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ABSTRACT:

The 3D information of road infrastructures are gaining importance with the development of autonomous driving. The exact absolute
position and height of lane markings, for example, support lane-accurate localization. Several approaches have been proposed for the 3D
reconstruction of line features from multi-view airborne optical imagery. However, standard appearance-based matching approaches
for 3D reconstruction are hardly applicable on lane markings due to the similar color profile of all lane markings and the lack of
textures in their neighboring areas. We present a workflow for 3D lane markings reconstruction without explicit feature matching
process using multi-view aerial imagery. The aim is to optimize the best 3D line location by minimizing the distance from its back
projection to the detected 2D line in all the covering images. Firstly, the lane markings are automatically extracted from aerial images
using standard line detection algorithms. By projecting these extracted lines onto the Semi-Global Matching (SGM) generated Digital
Surface Model (DSM), the approximate 3D line segments are generated. Starting from these approximations, the 3D lines are iteratively
refined based on the detected 2D lines in the original images and the viewing geometry. The proposed approach relies on precise
detection of 2D lines in image space, a pre-knowledge of the approximate 3D line segments, and it heavily relies on image orientations.
Nevertheless, it avoids the problem of non-textured neighborhood and is not limited to lines of finite length. The theoretical precision
of 3D reconstruction with the proposed framwork is evaluated.

1. INTRODUCTION

The availability of large-scale, accurate high resolution 3D infor-
mation of roads with lane markings and road infrastructure plays
an important role towards autonomous driving. Aerial imagery
is a valuable database to derive 3D information of roads even in
areas difficult to access, like on motorways. Compared to optical
satellite data, acquiring large-scale 3D lane markings by optical
aerial imagery is more efficient and has higher accuracy and spa-
tial resolution. In view of the fact, that in Germany exists no
area-wide, high resolution 3D information of the road surfaces
including lane markings, new methods to derive this information
are demanded.

The standard workflow with aerial images would be to project
the images onto a Digital Surface Model (DSM) and to derive
the information in the projected imagery, but the generation of
DSM from stereo images is challenging in the regions with low
textures. The lane markings, for example, are the most visible
texture on asphalt roads useful for 3D reconstruction. Thus, it is
desired to improve the quality of the DSM on the road surfaces
by exploiting the line character of the lane markings.

In this paper, a framework to automatically detect the lane mark-
ings in the unprojected aerial imagery, and refine the 3D infor-
mation of the road surface by exploiting the line character of the
lane markings is proposed.

The unprojected aerial images with their bundle-adjusted orienta-
tions and the DSM are the inputs of the algorithm. The aerial im-
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age dataset are acquired with special flight configuration at both
sides of the motorway. Some standard pre-processing steps and
a standard line detection algorithm for automatic lane marking
detection in image space are applied. By sliding a window of
reasonable length and width through the curved long lane lines,
all line segments in all covering images are collected assuming
the lane markings to be straight in each sliding window.

Similar to Taylors idea on minimization of the objective function
(Taylor and Kriegman, 1995), the use of orthogonal regression to
optimize the 3D position of each line segments in object space
so that its back projection would best fit the detected 2D line in
all the covering views is investigated, i.e. the position and height
of each 3D lane marking segments will be refined in one opti-
mization step. The proposed approach addresses the challenging
(quasi) infinite and curved properties of lane markings in the 3D
reconstruction.

The framework will be tested on aerial imagery from the German
highway A9 taken on 29th March 2017 from the DLR helicopter
BO-105.

2. RELATED WORK

For 3D line reconstruction, (Schmid and Zisserman, 1997, Bay
et al., 2005, Wang et al., 2009) have tried to match line seg-
ments based on their appearances or some additional geometry
constraints.

(Schmid and Zisserman, 1997) exploit the epipolar geometry of
line segments and the one-parameter family of homographies to
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Figure 1. The work flow

provide point-wise correspondences, allowing cross-correlation
of patches around line segments along the candidate lines in the
epipolar-beam-region for matching scores evaluation.

In the cases of poorly textured or shape-changing neighborhood
of line segments in different views, line segments are barely com-
parable using classical correlation patches yet the color neigh-
borhood along this line segment undergoes only slight changes.
Based on color histogram rather than textures, (Bay et al., 2005)
exploit the appearance similarity of line segment pairs and their
topological layout to iteratively increase the correct matches.
While color provides a very strong cue for discrimination, it may
fail in the case where color feature is not distinctive, e.g. gray im-
ages. Besides, although matching groups of line segments takes
more geometric information into account for disambiguation, the
disadvantage is the increased computational complexity.

Without resorting to any other constraints or prior knowledge,
(Wang et al., 2009) propose a purely image content-based line
descriptor MSLD (Mean-Standard deviation Line Descriptor) for
automatic line segments matching. Adapting SIFT-like strategy,
MSLD is highly distinctive and robust against image rotation, il-
lumination change, image blur, viewpoint change noise, JPEG
compression and partial obstruction.

In order to create 3D models without the need of explicit line
matching, (Jain et al., 2010) generate all possible hypothetical
straight 3D line segments by triangulating all the detected straight
2D line segments from different views. They then keep the one
whose back projection on the gradient images of neighboring
views has the highest score, assuming that line features corre-
spond to high gradient areas in images. Built upon the same prin-
ciples whilst applying epipolar constraint on the end-points of
line segments, (Hofer et al., 2013) generate less hypothetical 3D
line segments and thus increase performance significantly while
still creating accurate results. However, both approaches are
barely possible in the case of infinite line reconstruction, where
the detected 2D lines in different views do not exactly correspond
to the same part of a 3D line.

3. METHODOLOGIES

The following sections introduce the principles of 3D lane mark-
ing reconstruction method of this work, based on the work flow
shown in Figure 1.

(a) Continuous
line

(b) Dashed line

(c) Continuous
and dashed
double lines

(d) Continuous
double lines

(e) Dashed
double lines

Figure 2. Line types of lane markings

motorways other roads

narrow lines 0.15 [m] 0.12 [m]
wide lines 0.30 [m] 0.25 [m]

Table 1. Widths of lane markings

motorways other roads
in town out of town

line / gap 6 [m] / 12 [m] 3 [m] / 6 [m] 4 [m] / 8 [m]

Table 2. Lengths of dashed lane markings with ratio 1:2

3.1 Lane markings Properties and Automatic Extraction

The appearance of lane markings on German roads including line
type, color and width is specified depending on the road type.
Different line types of lane markings are shown in Figure 2 and
their line widths are defined in Table 1. As shown in Table 2, the
dashed lane markings on motorways have 6 meter length.

Because of the appearance, the problem of lane marking detec-
tion can be treated as a line detection problem. We restrict the
proposed framework to lane markings with single white lines
(dashed or continuous) of 0.3 meter width. Other types like in
restricted zone, double lines, parking areas, temporal yellow lines
in construction sites etc, are excluded.

In this work, the principle to extract line features is to firstly de-
rive the line direction for each pixel by using partial derivatives of
a Gaussian smoothing kernel. Pixels that have a local maximum
in the second directional derivative perpendicular to the line di-
rection are marked as line points. By thresholding their second
directional derivative values, the accepted line points are then
linked and connected (Steger, 1998). The resulting connected
points which compose a line are of sub-pixel precision. Figure 3
shows the extracted lines on part of the masked original image.

3.2 Line Fitting

Line fitting is the process of constructing an infinite straight line
that has a best fit to a 2D dataset. To minimize the perpendicu-
lar distances from the data points to the regression line, and for
a combination with point-wise extended collinearity equation, a
orthogonal regression model with line equation in two-point form
is derived in Section 3.2.1.

Regarding the fact that the extracted lines lie mainly in column
direction in image space, the functional relation between vari-
ables x and y will be setup as x = f(y) to avoid weakly solvable
equations system.
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Figure 3. The extracted continuous lane-lines are marked in
green and the dashed in yellow. Both cases are reconstructed

into 3D with the same framework; different colors here are only
for illustration.

(a) Before optimization (b) After optimization

Figure 4. After optimization, the back-projection of the
reconstructed line segment should best fit the extracted 2D lines

in all the covering images.

3.2.1 Orthogonal Regression in Two-point Form Let the
unknown coordinates of two different points on the regression
line in 2D space be (x1, y1) and (x2, y2) where y2 6= y1, and
the observed 2D points be {xi, yi}ni=1 with measurement errors
exi and eyi in both variables. The orthogonal regression model
in two-point form is:

xi − exi = (x1 −
(x2 − x1)

(y2 − y1)
× y1) +

(x2 − x1)

(y2 − y1)
× ȳi (1)

yi − eyi = ȳi (2)

To express (1) and (2) shortly, a function F is defined as

p̂ = F(ps,pe, y) (3)

which takes 2D coordinates of a start-point ps(xs, ys) and an
end-point pe(xe, ye) that define an infinite line, and takes the
measured y-coordinate y of an image point p(x, y), and returns
the estimated image coordinates p̂(x̂, ŷ) which lies on the infinite
line psps.

3.3 3D Line Reconstruction with Nonlinear LS Adjustment

In this section, the process of refining the position of a 3D line
segment based on the extracted 2D lines on images and the view-
ing geometry is described, as illustrated in Figure 4.

The observation equations for LS adjustment are set up in Sec-
tion 3.3.1 and constraint equations in Section 3.3.2. They de-
scribe the fitting of a straight line to the extracted lines in all
covering images, where the fitting lines on different images
are transformed from a single 3D straight line segment through

(a) The first line segment of ”sliding window
length” is reconstructed, with its starting point and

its middle point of ”step size” from the starting
point being recorded.

(b) Starting from the recorded node of previous
process, another line segment is reconstructed, i.e.

the sliding window has moved ”step size”
forward. Its middle point is then recorded and the

step is repeated.

Figure 5. 3D reconstruction of a lane marking by a sliding
window.

(a) Pink points
represent the

extracted lines. The
greens are the

endpoints of the back
projected

approximate 3D line
segment.

(b) The points in the
buffering area are
collected as the

measurements for LS
adjustment.

(c) The red circle
points out the
reconsidered

measurements in
successive sliding

windows.

Figure 6. collection of affected lane marking points

the extended collinearity equation. Regarding the fact that the
collinearity is a point-wise condition, a line segment is repre-
sented by its two endpoints. In Section 3.3.3 it is further lin-
earized and the substitute linear LS model is estimated.

To simplify the problem, a long lane-marking segment is partially
reconstructed through a sliding window in the object space. Each
segment is approximated by a straight line, taking into account
the maximum curvature of the highway. The sliding scheme is
illustrated in Figure 5.

The measurements for each reconstruction process are collected
correspondingly, as shown in Figure 6 by back-projecting the ini-
tial line segment into image space and buffering 10 pixels width
on each side. By this, all the extracted 2D line segments in this
region are collected. As shown in Figure 6c, the reconsideration
in overlapping region of successive sliding windows makes the
reconstruction more robust.
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3.3.1 Observation Equations Given a start-point Ps and an
end-point Pe of a line segment L in the object space and the
camera parameters qj of camera j. Consider the case where
there are J images covering this line segment. With the extended
collinearity equations, the start- and end-points of this line seg-
ment’s back-projection in image j have the image coordinates
pj
s(x

j
s, y

j
s) and pj

e(x
j
e, y

j
e):

pj
s = G(qj ,Ps)

pj
e = G(qj ,Pe)

∀j = 1, 2, ...J (4)

Let lj be the corresponding line segment of L being extracted

(observed) on image j. Given a dataset {xj
l,i, y

j
l,i}

N
j
l

i=1 of N j
l

points on line segment lj , their estimated image coordinates p̂j
l,i

on the infinite line pj
s,p

j
e computed from the orthogonal regres-

sion model (3) are:

p̂j
l,i = F(pj

s,p
j
e, y

j
l,i) ∀i = 1, 2, ...N j

l (5)

Combining (4) with (5) gives function H:

p̂j
l,i = F(G(qj ,Ps),G(qj ,Pe), y

j
l,i)

= H(qj ,Ps,Pe, y
j
l,i) ∀i = 1, 2, ...N j

l , ∀j = 1, 2, ...J

(6)

which takes camera interior and exterior parameters qj , object
coordinates of Ps and Pe which define a line Ps,Pe, and the
observed y-coordinate of the point pj

l,i in image space, and re-
turns the estimated image coordinates p̂j

l,i on the back projected
line of Ps,Pe.

Being written in the structure of the Gauss-Markov model, they
are expressed as:

l+ v̂ = f(x̂) : p̂j
l,i + v̂j

l,i = H(qj ,Ps,Pe, y
j
l,i) (7)

with the amount of observations N = 2×
J∑

j=1

N j .

The unknown parameters in the Gauss-Markov model are

x :
[
Xs Ys Zs Xe Ye Ze y1

1 ... yJ
NJ

]T (8)

with the amount of unknowns U = 6 +

J∑
j=1

N j .

3.3.2 Constraint Equations There are three constraints on
the unknown parameters used in this work:

Fixing the X-, Y-coordinates of the start-point using the approxi-
mate values:

X̂s −Xs
0 = 0 (9)

Ŷs − Ys
0 = 0 (10)

Fixing the length of the line segment (i.e. constraining the relative
location of the end-point):√

(X̂s − X̂e)2 + (Ŷs − Ŷe)2 + (Ẑs − Ẑe)2 − S = 0 (11)

Written in the structure of the Gauss-Markov model with con-
straints h(x̂) = 0 :

X̂s −Xs
0

Ŷs − Ys
0√

(X̂s − X̂e)2 + (Ŷs − Ŷe)2 + (Ẑs − Ẑe)2 − S

 =


0

0

0


(12)

with the amount of constraints H = 3.

3.3.3 Least-Squares Estimation for 3D Line Reconstruction
The nonlinear equation system is approximated to be locally lin-
ear with small step size of the unknown quantities. The linearized
form is expressed as:

∆̂l = ∆l+ v̂ = A
N×U

∆̂x (13)

ch = HT

H×U
∆̂x (14)

where
the N×U design matrix is the Jacobian of the function evaluated
at the approximate values of the unknown parameters

A =
∂f(x)

∂x

∣∣∣∣
x=x̂a

the U ×H constraint matrix is the Jacobian of the constraints

H =

(
∂h(x)

∂x

)T
∣∣∣∣∣
x=x̂a

and the residual constraints are

ch = −h(x̂a)

with the corrections

∆l = l− f(x̂a) =: v̂a (15)

∆̂x = x̂− x̂a (16)

where x̂a is the approximate values for the estimates of the un-
known parameters.

In the linearized substitute model as shown in (13) and (14), it
turns to solve for the increments of unknowns ∆x instead of the
unknowns themselves.

As the lines were extracted independently and with the same pro-
cedure, the measurements are assumed to be independent from
each other and equal-weighted. That is, the weight matrix Wll =
is an identity matrix.

The unknown parameters ∆̂x of the linearized model can be de-
termined from the extended normal equation system[

ATWllA H
HT 0

] [
∆̂x
λ

]
=

[
AT∆l
ch

]
(17)

With the iteration index ν and the approximate values in the first
iteration x̂(1) = x̂(a), we have

x̂(ν+1) = x̂(ν) + ∆̂x
(ν)

(18)
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Figure 7. The projected line on DSM.

By updating the parameters using Equation (18), the LS estima-
tion is applied iteratively until convergence is achieved.

The redundancy of the problem is

R = N +H − U =

J∑
j=1

N j − 3

Two kinds of singular cases can happen. First, a configuration
defect in object space can happen: as the 3D reconstruction ap-
proach still relies on intersection of multiple projection rays from
different views, either the cases where there is only one image
covering the targeted line segment, or when the targeted line seg-
ment lies on all of the epipolar planes of any of its two covering
images, in these cases the problem is not solvable. Second, a
configuration defect in image space can happen: as mentioned in
Section 3.2, when the extracted line lies (nearly) in row direction
on all the covering images, the problem is also not solvable. In the
cases that the targeted line segment lies only on some of the stereo
pairs’ epipolar planes, the problem is still solvable whereas those
stereo pairs are not contributing to the solution. Or similarly,
when only in some of the images the extracted line segments lie
(nearly) in row direction, the problem is solvable whereas those
images are not contributing measurements to the estimation.

3.4 Line Projection on the DSM (Determination of Initial
Parameter Estimates)

An initial approximation of the unknowns is required for con-
vergence to the correct solution. To provide an initial 3D line
segment, the extracted line features derived in Section 3.1 can be
projected onto a DSM based on the bundle adjusted exterior and
interior orientations. An example is shown in Figure 7.

Given image coordinates p(x, y) of a point and bundle-adjusted
image orientations q, there is still one degree of freedom in ex-
tended collinearity equation on solving object point P. Com-
bined with the usage of a DSM, which provides the height infor-
mation ZDSM given a position (X,Y ), the corresponding object
coordinates can be solved iteratively until the increment ∆Z is
small enough, i.e. convergence achieved. The iterative scheme is
illustrated in Figure 8.

Considering that the DSM is raster (discrete) whereas X and Y
have continuous numerical values, the DSM height ZDSM for
the given point (X,Y ) is bilinear interpolated.

4. EXPERIMENTAL RESULTS AND EVALUATIONS

Section 4.1 provides information about the used dataset. Sec-
tion 4.2 describes the chosen parameters for line extraction, line

Figure 8. Iterative scheme of single projection ray intersecting
DSM.

Canon EOS 1D-X

Lenses Zeiss Makro Planar f/2.0 50mm
Sensor / Pixel size Full frame CMOS / 6.944 µm

Image size
5184×3456 pixel, ratio 3:2
(17.9 MPix)

Table 3. Oblique camera properties

RGB, 50mm lens

Oblique angle ±15◦

FOV
±34◦ across strip,
±13◦ along strip

Coverage @500m 780 m × 230 m
GSD @500m 6.9 cm (nadir)

Table 4. Viewing geometry

projection on DSM, and window sliding processes. Section 4.3
evaluates the true data results. The result of single continuous
lane-marking is presented and the theoretical precision is evalu-
ated.

4.1 Input Data

Aerial Images For real-time mapping applications during dis-
asters, mass events and traffic monitoring scenarios, the German
Aerospace Center (DLR) has developed a new optical sensor sys-
tem – the 4k system – operated on a helicopter from DLR. The
oblique aerial images used in this work are acquired from a Canon
EOS 1D-X camera, one of the three non-metric cameras in the 4k
system, with an oblique viewing angle τ of 15◦. The pixel size is
around 6.9 m, with the combination of focal length 50 mm and
flying height Hflight around 500 m above ground, leading to a
GSD of ∼6.9 cm.

As described in (Fischer et al., 2017), this aerial imagery could
be improved to have an absolute geolocation accuracy of better
than 30 centimeters if TerraSAR-X geodetic points are included
as reference points.

Table 3 lists the properties of this camera, and Table 4 provides
the viewing geometry information.

The images used in this work are acquired with a special flight
configuration at both sides of the motorway which guarantees a
continuous stereo view perpendicular to the lane marking direc-
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(a) (b)

Figure 9. Flight trajectory of DLR helicopter visualized on the
Google Earth platform. The green polyline shows the flight

trajectory. Source: Google Earth 04/01/2017

tion.1 This is realized by flying at the right-hand side with respect
to flying direction along the motorway, with the left oblique cam-
era looking left-down to the motorway, in both forward and back-
ward trips. The flight configuration is shown in Figure 9 on the
Google Earth platform.

There are 15 images used in this work: 8 images in forward
trip (first strip) and 7 in backward (second strip). The length of
flight strips is around 890 meter. Besides, the forward overlap is
around 70%, and all the lane markings are covered by both strips,
whereas the side overlap depends on the distance of flight strips,
which is a result of the pilots navigation ability and other influ-
ences, like wind. Nevertheless, the motorway in its entire width
was covered by the two flight strips. Altogether, this results in
approximately eightfold coverage in road areas.

Exterior and Interior Orientations The aerial images are
geo-referenced by Global Navigation Satellite System GNSS/In-
ertial system IGI AEROcontrol-IId and further improved by
Satellite Positioning Service of the German National Survey
(SAPOS) correction. Additionally, a global terrain model (from
Shuttle Radar Topography Mission (SRTM)) was introduced as
pass information in the bundle adjustment, to improve the estima-
tion of the focal length and boresight alignment. Self-calibrating
bundle adjustment is applied to calibrate Interior Orientation (IO)
parameters and to refine Exterior Orientation (EO) parameters.
The self-calibration bundle adjustment was executed with 2107
images of one camera and 242000 tie points based on two over-
lapping flight strips. Table 5 and Table 6 show the precision of IO
and EO parameters after self-calibrating bundle adjustment. To
provide an overall quality on the interior orientations: from the
calibration result of interior orientations (involving lens distor-
tion), the residuals appear non-systematic and the biggest resid-
ual rmax,IO is around 1 pixel.

The precision of the interior orientation parameters like focal
length and principal point is quite high, but still realistic, as for
each of the 242000 tie points a light-weighted height from the
SRTM DEM was introduced into the bundle adjustment, which
reduces the correlations significantly. Tangential distortion pa-
rameters are not taken into account, as they differ not signifi-
cantly from zero. More details about the calibration can be found

1The classical photogrammetric approach on flight planning is to have
several straight flight lines which cover the whole motorway in a stereo
view. This would be possible in this project yet would require more flight
costs and would produce many more images.

position precisions [meter] attitude precisions [degree]

σnorth 0.055 σroll 0.002
σeast 0.035 σpitch 0.002
σaltitude 0.069 σyaw 0.005

Table 5. Precisions of Exterior Orientations

Interior Orientations precisions unit

focal length c 51 [mm] σc 6.9 [µm]
principal point ppx −42.259 σppx 0.167 [µm]
principal point ppy 115.384 σppy 0.799 [µm]
radial distortion A1 −24.07 σA1 0.01 -
radial distortion A2 13042.30 σA2 22.73 -

Table 6. Interior Orientations and their precisions

in (Kurz et al., 2012). Without changing the sensor and viewing
configuration, one calibration set can be used for different image
acquisitions.

To evaluate the influence of the uncertainties in exterior and inte-
rior parameters on positioning precision in object space, the max-
imum values for each component based on the flight configura-
tion was calculated. The quality of interior and exterior orien-
tation parameters set would have a maximum impact in object
space for around 16 [cm] in X,Y-direction:

• caused by inaccurate camera position:√
σ2
north + σ2

east ≈ 0.065 [meter]

• caused by inaccurate camera attitude:

Hflight ×
√

(tan(σroll + τ)− tan τ)2 + (
tanσpitch

cos τ
)2

≈ 0.026 [meter]

• caused by inaccurate Interior Orientations:

rmax,IO ×GSD = 0.069 [meter]

and around 6.9 [cm] in Z-direction (caused by inaccurate camera
position).

The above information tells the positioning precision in object
space with measurements on a single image. With corresponding
measurements from multi-view stereos, which allows the inter-
section of multiple projection rays from different directions, the
positioning precision is expected to be improved. The final accu-
racy of object points of 4k images was validated in (Fischer et al.,
2017).

DSM The DSM used in this experiment is generated by SGM
based on multi-view stereos. As the asphalt road surfaces on
which the lane markings are located are poorly textured, the SGM
generated DSM is especially noisy in such poorly textured areas.
However, such high-resolution DSM gives a good starting point
for lane marking refinement. In other words, the DSM will be
used only for setting up the initial values of the work flow, and
will not influence the final results of 3D lane marking reconstruc-
tion.

The DSM has 20 cm grid spacing. Figure 10 shows a part of the
DSM.
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Figure 10. Part of the DSM in road area. It is noisy in the center
of motorway.

Figure 11. Masked Image

Road Masks Road segments are masked out from original im-
ages based on OpenStreetMap (OSM) data with 25 meter buffer
width around road axes, as shown in Figure 11.

4.2 Parameter Selection

In lane marking extraction process, the σ value for Gaussian
smoothing is set to 1.8 to slightly suppress the noise in images. A
length threshold on the extracted lines is applied to reduce false
positives. Regarding the fact that a dashed lane-line is around
6 meter long which corresponds to 62–87 pixels in image space
(when parallel to one of the coordinate axes or in 45◦ direction),
the extracted lines whose length is less than 65 pixels are rejected.

The length of the sliding window should be decided base on the
expected curvature of the targeted line and the robustness of the
reconstruction model. In the cases of continuous lane markings
on motorways, the sliding window length was fixed to 16 m, or
for the last segment it might be up to 24 m long, as a compro-
mise between optimization robustness and the minimized system-
atic errors arisen from straight-approximated curvature. As to the
cases of dashed lane-lines (6 m long), a sliding window is as long
as its targeted approximating line, i.e. 6 m length. The step size
of sliding window was set to half of the sliding window length.

The adapted lens distortion model is none shape-preserving, i.e.
a 3D straight line is no more straight in image. However in every
independent reconstruction process, only a short 16 m line seg-
ment is reconstructed, whose lens distortion correction along this
line segment is no larger than one pixel. Thus the bending of a
line segment on an image, arose from lens distortion, is ignored
in this work, but could be easily removed from the images by
rectifying the images (i.e. calculating non distorted images).

Figure 12. The reconstructed line segments and the unrefined
DSM profile in UTM 32N coordinate system.

4.3 Results

A continuous lane marking of 258.7 meters length is recon-
structed. Figure 12 shows the reconstructed line segments and
the DSM profile. The distances from the reconstructed line seg-
ment to the DSM profile are collected along the reconstructed
line segments with 0.2 meter spacing (considering the DSM grid
of 0.2 meter), resulting in sample size of 1268. The sample mean
is −0.162 [m] and the sample standard deviation is 0.119 [m].

Assuming DSM height profile being significantly lower than the
reconstructed line segments for more than 15 centimeters, A
lower-tailed Z-test is adopted. As a result, with 95% confidence
we can claim that the DSM profile is in average, statistically and
significantly lower than the reconstructed line segments for at
least 15 centimeters in this region.

The posterior standard deviation of measurements is better than
0.7 pixel, the theoretical precision of the reconstructed lines is
within 2.5 cm in vertical direction and within 5 mm in horizontal
direction. The reconstructed lane-markings in the test area are
shown in Figure 13 and Figure 14. They are further exploited to
improve the DSM at lowly textured road surfaces, as shown in
Figure 15.

5. CONCLUSION

We proposed a framework for automatic 3D lane marking recon-
struction using multi-view aerial imagery. Standard line detec-
tion algorithms are applied to extract lane markings on the aerial
images. By exploiting the use of linear regression in image space
and with the combination of collinearity condition, lane markings
are reconstructed based on their detected positions in images and
the viewing geometry. Without the utilization of the neighboring
textures, the approach requires initial approximate 3D lines and
is highly dependent on quality of pre-known image orientations.
Nevertheless, it is robust to partial occlusions of the targeted lines
on images and is applicable to the (quasi-)infinite line features as
well as in cases of lowly textured neighboring and it improves the
DSM at lowly textured road surfaces.

From experimental results of true data in Section 4.3, some con-
clusions are given:

• The DSM profile, i.e. the initial 3D line approximation, is
significantly and systematically dozens of centimeters far
away from the reconstructed line segments. This indicates
the necessity of reconstrucion based on detected 2D lines in
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(a)

(b) Zoom in to show the difference between the DSM profiles and the
reconstructed lines.

Figure 13. All the reconstructed lane-lines in the test area.

Figure 14. The reconstructed line-nodes on aerial image, in
UTM 32N coordiate system.

(a) The original DSM surface. (b) The refined DSM surface.

Figure 15. With the reconstructed lane-lines, the DSM quality
on road surfaces is improved.

image space and the viewing geometry, instead of simply
reducing DSM noise by applying mean filter or such.

• The LS-estimated precision of the measurements, involving
the lane marking extraction quality as well as the quality of
image orientation parameters, is better than 1 pixel.

• The configuration defect barely happens: 1.when the linear
regression functional model between image coordinates x
and y are properly set up according to the characteristics
of the detected lane-lines in image space. 2.when the flight
configuration guarantees stereo views whose base-lines are
perpendicular to lane-lines orientations in 3D.

• Theoretical precision of reconstructed lines is within 2.5 cm
in vertical direction and within 5 mm in horizontal direction.

Some general conclusions are:

• Image configuration plays an important roll in 3D recon-
struction. In the case of this work, being covered by more
views whose base-lines are more perpendicular to lane-lines
directions, would improve the reconstruction result.

• Lane markings can be exploited to provide information on
refining SGM-generated DSM.

• The proposed reconstruction workflow relies on initial ap-
proximation with enough accuracy, i.e. a global terrain
model like SRTM would not be sufficient as starting height,
as the error could be several meters in particular at roads.
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