLU)
(Maas et al., 2013) as this helps convergence. Additionally batch

normalization (Ioffe and Szegedy, 2015) is added after each con-
volutional layer making higher learning rates possible. CNNs are
optimized by iteratively adjusting the weighting parameters us-
ing back propagation. Therefore, the following loss function is
utilized for training (Kendall et al., 2015):

Lossi = ‖xi − x̂i‖2 + β ‖qi − q̂i
‖q̂i‖
‖2

Whereas the loss is calculated as the sum of the position error
(in meters) and rotation error (in quaternions). x̂i and xi are
ground truth and estimated position. q̂i and qi are ground truth
and estimated orientation. Since position and orientation do not
share the same unit space a weighting parameter β is utilized.
Therefore, the CNN does not tend to optimize for only one of
the two error values. The weighting parameter is helpful to scale
the error for indoor and outdoor environments. Empirically β
should be set between 120 to 750 for indoor and between 250 to
2000 for outdoor environments (Kendall et al., 2015). Since our
environment has outdoor scale we set β to 500 in this work.

3.2 Training for CNNs

Convolutional Neural Networks usually need to be trained on a
huge amount of training data to assure robust and accurate per-
formance. The lack of training data is a major problem in many
fields of learning based methods. This also applies for pose re-
gression. Therefore, we apply transfer learning as a valuable
process to overcome issues of sparse and unequally distributed
training data. Since the nets are originally designed to solve for
classification, the pre-existing layers – before the modification for
pose regression – are initialized with weights obtained by transfer
learning on the Places data set (Zhou et al., 2016), a data set for
classification tasks. After modifying the CNNs for pose regres-
sion transfer learning is reapplied on the Shop Façade benchmark
data set to obtain suitable initial weights for estimating poses.
This re-localization data set is part of the Cambridge Landmarks
data, a large urban re-localization data set with images and their
labeled 6-DoF camera poses (Kendall et al., 2015). The weights
obtained by transfer learning are subsequent deployed to start
training on the original data set of our environment. Even though
transfer learning is a valuable process to help convergence and to
speed up the training process, drawbacks caused by sparse train-
ing data or simple lack of training data can not be covered by
this method. Thus data augmentation is introduced to overcome
recent drawbacks and improve the accuracy of pose regression.
Therewith, we train on eight further data sets enhanced by ren-
dered images of the environment. Training on these data sets is
carried out with initial weights obtained by the training on the
standard data set for faster convergence. However, a detailed de-
scription of all data sets is introduced in Section 4.

3.3 Feature Matching for pose estimation

A further method to estimate poses from images is the long es-
tablished feature matching. We perform such feature matching
for comparison to the introduced CNN-based approaches. Im-
plicitly, we investigate feature matching based on the number of
inlier matches between images from a training data set to images
from evaluation data sets. However, to save computational ef-
fort and avoid matching every test image to each single training
image of the training data set, we employ Bag of Visual Words
(BoVW). The goal is to compare a single test image to a data
base of training images. As a first step a visual vocabulary with
50 visual words is created by utilizing Speeded Up Robust Fea-
tures (SURF) to extract features and descriptors from every train-
ing image. All features are clustered by using k-means with 50
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clusters, whereby every cluster represents a visual word. Based
on these visual words a histogram for every training image is
derived. Subsequently the features and descriptors of the test
images are derived and added to one of the 50 clusters by us-
ing a simple Nearest Neighbor approach. Adjacent a histogram
of visual words of the test image is derived and compared to
the BoVW by using histogram intersection. Therewith, the best
matching images are obtained and classical feature matching be-
tween every test image and its top three closest training images is
performed. As a measure of quality we take the number of inlier
matches between test images and training images into account.

4 DATA SETS

The Atrium data set serves for the investigation on improving ac-
curacy for pose regression by CNNs with data augmentation. The
utilized images are part of the LaFiDa1 benchmark data set (Ur-
ban and Jutzi, 2017). Figure 2 shows a side view of the Atrium
as a 3D model. The dimension of the area is 39 m × 36 m ×

Figure 2. Side view of the Atrium. The dimension of the area is
39 m × 36 m × 18 m.

18 m. The data set consists of 852 high resolution images2. The
poses of these images are determined by Agisofts Structure from
Motion (SfM) routine (Agisoft, 2017). Therewith, these images
and their corresponding poses build the standard training data set,
which we refer to as Real data set in this work. For evaluation two
image sequences are utilized, the medium coverage sequence and
the low coverage sequence. The medium coverage sequence con-
tains images of the Atrium captured on ground level and spatially
close to the training data. This sequence consists of 145 images,
which show a medium coverage to the training data. High cov-
erage can be stated, if training and testing data show very similar
poses and share similar perspectives. The images of the low cov-
erage sequence are spatially far away from the training data and
have high discrepancies in perspectives compared to the training
data set. This sequence contains 198 images and is captured with
a higher altitude than the medium coverage sequence. The images
show a low coverage to the training data, since the positions as
well as the orientations are very different from the training poses.
However, the low coverage sequence is a challenging evaluation
data set for pose regression, which is mainly caused by the differ-
ence of training and evaluation data and the sparse distribution of
images in the Real training data set.

For investigating data augmentation to improve the accuracy on
pose regression, we add rendered images to the original training
data set to aid the training process. In particular, we render im-
ages for the medium and the low coverage sequence. The medium
coverage sequence is aided with 1,153 images rendered near the

1https://www.ipf.kit.edu/lafida.php (last access 31st March 2018)
2https://www2.ipf.kit.edu/ pcv2016/downloads/photos atrium recon-

struction.zip (last access 31st March 2018)

’expected’ evaluation images. The actual evaluation poses were
used to interpolate images and add Gaussian noise to each pose
of an image (1 m standard deviation on each position component
and 0.1 on each rotation component, which is denoted in quater-
nions). The low coverage sequence was aided with 1,460 ren-
dered images, which are generated analog to the process for the
medium coverage sequence. The data sets with these rendered
images are named Diverge. Figure 3a shows the poses of the ren-
dered training images for the medium coverage sequence. For
experimental intension, sets of images which correspond to the
exact evaluation images are additionally rendered. This data sets
are named Coincide. Furthermore we generate the Real-Coincide
and Real-Diverge data sets, which are joints of the Real data set
and the Coincide respectively the Diverge data sets. Therewith,
the following types of training data sets are introduced for this
work:

• Real: This data set contains 852 real training images from
the original Atrium data set. A single Real data set is used
for training and evaluated on both evaluation data sets.

• Coincide: This data sets contain rendered images which
share the exact poses as the actual evaluation images from
the evaluation sequences. The poses therefore coincide with
the evaluation poses. This sets should give an idea of how
well a CNN can transfer or recognize visual aspects of
model images to real images.

• Real-Coincide: This data sets are the combination of the
Real and the Coincide data sets. This sets therefore consists
of real images and rendered images. Training on this data
sets should give an idea if training with rendered images can
be improved by adding real images.

• Diverge: This data sets contain rendered images with poses
near the actual evaluation data. Gaussian noise is added
to the original evaluation poses to create new data samples
close to the original data. Since data sets like the Coincide
or Real-Coincide are not applicable due to the assumption
of prior knowledge of the exact evaluation poses, the Di-
verge data sets give a realistic example of actual training
sets. However, when the expected trajectory of a vehicle or
device is roughly known beforehand (e.g. by a given trajec-
tory or within prior path planning), images on or near this
path could be rendered a-priori and used for training. The
Diverge data sets are utilized to simulate such a scenario.
Figure 3a shows the poses of rendered images for this data
set for the medium coverage sequence.

• Real-Diverge: This data sets are the combination of the Real
and the Diverge data sets. This sets therefore consist of
real images and rendered images. Training on this data sets
should show the benefit of combining real and rendered im-
ages for training. Figure 3b shows the poses of the real and
rendered images for this data set for the medium coverage
sequence.

Notice, this data set types – except for Real – are created for each,
the medium coverage sequence and the low coverage sequence
leading to nine different data sets in total. An overview including
the number of images separated in real and rendered images is
presented in Table 1.
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medium coverage sequence low coverage sequence
# real images # rendered images all images # real images # rendered images all images

Real 852 – 852 852 – 852
Coincide – 145 145 – 198 198
Real-Coincide 852 145 997 852 198 1050
Diverge – 1150 1150 – 1458 1458
Real-Diverge 852 1150 2002 852 1458 2310

Table 1: Overview of the proposed data sets. The pre-existing Real data set contains 852 images of the Atrium. The Coincide and
Diverge data sets are created by rendering images utilizing a 3D model created by Structure-from-Motion (SfM) on the base of the
real images from the Real data set. The Real-Coincide and Real-Diverge data sets are joints of the fully synthethic data sets Coincide
respectively Diverge and the real training images from the Real data set.

a b

Figure 3. Poses of training images of the Diverge data set (a) and
the Real-Diverge data set (b) for the medium coverage sqeuence
(depicted in green) visualized in top view of the Atrium.

5 EXPERIMENTS AND RESULTS

Experiments are carried out with the modified VGG16-Net and
SqueezePoseNet to investigate the improvement of image local-
ization by data augmentation. Both nets are trained on the dif-
ferent training data sets Real, Coincide, Real-Coincide, Diverge
and Real-Diverge as introduced in Section 4 and evaluated on the
medium respectively low coverage sequence. The results are de-
picted in Table 2. A visual representation of the evaluation errors
separated by the utilized CNNs is depicted in Figure 5. The figure
depicts the position and rotation errors separated by the medium
and low coverage sequence.

Besides pose regression by CNNs, experiments on feature match-
ing with a Bag of Visual Words (BoVW) approach are carried
out. Therefore, test images are assigned to their top three near-
est neighbors and subsequently feature matching is applied. The
experiments shall expose the difficulty of the evaluation data sets
regarding pose estimation. However, satisfying image matching
between the training images of the Real data set and the evalua-
tion data could not successfully be determined due to insufficient
number of inlier matches. Explicitly the evaluation images of
the medium coverage sequence have on average 152.2 matches
between an evaluation image and its assigned nearest training
images according to BoVW. After inlier test by RANSAC the
confidential matches drop to 6.2 on average. The analogous test
on the low coverage sequence shows 120.3 matches per image
and 3.4 inlier on average. An overview including additionally the
maximum number of matches and inlier is given in Table 3. A
visualization of a test image of the low coverage sequence and
its nearest neighbor from the training image set determined by
BoVW is visualized in Figure 4. Due to wide baselines, perspec-
tive changes and low coverage sufficient image matching could
not be determined. This circumstances appear all over the data
sets.

a

b

Figure 4. Evaluation image (a) of the low coverage sequence
and its nearest training image (b) according to BoVW. A feature
matching between these two images could not be determined suf-
ficient due to low number of corresponding image features.

6 DISCUSSION

The results of the training processes enhanced by data augmen-
tation show thoroughly positive outcome. The accuracy of pose
estimation could be increased for the modified VGG16-Net and
SqueezePoseNet on both evaluation data sets, the medium cover-
age sequence and the low coverage sequence. The improvements
for the medium coverage sequence are up to 36.05% for the trans-
lation component and up to 44.74% for the orientation compo-
nent. The improvements for the low coverage sequence are up to
69.37% for the translation component and up to 61.61% for the
orientation component. Figure 6 visualizes the results obtained
on the medium coverage sequence (6a – 6d) and the low cover-
age sequence (6e – 6h). Visualized are the results from training
on the Real data set and corresponding the results from training
on the augmented data sets with highest improvement (cf. Table
2). Figure 6a – 6d visualize the results on the medium cover-
age sequence. The figures depict the improvement and verify the
numerical results from Table 2 as the pose estimates (red) move
closer to the ground truth poses (blue). However, the knowledge
transfer from real images to rendered images seems only moder-
ate by the CNN due to dissimilarity in appearance. This can be
stated since the Coincide data set, which shared the exact poses
as the evaluation images did not push the accuracy too far. The
same applies for the Diverge data set, which also contains solely
rendered images. Fortunately a combination of real and rendered
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medium coverage sequence low coverage sequence
VGG16-Net (modified) SqueezePoseNet VGG16-Net (modified) SqueezePoseNet

Real 4.91 m, 33.30◦ 5.19 m, 29.28◦ 11.34 m, 37.33◦ 15.18 m, 65.02◦

Coincide 3.36 m, 21.83◦ 5.18 m, 27.45◦ 4.53 m, 16.67◦ 5.26 m, 24.90◦

Real-Coincide 3.37 m, 19.63◦ 3.91 m, 19.01◦ 4.46 m, 20.90◦ 6.6 m, 31.88◦

Diverge 3.90 m, 21.79◦ 5.32 m, 25.99◦ 4.48 m, 26.76◦ 4.65 m, 24.96◦

Real-Diverge 3.14 m, 18.40◦ 3.89 m, 19.90◦ 6.38 m, 19.02◦ 6.86 m, 26.43◦

Improvement 36.05%, 44.74% 24.66%, 35.08% 60.05%, 55.34% 69.37%, 61.61%

Table 2: Position and rotation evaluation errors on the medium and low coverage sequence. The improvement corresponds to the best
result per CNN, which is marked in bold.

VGG16-Net medium SqueezePoseNet medium VGG16-Net low SqueezePoseNet low

0

20

40

60

[m
;
d
e
g
]

Real Coincide Real-Coincide Diverge Real-Diverge

Figure 5. Visualization of mean evaluation errors. The Figure depicts the position (striped bars) and rotational (untextured bars)
evaluation errors separated by the medium and low coverage sequence evaluated on the modified VGG16-Net and SqueezePoseNet.
The experiments were carried out on the different training data sets Real, Coincide, Real-Coincide, Diverge and Real-Diverge. The
striped bars show the mean position error (meter), the untextured bars show the mean rotational error (degree).

a b c d

e f g h

Figure 6. Visualization of estimated poses (red) and ground truth poses (blue). a) VGG16-Net trained on the Real data set. b) VGG16-
Net trained on the Real+Diverge data set. c) SqueezePoseNet trained on Real data set. d) SqueezePoseNet trained on Real-Coincide
data set. e) VGG16-Net trained on the Real data set. f) VGG16-Net trained on the Coincide data set. g) SqueezePoseNet trained on
Real data set. h) SqueezePoseNet trained on Diverge data set.
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Feature matching
medium

coverage sequence
low

coverage sequence
# matches (max) 254 208
# matches (avg) 152.2 120.3
# inlier (max) 38 13
# inlier (avg) 6.2 3.4

Table 3: Evaluation of feature matching on the medium and low
coverage sequence. The number of matches by SURF and inlier
matches between test images and nearest training images accord-
ing to BoVW from the Real data set are depicted. The test images
are assigned to their nearest training images by BoVW. On aver-
age 152.2 respectively 120.3 matches between a test image and
its nearest training image could be found. However, the num-
ber of average inlier with 6.2 respectively 3.4 is unsatisfying for
subsequently image matching.

images improves the accuracy further, leading to clearly better
results than training on real images only. Reviewing the numer-
ical results on the low coverage sequence in Table 2 shows also
clear improvement. Whereas training on the Real data set scored
insufficient results, the training on the proposed data sets by data
augmentation improved the pose determination. However, by vi-
sualizing the pose estimates (Figure 6e – 6h) it is shown that the
poses are still not determined satisfactorily. The numerical im-
provement is mainly caused by the fact of better distributed train-
ing data as the estimated image poses are shifted to the center of
the actual evaluation poses.

Even though the evaluation sequences seem to represent odome-
try data, we investigate single pose determination in this work
and make no use of image sequence analysis methods.

7 CONCLUSION AND OUTLOOK

In this work we show that CNN-based pose regression can benefit
from data augmentation. The method shows promising results on
two tested CNNs and on different data sets. In future research a
transfer to state-of-the-art CNNs is of high interest. Additionally
the investigation of complex environments with sparse training
data should be further tackled to assure robust pose estimation by
CNNs in arbitrary environments. In addition an integration to a
navigation filter and carrying out test flights with an Unmanned
Aerial Vehicle would be of interest. However, the absolute accu-
racy has to be improved afore to operate an UAV by such CNN
solutions.
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Walch, F., Hazirbas, C., Leal-Taixé, L., Sattler, T., Hilsenbeck, S.
and Cremers, D., 2016. Image-based localization with spatial
lstms. arXiv:1611.07890.

Wang, T.-H., Huang, H.-J., Lin, J.-T., Hu, C.-W., Zeng, K.-H. and
Sun, M., 2018. Omnidirectional cnn for visual place recogni-
tion and navigation. arXiv preprint arXiv:1803.04228.

Yang, B., Rosa, S., Markham, A., Trigoni, N. and Wen, H., 2018.
3d Object Dense Reconstruction from a Single Depth View.
arXiv:1802.00411 [cs]. arXiv: 1802.00411.

Zhou, B., Khosla, A., Lapedriza, A., Torralba, A. and Oliva, A.,
2016. Places: An image database for deep scene understand-
ing. arXiv:1610.02055.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1, 2018 
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-1-117-2018 | © Authors 2018. CC BY 4.0 License.

 
124




