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ABSTRACT:

In this paper we present a versatile multi-sensor vehicle which is used in several research projects. The vehicle is equipped with
various sensors in order to cover the needs of different research projects in the area of object detection and tracking, mobile mapping
and change detection. We show an example for the capabilities of this vehicle by presenting camera- and LiDAR-based pedestrian
detection methods. Besides this specific use case, we provide a more general in-depth description of the vehicle’s hard- and software
design and its data-processing capabilities. The vehicle can be used as a sensor carrier for mobile mapping, but it also offers hardware
and software components to allow for an adaptable onboard processing. This enables the development and testing of methods related
to real-time applications or high-level driver assistance functions. The vehicle’s hardware and software layout result from several years
of experience, and our lessons learned can help other researchers set up their own experimental platform.

1. INTRODUCTION

For many use cases of a mobile sensor system it is preferable to
utilize a multitude of different sensor types. This makes it pos-
sible to offset the disadvantages of individual sensor types and
to combine the specific advantages of the different sensors. For
example, a LiDAR sensor is more capable in sensing the exact
geometrical structure of the surroundings and it is not dependent
on natural light, but it offers lower local data densities than a
camera and no color information. Such a mobile multi-sensor
system could be a vehicle used for mobile mapping purposes, an
autonomous car or a car equipped with high-level driver assis-
tance capabilities.

From a research perspective, it is desirable to have a mobile
multi-sensor system which could be used for a wide range of re-
search questions. Therefore, such a vehicle not only has to be
equipped with a wide variety of sensors but also needs several
other capabilities: For some research questions an efficient sys-
tem for data recordings is needed. Often it is required that such
a system registers the exact recording time and position for each
recorded dataset. This is, for example, needed for mapping and
change detection related topics. On the other hand, for interactive
use cases or live demonstrations onboard processing capabilities
are required.

There are several existing vehicle-based multi-sensor systems
used by research groups. Typically they are equipped with multi-
ple cameras and LiDAR-sensors. For use cases involving mobile
mapping, the cameras are often arranged in a panoramic setup
or are part of an integrated panoramic camera head (Anguelov et
al., 2010; Paparoditis et al., 2012). Besides mobile mapping pur-
poses, there are systems which are more focused on the develop-
ment of autonomous driving and driver assistant systems (Geiger
et al., 2012). For such use cases the sensor setups often differ to
the ones used for mobile mapping. They concentrate more on the
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recording of the surroundings on street level and the area in front
of the vehicle. Typically, additional sensor types like radar are
used.

In this paper we present a mobile multi-sensor vehicle which we
have designed to fulfill multiple tasks and which is used in differ-
ent research projects. In contrast to many other mobile mapping
systems, our system not only uses cameras and LiDAR sensors,
but it also includes a pan-tilt unit which is equipped with multi-
ple sensors. In addition it has the necessary hardware capabilities
for an onboard data processing and provides a software environ-
ment for such a processing which allows for a standardized and
convenient access to the sensors and other hardware components.
With regard to the hardware, we based the design of the vehi-
cle on past experiences with the development of an airborne laser
scanning system (Schatz, 2008). Currently we use the vehicle for
several research topics in the area of object detection and track-
ing (Becker et al., 2016; Borgmann et al., 2017, 2018; Hammer
et al., 2018), mobile mapping and change detection (Gehrung et
al., 2018). In the later part of this paper, we present the use case
of pedestrian detection, which uses several capabilities of the ve-
hicle.

2. SENSOR SYSTEM

In this section we present our sensor vehicle MODISSA. The ve-
hicle is used for several research projects and serves as a measure-
ment vehicle, experimental vehicle and demonstrator. The main
design goal of the vehicle has been the usage in our research en-
vironment. Meaning flexibility and the possibility to run exper-
imental software and algorithms are of greater importance than
a compact system design. The current sensor setup of the vehi-
cle is determined by our specific needs. Therefore we mostly use
cameras and LiDAR sensors while we do not use radar sensors,
which are not in our research focus. In the following sections we
explain the hardware and software components of MODISSA.
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2.1 Overview

Since MODISSA serves different purposes and is used for several
different research projects, its setup tries to cater for all these use
cases. The vehicle is based on a VW transporter which offers
enough space to install equipment and to work inside the vehicle
with multiple persons. MODISSA and its external components
are shown in Figure 1.

Figure 1. The external components of the sensor system
MODISSA

A: 2x Velodyne HDL-64E LiDAR
B: 2x Velodyne VLP-16 LiDAR

C: Panoramic camera setup 8x Baumer VLG-20C.I. 2 cameras
per corner

D: Pan-tilt unit with Jenoptik IR-TCM 640 thermal infrared
camera, JAI CM 200-MCL gray scale camera and Jenoptik

DLEM 20 laser rangefinder
E and F: Applanix POS LV V5 520 inertial navigation system
with GNSS antennas (E), distance measuring indicator (DMI)
(F), inertial measurement unit (IMU) and position computer

(both not visible)
G: External WiFi antenna

The vehicle is in total equipped with 4 LiDAR sensors. Two high
resolution Velodyne HDL-64E are mounted at the front and two
lower resolution Velodyne VLP-16 at the back. Both kinds of Li-
DAR sensors use a rotating head and therefore have a horizontal
field of view of 360◦. The vertical field of view of the HDL-64E
is from 2◦ to −24.33◦, which is covered by 64 scan lines. The
VLP-16 have a field of view from 15◦ to −15◦ covered by 16
scan lines. The HDL-64E at the front are currently tilted by 25◦

towards the diagonal away from the vehicle to prevent measure-
ments of the vehicle’s roof. This setup also allows the LiDAR
sensors to scan most of the outside walls and partly the roofs of
buildings, which is useful for mobile mapping purposes. The tilt
angle of the back VLP-16 LiDAR sensors is 15◦. Considering the
vertical field of view of the sensors, this setup basically changes
their field of view to 0◦ to −30◦. So these sensors mostly cover
the ground level and increase the ability to perceive the complete
surroundings of the vehicle. For example, the LiDAR sensors
are used to detect pedestrians in the surroundings of the vehicle,
which is explained in Section 3.1.

On each corner of the vehicle two cameras are mounted. All eight
of these cameras form a panoramic camera setup which covers
the complete surroundings of the vehicle. In the past we have
experimented with using a single integrated panoramic camera
mounted on the top of the vehicle to achieve the same result. But
that setup was problematic since the camera either obstructed the

field of view of other sensors or was itself obstructed by them.
Mounting the cameras at the corners has solved these problems
and gives each camera an unobstructed field of view. The disad-
vantage of this setup is that the cameras do not share a projection
center, which makes it more difficult to stitch the images together
to form a 360◦ panorama. In addition to the LiDAR sensors,
these cameras are used for a pedestrian detection in the vehicle
surroundings, which is explained in Section 3.2.

On the center position of the vehicle’s roof a pan-tilt unit is
mounted. This unit is gyro stabilized and can be aimed at a cer-
tain geo coordinate while the vehicle is moving. It is equipped
with a thermal infrared camera, a gray scale camera for visible
light and a laser rangefinder. The laser rangefinder allows us to
determine the distance to a point roughly on the optical axis of
the cameras on the pan-tilt unit. The infrared camera has a wide
field of view of 65.2◦ x 51.3◦ and it operates in a spectral range
from 7.5 µm to 14 µm. Since it is able to perform thermal imag-
ing, it could also work as a night vision device. In comparison to
the other cameras, the camera for visible light has a smaller field
of view of 25.2◦ x 19.3◦ and is mainly used for optical sensing
in greater distances to supplement the panoramic cameras and the
infrared camera.

The vehicle is equipped with an inertial navigation system (INS),
which is used to determine the position of the vehicle. In com-
parison to a simple GNSS system, an INS allows us to constantly
determine the vehicle’s position in a high temporal and geomet-
rical precision. This makes it possible to perform a direct geo-
registration of the recorded data, which is used to create consis-
tent point clouds from LiDAR measurements even if the vehicle is
moving. This process is explained in Section 2.6. The INS is also
used to provide a central common clock for the complete sensor
system and to synchronize the sensors as well as other compo-
nents (cf. Section 2.2). The INS is a Applanix POS LV V5 520
which consists of several separate components: An inertial mea-
surement unit (IMU), two GNSS antennas, a distance measuring
indicator (DMI) which is mounted on a wheel of the vehicle, and
a processing unit. The second GNSS antenna helps to determine
the heading of the vehicle, even if it is not moving. According to
the manufacturer, in ideal circumstances the INS has an accuracy
of up to 3.5 cm for the X,Y position, 5 cm for Z position (height
axis) and a rotational accuracy of 0.008◦ for roll and pitch and
0.02◦ for the heading (RTK). Unfortunately in real use cases the
actual position accuracy is often far below these values.

A rack which is equipped with several PCs and further electronic
components is mounted inside. Three of the PCs are mainly used
for the interaction with the sensors, data recording and tasks in
the area of sensor synchronization and controlling of the pan-
tilt unit. Two additional PCs are mainly used for the onboard
data processing, each equipped with two powerful multi-core In-
tel Xeon CPUs and additionally GPUs. The onboard process-
ing is further explained in Section 2.5. The rack is mounted in
the passenger area of the vehicle and replaces the middle row of
seats. In the trunk of the vehicle, components are mounted to pro-
vide electrical power for the other components. To achieve this,
large lithium-ion batteries and a power inverter are used. There-
fore the electrical power is provided completely independently of
the vehicle’s engine. Up to 2000W at 230V AC can be provided
continuously for more than five hours before recharging.

Various components of the vehicle are connected with each other
over several ethernet networks. There is a general network in
which all of the PCs and several other components participate.
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Figure 2. Simplified schematic of data paths for
synchronization, data acquisition and control. Sensors operated

the same way are only represented once.

This network also includes a WiFi connection, which, for exam-
ple, is used for demonstration purposes to enable visualizations
on external presentation displays. An additional network is used
to transfer the data from the LiDAR sensors to a recording and
a processing PC. A third network directly connects the two pro-
cessing PCs with a 10GBit high-bandwidth connection. This
connection was added to deal with the high data transfer require-
ments of some onboard processing use cases.

2.2 Sensor synchronization

One field of applications for which the sensor system is used can
benefit from data fusion techniques. That requires a matching of
data from different sensors recorded at the same time. To that end,
accurate timestamping of all imaging data was designed into the
system. Figure 2 shows an overview of synchronization signals
as well as sensor data transmission and control.

Precise hardware synchronization requires a central common
clock. In our system, this clock is provided by the INS. Its posi-
tion computer (PCS) provides four event inputs for timestamping
signal pulses and four serial interfaces that can transmit National
Marine Electronics Association (NMEA) messages and associ-
ated pulses. Both were used for different kinds of sensors.

The LiDAR sensors are designed to synchronize their internal
clock by receiving an NMEA message and a pulse-per-second
(PPS) signal. The latter indicates the start of the second of the
following NMEA message. Unfortunately the LiDAR sensors
demand a type of NMEA message that the INS does not support
and specific relative timing of the PPS pulse and the message,
so they cannot be connected directly to the INS. Interface logic
that translates the message and ensures the appropriate timing
was developed at our institute and implemented in a small Field-
Programmable Gate Array (FPGA). It is present in the system
on a GODIL board from OHO Elektronik mounted in a case and
powered via a USB cable but otherwise operating autonomously.
The board carries a Xilinx Spartan 3E FPGA, flash RAM for stor-
ing its configuration and a microcontroller translating from USB
to a serial port connected to the FPGA.

All cameras are operated in external frame trigger mode, i. e., ev-
ery single frame is triggered by a signal external to the cameras.
Trigger signals are generated by another custom logic design im-
plemented on an FPGA. The FPGA board used is the same as
the one for interfacing between the INS and the LiDAR sensors.
The trigger generator design supports separate trigger channels
for the video, microbolometer and panoramic cameras. The trig-
ger outputs are duplicated, with one output leading to the cameras
and the other to one of the event inputs of the INS, as shown in
Figure 2. That causes every triggered frame to be timestamped.
The timestamps from the INS data are embedded into the cam-
era frame data streams after data acquisition as described in the
following section.

The USB interface of the trigger generator FPGA board is at-
tached to one of the PCs. It provides a simple textual register
interface that allows for changing frame intervals and starting
and stopping trigger operation. Commands are transmitted to the
FPGA via the microcontroller on the FPGA board.

2.3 Data acquisition

Data from the various sensors are acquired by the different PCs
mounted in the vehicle interior. The data acquisition software was
developed at our institute and allows us to optionally record the
data to disk while also making it available for online processing.
The details of how this is achieved differ between sensors.

The LiDAR sensors broadcast their data over their network con-
nection via the User Datagram Protocol (UDP). A network switch
connects them to the PC recording LiDAR data and one of the
processing PCs. The data are thereby available for recording and
online processing simultaneously without any special effort. In
order to limit network traffic and ensure uninterrupted data trans-
mission, it was necessary to configure the switch so that pack-
ets from the LiDAR sensors are only forwarded to the PCs, not
to each other. That was achieved by creating a separate Virtual
Private Network (VPN) for each LiDAR and PC and selectively
enabling forwarding between them. The PCs receive the data via
listening sockets bound to the ports to which the LiDAR sen-
sors transmit. Position and time data that some of the LiDAR
retransmit from the synchronization with the INS are received on
a different port and are also recorded.

Due to the relatively small data rate of the LiDAR sensors, the PC
recording LiDAR data is also used for other tasks, as can be seen
in Figure 2. It runs a server program controlling the pan-tilt unit
that implements automated tracking and receives commands from
other components of the system. The same PC also receives two
navigation data streams from the INS. One is a buffered stream
that is recorded to disk. The other is a low-latency real-time
stream that is made available to other system components by a
custom navigation data server. The navigation data server is used
by the pan-tilt unit control server for tracking a fixed location. It
also provides navigation data and pan-tilt angles for embedding
into the camera data streams (see below).

Data from the cameras are acquired by suitable frame grabbers.
Each camera type is attached to a different PC. The video and
infrared cameras on the pan-tilt unit have small dedicated record-
ing PCs, while the panoramic cameras are attached to one of the
processing PCs. The data are either written to a file on disk
or to a ring buffer in a shared memory region as shown in Fig-
ure 3. Both can be accessed via memory-mapping by programs
processing them further. On the recording PCs for the pan-tilt
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cameras, two server programs make the acquired data available
for online processing and visualization, respectively. The former
provides the uncompressed data to other components of the sys-
tem via a Transmission Control Protocol (TCP) network socket.
The visualization server compresses the image data to a low-
bandwidth OGG/Theora stream and also transmits it via TCP.
Due to their high total data rate of approximately 150 MBytes/s,
the panoramic camera data cannot be easily transmitted over the
network. Access to their data is provided on the processing PC to
which they are attached, as described in Section 2.5.

Data from the cameras are recorded in an uncompressed format
developed at our institute, the Streaming Image Sequence (SIS
1) format. Its design requirements were losslessness, permitting
multiple channels and various numerical pixel data types, allow-
ing for optional metadata blocks in the stream and frame headers,
and supporting automatic endian conversion. No pre-existing for-
mat fulfilled all those requirements. The SIS format does not sup-
port compression, but the whole stream could be compressed with
a standard method if and when that is considered advantageous.

The camera data acquisition programs embed metadata transmit-
ted by the navigation data server into optional blocks in each
frame header of their image data stream. As a result, both online
and offline processing tasks can work on frames with associated
metadata. The metadata comprise the frame timestamp, the po-
sition and orientation at the frame time and the current angles of
the pan-tilt unit. Figure 3 shows how the embedding works. The
position and orientation are interpolated by the navigation data
server to the frame times from regular navigation solution packets
received from the INS. The data acquisition programs synchro-
nize the metadata and frame data streams by detecting gaps in
their sequential indices and skipping the respective other stream.
When starting data acquisition, a small delay is introduced before
starting camera triggering, to make sure the first triggered frame
is recorded and therefore matches the first trigger timestamp.

2.4 Pan-tilt unit control and tracking

As was mentioned in the previous section, the pan-tilt unit is con-
trolled by a server program running on the PC that also records

1http://s.fhg.de/sis

LiDAR and navigation data. This server accepts commands to
aim the cameras on the pan-tilt unit at a direction relative to the
vehicle, at a compass direction or at a geographical location and
elevation. For the latter two commands, the pan-tilt server uses
real-time navigation and orientation data from the INS retrans-
mitted by the navigation data server (see Figure 3) to track the
direction or location continuously.

The pan-tilt unit, a General Dynamics Vector 50, is controlled in
such a way that movement of the vehicle is smoothly compen-
sated, even when driving on unpaved roads or on the lawn at our
institute. It supports internal gyro stabilization, which is advan-
tageous due to its shorter control loop. However, when the gyro
stabilization is enabled, its maximum rotational speed is reduced
by a factor of four. In order to avoid this tradeoff, our control
server adaptively switches between these modes depending on
the situation. When fast turning is required, such as when driv-
ing past close to the target location or when changing the target
location, the stabilization is disabled, otherwise it is enabled. In
those situations, camera frames tend to be degraded by motion
blur, so the less accurate stabilization performed by the control
server based on INS data is acceptable.

2.5 Onboard processing

To cover certain research questions in which a direct interac-
tion with the vehicle is required and for the performing of live
demonstrations, the vehicle has some onboard processing capa-
bilities. As mentioned earlier, for this purpose mainly two PCs
are used. In regard to the software environment, we had sev-
eral requirements to allow for an efficient development, evalua-
tion and demonstration of methods and processing capabilities.
We needed the ability to exchange data between several software
processes which potentially run on different PCs. Therefore this
data exchange has to utilize network connections which should
be transparent for the actual data processing. In addition, the data
exchange should be able to deal with multiple data receivers. We
also needed a way to deal with several coordinate frames which
exist in context of the data processing. Each sensor has its own
coordinate frame, the vehicle itself has a reference frame, and a
global coordinate frame is needed to consider the vehicle move-
ment in the world. Many of the transformations between these
coordinate frames are fixed and defined by the construction of
the sensor system, but due to the movement of the vehicle and
the pan-tilt unit, several transformations are constantly changing.
Therefore, a way is required to provide at least these constantly
changing transformations to the data processing. It is also desir-
able to emulate the onboard environment to support the develop-
ment of software that is intended to run on the vehicle.

To fulfill our requirements, we decided to use ROS (Robot Op-
erating System2). Although ROS has originally been designed
for the usage with robots, it covers our requirements. In the con-
text of ROS a program is called node and all running nodes in a
ROS system form a network which is called the ROS computation
graph. The nodes in such a graph can be distributed among an ar-
bitrary amount of PCs, which is transparent for the user as long
as they are able to communicate with each other over a network
connection. Nodes can send and receive ROS messages which are
published on so-called topics. This allows for a communication
between nodes in a sender-receiver format and is used for contin-
uous data transfers like the transfer of currently recorded sensor
data. Such messages usually have some header information like

2http://www.ros.org
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a timestamp or coordinate frame. Every node can subscribe to a
topic to receive the messages which are sent on it and each topic
can be subscribed by an arbitrary amount of nodes. ROS ser-
vices are a second way of communication between nodes, which
is used in a request-response format to request a certain function
or data from another node. For both ways of communication,
standard data types are provided which already cover many use
cases. Additional data types can be created if needed. The com-
plete communication via messages or a subset of this communi-
cation can be recorded in so-called bag files which later can be
played back. These bag files fulfill our requirement to be able to
emulate the onboard environment.

ROS makes it possible to create, fill and access a transformation
tree which provides necessary transformations between various
coordinate frames. This tree can contain fixed transformations
as well as dynamic ones. The dynamic transformations usually
have a timestamp and it is possible to retrieve “historic” transfor-
mations. These capabilities are used to determine the exact state
which the tree had at the time of acquisition of a certain dataset.
ROS also provides many libraries and tools for data processing,
visualization and debugging. Especially the visualization com-
ponents are helpful for the fast prototyping of a demonstrator or
the debugging of programs, since it is possible to visualize many
standard data types which are transmitted as ROS messages.

In our ROS system we provide an abstraction layer for the re-
ceiving of sensor data and access to other hardware components
of the vehicle. This abstraction layer is comprised of at least one
ROS node for each sensor. We call these nodes bridge nodes and
their task is to receive data from the sensors and provide them to
other nodes. For the cameras which are mounted on the pan-tilt
unit, nodes receive their data via the network from their respec-
tive data acquisition PCs in form of uncompressed data streams
in SIS format. The data from the panoramic cameras are also
received in the SIS format, but since these cameras are already
connected to one of the processing PCs and to reduce network
traffic, we read from the recorded file or shared memory directly
without a network transmission.

The SIS format already contains the exact timestamp in the frame
header, as described in Section 2.3. This timestamp is used to
fill the according field in the ROS message headers. For the
panoramic cameras, the abstraction layer contains an additional
node which receives the raw data from the bridge node and con-
verts it from its original Bayer pattern format into an RGB for-
mat. For the infrared camera, a similar node performs a conver-
sion from 16-bit color depth, of which most of the times only an
interval of about 12 bits is actually used, into 8-bit color depth.
This conversion is done by determining the actually used data in-
terval and mapping it linearly onto the full 8-bit range. Such a
data format is better suited for visualization and often helpful for
further processing. Since each ROS topic can be received by mul-
tiple nodes, a “data consumer” can still use the raw data from the
bridge nodes if desired.

For the Applanix INS system, the abstraction layer also consists
of two nodes. One receives the data from the Applanix system
and sends it into the ROS environment (unchanged, in terms of
the content). The other uses these data to add a transformation to
the transformation tree, which converts between the vehicle refer-
ence coordinate frame and an ECEF (Earth Centered Earth Fixed)
global coordinate frame. This transformation is based on the cur-
rent vehicle position provided by the INS. An additional constant
transformation between the ECEF coordinate frame and a local

ENU (East North Up) coordinate frame is provided by this node.
The origin of that coordinate frame is determined once at system
start either based on a configuration parameter or the current ve-
hicle position. We often use such an ENU coordinate frame with
a local origin instead of ECEF as a Cartesian world coordinate
frame. It has the advantage that the coordinate values are lower,
allowing the usage of single precision data types. Our point cloud
processing and ROS as well normally use point clouds with sin-
gle precision coordinates. For point clouds in a world coordinate
frame, we use this ENU coordinate frame. It also offers a local
vertical axis which is helpful for certain processing algorithms.

The LiDAR sensors provide their data via the network and al-
ready embed an exact acquisition timestamp into the data, which
is used for the ROS message header. This timestamp is based
on the data provided to them by the INS (cf. Section 2.2). The
bridge nodes for the LiDAR sensors receive their raw data via
the network and transfer them into the ROS environment. A sec-
ond group of nodes uses these data and the INS data to generate
point clouds. These clouds are generated for each sensor in two
variants: One refers to the coordinate frame of the sensor and a
second one refers to the mentioned local ENU coordinate frame.
The generation of point clouds is further explained in Section 2.6.

Additional ROS nodes are provided for controlling the pan-tilt
unit from the ROS environment and for triggering a measurement
by the laser rangefinder and receiving its result. When needed,
a measurement of this sensor can be triggered via a ROS ser-
vice call. The pan-tilt unit is also controlled by ROS services.
The node which provides these services itself uses the server pro-
gram described in Section 2.4 and translates its functionality into
ROS services. The node also receives the current orientation of
the pan-tilt unit from this program and publishes it into the ROS
transformation tree to allow transformations between coordinate
frames of sensors mounted on the pan-tilt unit and other coordi-
nate frames.

After the described hardware abstraction layer, further ROS
nodes perform the processing that is specific for the current use
case. This could be single nodes or a group of nodes which in-
teract with each other. Since a node is a normal program which
uses some ROS specific libraries for the interaction with the ROS
environment, it is easy to convert arbitrary programs into ROS
nodes. Such a program can use all the capabilities provided by
our hardware abstraction layer and is able to access all sensors
and further hardware components of our vehicle without the need
to implement such a hardware interaction itself.

2.6 Processing of LiDAR data

We use scanning LiDAR sensors with a rotating head, which we
operate at a rotation rate of 10 revolutions per second. For further
processing of the data acquired by these sensors, we normally
prefer to use point clouds containing one rotation of the scan head
instead of raw distance measurements. As the reference frame
for these point clouds we use an ENU coordinate frame with a
local origin. When the vehicle is moving, we have to consider
this movement as part of the point cloud generation. The process
which we use for the point cloud generation is performed for each
LiDAR sensor separately and is identical for the offline process-
ing of recorded data and for the onboard processing of live data.
The only difference is the source of the data to be processed. For
the offline processing, we use files with the recorded raw LiDAR
and the INS data. These files can be synchronized based on times-
tamps which are part of both files. For the onboard processing,
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we use the data streams provided by our bridge nodes for the INS
and the LiDAR sensors. In case of the offline processing, we nor-
mally perform a postprocessing of the INS data using data from
public GNSS reference stations (SAPOS). This increases the pre-
cision of the INS data. In the live processing such reference data
are not used.

Based on the timestamps embedded in the LiDAR data and the
specifications of the LiDAR sensors itself it is possible to deter-
mine the point in time for each distance measurement. This in-
formation is used to determine the exact position and orientation
of the vehicle at the time of each measurement based on the data
from the INS. Our INS delivers position and orientation at a rate
of 200Hz. Since the LiDAR performs measurements at a higher
rate, we use a linear interpolation to cover the gaps between two
INS measurements. Although such a simple linear interpolation
has its limits, this approximation is sufficient since we only in-
terpolate over the short time periods between two INS measure-
ments. Besides the INS information, we use intrinsic calibration
parameters for each LiDAR and extrinsic calibrations between
the LiDAR and INS reference frame for the generation of point
clouds.

3. USE CASE: PEDESTRIAN DETECTION

In this section, we present the detection of pedestrians in the sur-
roundings of the vehicle as a use case for our multi-sensor ve-
hicle. In the area of autonomous driving and driver assistance
systems, such a functionality is of great interest. But it could also
be part of a mobile mapping system to remove pedestrians as un-
wanted noise from the recorded data or to anonymize them for
privacy reasons.

We perform a pedestrian detection with different sensor types.
This allows us to profit from the individual advantages of the dif-
ferent sensors and to compensate their disadvantages. For exam-
ple, a LiDAR sensor is able to directly and very accurately deter-
mine the geometric structure of the scene and the 3D position of
the detected pedestrians. On the other hand, a camera operates
with a higher data density which increases the detection perfor-
mance. It also makes it possible to detect additional features such
as the faces of persons, which can be used to estimate their view-
ing direction. In case of low-light situations, we plan to use the
thermal infrared camera mounted on the pan-tilt unit of the vehi-
cle to gather such features instead of the cameras for visible light.
In such situations the LiDAR sensors are to be used to point the
pan-tilt unit in the direction of pedestrians.

3.1 LiDAR-based pedestrian detection

There are several approaches for the detection of pedestrians or,
more generally, objects in 3D LiDAR data. Often this task is
divided into a segmentation step and a classification of the seg-
ments. Such a segmentation can be achieved by region growing.
Different kinds of classifiers are typically used for the classifica-
tion. One group of such classifiers are support vector machines
(SVM) which fit a hyperplane in feature space to differentiate
between different classes. They are used by Navarro-Serment
et al. (2010) for the detection and tracking of persons in Li-
DAR point clouds. Another group of classifiers are bag-of-words
approaches. They use words described by feature descriptors.
These words fill a dictionary which is the result of a training pro-
cess. Feature descriptors for the processed data are generated
while classifying data. These descriptors are matched to words

in the dictionary which then vote for a classification of the data.
Behley et al. (2013) combine several bag-of-words classifiers for
the classification of point cloud segments. These classifiers use
differently parameterized features which allows them to deal bet-
ter with the characteristics, such as the data density of each pro-
cessed segment. Recently, deep convolutional neural networks
have been used for object recognition tasks in 3D data. To achieve
this, the data are either converted into depth images (Socher et al.,
2012) or into a volumetric representation (Maturana and Scherer,
2015; Garcia-Garcia et al., 2016).

Our own approach is based on 3D Implicit Shape Models (ISM)
and we presented it in greater detail in Borgmann et al. (2017).
ISM are an extension of the bag-of-words approach in which
words not only vote for a class but also for the position of that
class. Therefore they not only consider the existence of certain
features but also their geometrical distribution. They have been
used for several object recognition tasks in 3D data (Velizhev et
al., 2012; Knopp et al., 2010). Our own ISM approach is mod-
ified in a way to better deal with and profit from the usage of
multiple LiDAR sensors in parallel (Borgmann et al., 2018). On
our vehicle MODISSA the multiple LiDAR sensors have some
overlaps in their coverage. Since the sensors are rotating scan-
ners, it is nearly impossible to synchronize them in a way that
they scan same areas at the exact same time. In case of moving
objects there will be some movement induced distortion effects
if the point clouds of multiple sensors are directly merged. To
be able to profit from the higher data density and better coverage
in such areas, we merge the data in the voting space of the ISM
method. In this space the method already deals with uncertainties
and can accept additional uncertainties caused by the distortion
effects without reducing the overall performance of the method.
Hence, at first we perform a feature extraction. This is followed
by a search for matching words and the cast of votes for each
sensor. Then we perform the final ISM steps for all sensors to-
gether, the search for maxima in the voting space. In addition,
our method does not rely on a data segmentation which prevents
problems caused by segmentation errors.

3.2 Image-based pedestrian detection

Pedestrian detection in images is a key component in many com-
puter vision applications, e.g. human-computer interaction, ad-
vanced driver-assistance systems, and surveillance. One of the
popular early approaches is Histograms of Oriented Gradients
(HOG) (Dalal and Triggs, 2005). The approach calculates hand-
crafted features over the whole image and then applies a trained
classifier in a sliding window manner. A non-maximum suppres-
sion is then used to group positive classifications to the final de-
tections. A similar pipeline is applied in later pedestrian detection
methods based on integral channel features (Dollár et al., 2009,
2014; Benenson et al., 2012), which have been shown to work
also in infrared images (Kieritz et al., 2013).

In recent years, detectors based on deep convolutional neural net-
works have gained popularity (R-CNN (Ren et al., 2015), YOLO
(Redmon et al., 2016), SSD (Liu et al., 2016)). While R-CNN
uses a region proposal network followed by a classifier neural
network, YOLO and SSD adopt an object classifier and a bound-
ing box regression in the last convolution layers of a single object
detection network.

For our sensor vehicle MODISSA, we adapt the SSD method be-
cause of its low runtime (see Figure 4 for detection examples on
the panoramic cameras). We trained the network for a 480x270
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Figure 4. Pedestrian detection of five people using the panoramic cameras (red bounding boxes) and LiDAR-sensors (green dots) of
MODISSA.

Figure 5. Pedestrian detection using the front LiDAR sensors of
MODISSA. Red dots are correct detections; blue rectangles are

missing detections. The scene corresponds to Figure 4 and
shows the same moment of the same measurement run.

input image size to detect pedestrians. It was trained for 300.000
iterations using the following pedestrian detection datasets: Cal-
tech pedestrian detection benchmark (Dollár et al., 2012), INRIA
test set (Dalal and Triggs, 2005), and CityPersons training set
(Zhang et al., 2017).

We tested our method on recorded data using a NVIDIA TITAN
X graphic card. Each image is scaled to the network input size.
When detecting pedestrians in all eight camera images in parallel,
we achieve an average processing speed of 5 frame sets per sec-
onds (197ms). When processing one single camera, we achieve
an average runtime of 28.5 frames per second (35ms).

3.3 Preliminary results

We are currently still in the process of evaluating both our pedes-
trian detection approaches, LiDAR-based and camera-based. In
this paper we present some preliminary results. For the evalua-
tion of our methods we use different scenarios with various levels

of difficulty. The easiest ones have been recorded with a station-
ary vehicle on an empty field while the more difficult ones use a
moving vehicle in a street environment with several parked cars,
vegetation and other obstacles. Figure 4 and Figure 5 exemplar-
ily show detection results for the same point in time, achieved
with the panoramic cameras and the front LiDAR sensors of our
vehicle.

The results show that the panoramic camera setup works well for
the detection of pedestrians in the complete surroundings of the
vehicle. It also shows that there are several overlapping areas
in the fields of view of the cameras which we have to consider
in a later data fusion method to determine the amount of unique
persons in the surroundings. The LiDAR sensors provide quite
detailed position information for the detected persons. This is
shown in Figure 5 for the detected persons in front of the vehi-
cle. But we have some problems with detecting them in greater
distances, especially if they are only partly visible. This is shown
by the two persons far behind of the vehicle. Our current LiDAR
setup is not optimally suited for this use case. The setup is opti-
mized for mobile mapping purposes and limits the ability of the
LiDAR sensors to detect pedestrians in greater distance in front
of the vehicle and directly behind it. This can be improved in the
future by using a different tilt angle for the front LiDAR sensors.

4. CONCLUSION

We have presented a multi-purpose sensor vehicle which can be
used for data recording as well as real-time applications. The
vehicle’s hardware and software setup result from several years
of experience, and our lessons learned can help other researchers
set up their own experimental platform. The vehicle is equipped
with several cameras for the visible and the infrared spectrum
and multiple LiDAR sensors. It also has additional components
like an inertial navigation system and a pan-tilt unit. The vehicle
has two general operation modes: One provides a data recording
which records useful metadata besides the actual data to improve
the offline usage of the recorded data. The other mode is onboard
processing of the data being acquired. This mode is based on
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the ROS middleware and allows us to develop, test and demon-
strate a multitude of methods directly on the vehicle. Therefore
the vehicle is able to cover various research questions. We have
demonstrated these capabilities by presenting a use case in which
we utilize the vehicle in a current research topic, the detection of
pedestrians.

In future work, some modifications of the orientation of the Li-
DAR sensors are planned to achieve a setup which is better suited
for pedestrian detection. We also plan to integrate the infrared
camera in this use case and to evaluate the performance in low-
light scenarios in which the LiDAR sensors could be used to point
the thermal infrared camera in the direction of detected persons.
In addition we work on several other use cases, such as mobile
mapping and change detection.
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