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ABSTRACT:

In this paper, we address the semantic segmentation of aerial imagery based on the use of multi-modal data given in the form of true
orthophotos and the corresponding Digital Surface Models (DSMs). We present the Deeply-supervised Shuffling Convolutional Neural
Network (DSCNN) representing a multi-scale extension of the Shuffling Convolutional Neural Network (SCNN) with deep supervision.
Thereby, we take the advantage of the SCNN involving the shuffling operator to effectively upsample feature maps and then fuse multi-
scale features derived from the intermediate layers of the SCNN, which results in the Multi-scale Shuffling Convolutional Neural
Network (MSCNN). Based on the MSCNN, we derive the DSCNN by introducing additional losses into the intermediate layers of
the MSCNN. In addition, we investigate the impact of using different sets of hand-crafted radiometric and geometric features derived
from the true orthophotos and the DSMs on the semantic segmentation task. For performance evaluation, we use a commonly used
benchmark dataset. The achieved results reveal that both multi-scale fusion and deep supervision contribute to an improvement in
performance. Furthermore, the use of a diversity of hand-crafted radiometric and geometric features as input for the DSCNN does not
provide the best numerical results, but smoother and improved detections for several objects.

1. INTRODUCTION

The semantic segmentation of aerial imagery refers to the task
of assigning a semantic label (e.g. Building, Impervious Surface,
Car or Vegetation) to each pixel and thereby providing meaning-
ful segments. Over the last few years, this kind of image inter-
pretation has become a topic of great interest not only in remote
sensing (Volpi and Tuia, 2017; Chen et al., 2018a; Maggiori et
al., 2017; Marmanis et al., 2016; Paisitkriangkrai et al., 2016) but
also in the field of computer vision (Chen et al., 2016; Zhao et al.,
2016; Liu et al., 2015; Badrinarayanan et al., 2017). Meanwhile,
some benchmarks such as the ISPRS Benchmark on 2D Seman-
tic Labeling (Rottensteiner et al., 2012) have been initiated to
foster research on the semantic segmentation of aerial imagery.
Thereby, the given data consists of true orthophotos and the cor-
responding Digital Surface Models (DSMs) as shown in Figure 1.

Given data in the form of true orthophotos and the correspond-
ing DSMs, the semantic segmentation of aerial imagery has been
addressed by extracting hand-crafted features and using standard
classifiers such as Random Forests (Weinmann and Weinmann,
2018; Gerke and Xiao, 2014) or Conditional Random Fields
(CRFs) (Gerke, 2014). In recent years, however, the use of mod-
ern deep learning techniques has become increasingly popular,
as such techniques are famous for their representation capacity
and their ability of learning features. As one of the most suc-
cessful representatives of deep learning, Convolutional Neural
Networks (CNNs) (Krizhevsky et al., 2012; Simonyan and Zis-
serman, 2014; He et al., 2016a) have become the most popular
method in image classification. In the context of semantic image

segmentation, a class label should be predicted for each pixel. To
achieve this, a rich variety of deep networks has been proposed
(Long et al., 2015; Noh et al., 2015; Badrinarayanan et al., 2017;
Chen et al., 2014; Zhao et al., 2016). Meanwhile, CNNs are also
widely applied to the semantic segmentation of aerial imagery
(Volpi and Tuia, 2017; Marmanis et al., 2016; Maggiori et al.,
2017; Paisitkriangkrai et al., 2016; Chen et al., 2018a).

(a) True orthophoto (b) DSM (c) Labeling

Figure 1. Semantic segmentation of aerial imagery: given (a) the
true orthophoto and (b) the corresponding DSM, the objective is
to derive (c) a semantic labeling, whereby the classes of interest
are given by Impervious Surfaces (white), Building (blue), Low
Vegetation (cyan), Tree (green) and Car (yellow).

The adaptation of networks designed for image classification is
the main approach to derive networks for semantic image seg-
mentation (Long et al., 2015; Noh et al., 2015; Chen et al., 2014;
Zhao et al., 2016). Thereby, several layers are involved which
cause a reduction of resolution so that the derived labeling is very
coarse. Consequently, a popular research topic is the question of
how to successfully transfer the reduced resolution to the orig-
inal resolution. The proposed methods can be categorized into
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two groups, which are fixed upsampling and learnable upsam-
pling. Bilinear interpolation is a method of fixed upsampling for
recovering the resolution (Long et al., 2015; Chen et al., 2014;
Chen et al., 2016). However, methods using learnable upsam-
pling (Noh et al., 2015; Badrinarayanan et al., 2017; Zhao et al.,
2016; Chen et al., 2018a) have become more popular, amongst
which the deconvolution (or transposed convolution) (Noh et al.,
2015) is widely used in semantic segmentation of aerial imagery
(Volpi and Tuia, 2017; Marmanis et al., 2016). Alternatively, the
shuffling operator provides another solution to recover the reso-
lution (Shi et al., 2016; Chen et al., 2018a; Chen et al., 2018b).

In this paper, we focus on the use of a shuffling operator (Shi
et al., 2016) to effectively upsample feature maps and take into
account the benefit of using multi-scale predictions. On the one
hand, features derived from deeper layers have stronger seman-
tic information which are robust to translation, rotation and scale,
but such features lack spatial information. In contrast, features
derived from shallower layers contain more spatial information
due to the higher resolution and are thus significant for local-
ization (e.g. in terms of boundaries between objects). Accord-
ingly, we address a multi-scale extension of the Shuffling Con-
volutional Neural Network (SCNN) (Chen et al., 2018a; Chen et
al., 2018b). To achieve this, we fuse multi-scale features derived
from the intermediate layers of the SCNN, which results in the
Multi-scale Shuffling Convolutional Neural Network (MSCNN).
In addition, we introduce additional losses to the fused features
of the MSCNN and thus derive the Deeply-supervised Shuffling
Convolutional Neural Network (DSCNN) as an MSCNN with
deep supervision. These additional losses address the suscepti-
bility of deep networks to the vanishing gradient problem by in-
jecting additional errors into the intermediate layers of the deep
network, resulting in a better convergence. Besides the presen-
tation of the MSCNN and the DSCNN, we involve a variety of
hand-crafted radiometric and geometric features extracted from
the true orthophotos and the corresponding DSMs for the clas-
sification task. Based on a separate and combined consideration
of these features, we explore the value of the different modalities
for the classification task. For performance evaluation, we test
our approaches on a benchmark dataset provided with the ISPRS
Benchmark on 2D Semantic Labeling.

After briefly describing related work in Section 2, we explain
our methodology for the semantic segmentation of aerial imagery
based on multi-modal data in Section 3. Thereby, we focus on
the extraction of hand-crafted features as the basis for classifi-
cation and on the construction of three different types of deep
networks given by the SCNN, the MSCNN and the DSCNN, re-
spectively. To demonstrate the performance of these networks,
we present the results achieved for a standard benchmark dataset
in Section 4. A detailed analysis and discussion of the derived
results is given in Section 5. Finally, we provide concluding re-
marks and suggestions for future work in Section 6.

2. RELATED WORK

Since the great success of the AlexNet (Krizhevsky et al., 2012)
in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) (Russakovsky et al., 2015), Convolutional Neural Net-
works (CNNs) have become the most popular method in com-
puter vision regarding image classification, object detection and
semantic segmentation. The Fully Convolutional Network (FCN)
(Long et al., 2015) can be considered as the first approach to ap-
ply CNNs for semantic segmentation. Since then, a variety of

approaches addressing this task has been presented (Noh et al.,
2015; Badrinarayanan et al., 2017; Chen et al., 2014; Chen et al.,
2016; Zhao et al., 2016; Liu et al., 2015).

Most of the CNNs presented for semantic segmentation (Long et
al., 2015; Badrinarayanan et al., 2017; Chen et al., 2014; Chen et
al., 2016) are adapted from popular networks for image classifica-
tion such as the VGGNet (Simonyan and Zisserman, 2014) or the
Residual Network (ResNet) (He et al., 2016a). As such networks
for image classification contain several layers that cause a reduc-
tion of resolution, the outputs are of low resolution and therefore
rather coarse. Consequently, such networks need to be adapted to
fit in the task of semantic segmentation. In this regard, an intuitive
solution is given by the removal of all the layers that cause resolu-
tion reduction, resulting in no-downsampling networks (Sherrah,
2016). However, such networks will suffer from computational
overload and cost much more training time (Chen et al., 2018a;
Sherrah, 2016). To reach a trade-off between computational effi-
ciency and a reasonable resolution, DeepLab (Chen et al., 2016)
keeps the first three layers that will cause resolution reduction
and removes the remaining ones of such layers, resulting in an
output stride of 8. To recover the resolution to the original size,
DeepLab adopts bilinear interpolation. Instead, Shuffling Convo-
lutional Neural Networks (SCNNs) (Chen et al., 2018a) replace
the bilinear interpolation with the shuffling operator (Shi et al.,
2016) to recover resolution. Besides, encoder-decoder architec-
tures (Noh et al., 2015; Badrinarayanan et al., 2017) provide an-
other solution to recover resolution, where the encoder part is re-
sponsible for encoding the input to a compressed representation
with a low resolution and the decoder part adequately transfers
the compressed representation to the original image size.

Features derived from deeper layers have stronger semantic infor-
mation but lack spatial information. In contrast, features derived
from shallower layers contain more accurate spatial information
due to the higher resolution, which in turn can be beneficial for
a better localization. Therefore, an intuitive idea is borrowing
spatial information from features with high resolution, which has
actually been adopted by many approaches (Long et al., 2015;
Noh et al., 2015; Badrinarayanan et al., 2017; Zhao et al., 2016;
Ronneberger et al., 2015). For the DecovNet (Noh et al., 2015)
and the SegNet (Badrinarayanan et al., 2017), the unpooling oper-
ator has been proposed to transfer the values in the low-resolution
feature maps to the corresponding positions in the high-resolution
feature maps. Alternatively, a more intuitive solution is given by
fusing high-resolution features from shallower layers with low-
resolution features from deeper layers progressively (Long et al.,
2015; Ronneberger et al., 2015) or at once (Zhao et al., 2016). In
this paper, we adopt the intuitive way of fusing multi-scale fea-
tures progressively instead of using the unpooling operator.

Especially for very deep networks, the vanishing gradient prob-
lem represents a big challenge for the optimization of neural
networks. More specifically, the gradient of the error func-
tion decreases when being backpropagated to previous layers
during training and, if the gradient becomes too small, the re-
spective weights of the network remain unchanged (He et al.,
2016b). Though some concepts like batch normalization (Ioffe
and Szegedy, 2015) and residual connection (He et al., 2016a)
have been proposed to address this issue, it cannot be thoroughly
solved. Deep supervision (Szegedy et al., 2015; Marmanis et al.,
2016; Lee et al., 2014; Lin et al., 2016) provides an option for
better training by appending additional losses in the intermedi-
ate layers. In this paper, we inject two additional losses in the
intermediate layers in order to achieve deep supervision.
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Further approaches directly address the deep semantic segmenta-
tion of aerial imagery based on multi-modal data, e.g. by involv-
ing an encoder-decoder architecture (Volpi and Tuia, 2017) or
adaptations of the VGGNet (Chen et al., 2018a) and the ResNet
(Chen et al., 2018b). To aggregate multi-scale predictions within
a deep network, a modification of the SegNet introduces a multi-
kernel convolutional layer allowing for convolutions with several
filter sizes (Audebert et al., 2016). Alternatively, a deep network
in which spatial features are learned at multiple resolutions and a
specific module which learns how to combine these features can
be combined (Maggiori et al., 2017). Further strategies to fuse
the multi-modal geospatial data within a deep learning frame-
work have been presented in (Marmanis et al., 2016; Audebert et
al., 2016; Audebert et al., 2018; Liu et al., 2017). An alternative
strategy to better retain boundaries between objects in the clas-
sification results is to take into account semantically meaningful
boundaries, e.g. by including an explicit object boundary detector
in the SegNet encoder-decoder architecture or in FCN-type mod-
els (Marmanis et al., 2018). While all these approaches focus on
the classification pipeline, only little attention has been paid to
the input data itself. Few investigations involve very basic hand-
crafted features given by the Normalized Difference Vegetation
Index (NDVI) and the normalized Digital Surface Model (nDSM)
(Gerke, 2014; Audebert et al., 2016; Liu et al., 2017). Other
kinds of hand-crafted radiometric or geometric features which
can be extracted from a local image neighborhood (Gerke and
Xiao, 2014; Weinmann and Weinmann, 2018) have however only
rarely been involved, although, in the context of classifying aerial
imagery based on given true orthophotos and the corresponding
DSMs, it has recently been demonstrated that the additional con-
sideration of such hand-crafted radiometric and geometric fea-
tures on a per-pixel basis may lead to improved classification re-
sults (Chen et al., 2018b). In this paper, we focus on a multi-scale
extension of Shuffling Convolutional Neural Networks (Chen et
al., 2018a; Chen et al., 2018b) involving deep supervision, and
we thereby also involve a diversity of hand-crafted radiometric
and geometric features extracted from the true orthophotos and
their corresponding DSMs, respectively.

3. METHODOLOGY

In this section, we describe our methodology for the semantic in-
terpretation of aerial imagery by exploiting data of several modal-
ities. Thereby, we first focus on the extraction of hand-crafted ra-
diometric and geometric features and the creation of feature maps
(Section 3.1). Subsequently, we provide a detailed explanation of
our proposed deep networks receiving the defined feature maps
as input (Section 3.2). The result is a dense labeling, i.e. each
pixel is assigned a respective semantic label.

3.1 Feature Extraction

Given an orthophoto and the corresponding DSM on a regular
grid, we first extract a set of hand-crafted radiometric and geo-
metric features for all points on the grid. The derived features
may thus be stored in the form of a stack of feature maps (i.e. im-
ages containing the values of a respective feature on a per-pixel
basis) which later serves as input to a deep network.

Radiometric Features: We take into account the three spectral
bands used for defining the orthophoto, whereby we assume that a
representation with respect to the reflectance in the near-infrared
(NIR), red (R) and green (G) domains is given (Rottensteiner et

al., 2012). Furthermore, we involve normalized colors as a sim-
ple example of color invariants with improved robustness with
respect to changes in illumination (Gevers and Smeulders, 1999),
yielding normalized near-infrared (nNIR), normalized red (nR)
and normalized green (nG) values. Finally, we also consider the
Normalized Difference Vegetation Index (NDVI) (Rouse, Jr. et
al., 1973) as a strong indicator for vegetation and a slight varia-
tion represented by the Green Normalized Difference Vegetation
Index (GNDVI) (Gitelson and Merzlyak, 1998) which is more
sensitive to the chlorophyll concentration than the original NDVI.

Geometric Features: Based on the DSM, we derive the nor-
malized DSM (nDSM) describing the heights of objects above
ground, which might be more informative than the DSM itself.
For this purpose, we use the approach presented in (Gerke, 2014)
which classifies pixels into ground and off-ground pixels using
LAStools1 and then adapts the height of each off-ground pixel by
subtracting the height of the closest ground point. Furthermore,
we consider geometric features in the form of local 3D shape
features extracted from the DSM. Based on the spatial 3D coor-
dinates corresponding to a local 3 × 3 image neighborhood, we
efficiently derive the 3D structure tensor (Weinmann and Wein-
mann, 2018) and normalize its three eigenvalues by their sum.
The normalized eigenvalues, in turn, are then used to calculate
the features of linearity (L), planarity (P), sphericity (S), om-
nivariance (O), anisotropy (A), eigenentropy (E) and change of
curvature (E) (West et al., 2004; Pauly et al., 2003) which have
been involved in a variety of investigations for 3D scene analysis
(Demantké et al., 2011; Weinmann, 2016; Hackel et al., 2016).

3.2 Supervised Classification

Once feature maps have been extracted, we use them as input to
a deep network. Relying on the idea of a Shuffling Convolutional
Neural Network (SCNN, presented in Section 3.2.1), we intro-
duce the fusion of features of different scales as common strategy
to address the localization/recognition trade-off (Maggiori et al.,
2017). This results in a Multi-scale Shuffling Convolution Neu-
ral Network (MSCNN, presented in Section 3.2.2). Furthermore,
we present an extension in the form of an MSCNN with deep su-
pervision (DSCNN, presented in Section 3.2.3) which allows an
improved classification due to the use of additional losses.

3.2.1 SCNN: In theory, any network designed for image clas-
sification can be adapted to a Shuffling Convolutional Neural
Network (SCNN) for dense semantic image segmentation. The
original SCNN (Chen et al., 2018a) is adapted from the VGGNet
(Simonyan and Zisserman, 2014), while the Residual Shuffling
Convolutional Neural Network (RSCNN) (Chen et al., 2018b) is
adapted from the ResNet (He et al., 2016a). Thereby, the adap-
tation consists in involving a shuffling operator as an efficient
operator to realize the upscaling of feature maps without intro-
ducing additional parameters. The concept of a shuffling opera-
tor has originally been introduced for super-resolution (Shi et al.,
2016) and also been used for the semantic segmentation of aerial
imagery (Chen et al., 2018a; Chen et al., 2018b). More specif-
ically, the upscaling of feature maps is achieved by combining
feature maps in a periodic shuffling manner to increase the reso-
lution, which forces the network to learn upscaling. For example,
if we need to double the resolution of the feature map, we can
combine four feature maps as illustrated in Figure 2. The only
hyper-parameter of a shuffling operator is the upscaling rate u.
Generally, the process of constructing an SCNN can be split into
four steps as described in the following:

1http://rapidlasso.com/lastools/
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Shuffling 

Operator 

Figure 2. Basic concept of the shuffling operator: it converts
c × u2 feature maps of size H ×W into c feature maps of size
(H × u)× (W × u). Here: H = 2, W = 2, u = 2, c = 1.

Backbone Network Extraction: Given a CNN for image clas-
sification such as the VGGNet (Simonyan and Zisserman, 2014)
or the ResNet (He et al., 2016a), we will get the corresponding
backbone network after removing the last pooling layer and its
subsequent layers. In this paper, we use the respective adaptation
of the ResNet-101 as backbone network. This is motivated by
the fact that the use of standard networks such as the VGGNet
(Simonyan and Zisserman, 2014) with many layers allows learn-
ing complex non-linear relationships, yet the performance of such
networks tends to decrease when adding further layers via simply
stacking convolutional layers due to the vanishing gradient prob-
lem. To effectively address this issue, we use the ResNet (He
et al., 2016a) which is motivated by the idea that optimizing the
residual mapping is easier than optimizing the original mapping.
The additional gain in computational efficiency allows to form
deep networks with more than 100 convolutional layers.

Resolution Adjustment: Pooling layers or convolutional lay-
ers with a stride larger than 1 will cause a reduction of resolution.
We refer to such layers as Resolution Reduction Layers (RRL).
Based on the backbone network, we keep the first three RRLs
and change the strides of the remaining RRLs to 1. Though net-
works without RRLs (Sherrah, 2016) have been proposed, such
networks always suffer from a severe computational overload
(Sherrah, 2016; Chen et al., 2018a). Therefore, to have a trade-
off between computational efficiency and a reasonable resolution,
keeping three or four RRLs is an acceptable choice (Chen et al.,
2014; Chen et al., 2017b; Chen et al., 2018a).

Field-of-View Enhancement: RRLs have been shown to not
only be beneficial to learning features robust to the translation,
but also to increase the field-of-view of filters (Chen et al., 2016).
To compensate for the decrease of the field-of-view after remov-
ing some RRLs, atrous convolution (Chen et al., 2014; Chen et
al., 2016) is introduced. Once the stride of an RRL is set to 1, the
strides of its subsequent convolution layers are doubled.

Constructing SCNNs: On top of the modified backbone net-
work, we append one convolution layer to generate a reasonable
number of feature maps for the shuffling operator. This is fol-
lowed by a shuffling operator and a softmax operator. An intu-
itive description can be seen in Figure 3(a). For simplicity, the
shuffling operator in Figure 3(a) includes the convolution layer
for creating the correct number of feature maps.

3.2.2 Multi-scale SCNN: By fusing feature maps of different
scales, we construct a Multi-scale Shuffling Convolutional Neu-
ral Network (MSCNN). Deeper features with lower resolution
are assumed to provide semantic information which are robust
to variations in translation, rotation and scale. In contrast, fea-
tures with higher resolution are assumed to contain more spatial
information for better localization.

Focusing on computational efficiency, we keep the first four
RRLs instead of only three RRLs. The feature maps with strides

Shuffling Prediction 

(a) Original SCNN

Fusion_1 

Fusion_2 Prediction Shuffling 

(b) Multi-scale SCNN

Fusion_1 

Fusion_2 

Shuffling Prediction_2 

Prediction_3 Shuffling 

Prediction_1 Shuffling 

(c) Multi-scale SCNN with deep supervision

Figure 3. The used networks: the prediction of the SCNN is based
on the feature maps with an output stride of 8, while the MSCNN
fuses outputs with strides of {16, 8, 4} and the DSCNN

of {16, 8, 4} are fused as shown in Figure 3(b). Correspondingly,
the shuffling operator and the softmax operator are applied on the
finest fused feature maps. The details of the used fusion module
are presented in Figure 4. Thereby, the kernel of the convolution
layers represented by Convolution 1, Convolution 2 and Convo-
lution 4 is (1, 1) and the kernel of Convolution 3 is (3, 3). We
adopt deconvolution with a kernel of (4, 4), a stride of (2, 2) and
a padding of (1, 1) to realize upsampling. The number of filters
for all these convolution/deconvolution layers is 512 and 256 for
Fusion 1 and Fusion 2, respectively.

3.2.3 Multi-scale SCNN with Deep Supervision: Deep su-
pervision (Lee et al., 2014) is a technique used to achieve a bet-
ter training (Marmanis et al., 2016; Szegedy et al., 2015), espe-
cially for very deep networks. Based on the MSCNN, we insert
two additional losses in the form of cross-entropy losses into the
intermediate layers as shown in Figure 3(c) and thus construct
our Deeply-supervised Shuffling Convolutional Neural Network
(DSCNN). Compared with the original SCNN, though additional
fusion modules and additional prediction modules are introduced,
the DSCNN is computationally more efficient than the original
SCNN as four RRLs are kept instead of three. Also, these addi-
tional modules introduce some additional parameters for training.
When e.g. using the adaptation of the ResNet-101 as backbone
network, the number of trainable parameters of the RSCNN-101,
MSCNN-101 and DSCNN-101 are shown in Table 1.
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Figure 4. The fusion module: we adopt a deconvolution layer
with a kernel of (4, 4), a stride of (2, 2) and a padding of (1, 1)
to realize upsampling.

Network # Parameters ttrain
RSCNN-101 43.2M 15.3 h
MSCNN-101 55.9M 7.0 h
DSCNN-101 59.2M 7.8 h

Table 1. Number of parameters and time ttrain required for train-
ing when using the same hyper-parameters for all networks.

4. EXPERIMENTAL RESULTS

In this section, we first provide a brief description of the dataset
used in our experiments (Section 4.1). Subsequently, we explain
implementation details as well as experimental configurations be-
fore presenting the derived results (Section 4.2).

4.1 Dataset

To evaluate the performance of our methods, we use the Vaihin-
gen Dataset (Cramer, 2010; Rottensteiner et al., 2012). This
dataset was acquired over a small village with many detached
buildings and small multi-story buildings. It contains 33 tiles of
different sizes and the spatial resolution is specified with 9 cm.
For each tile, a very high-resolution true orthophoto (with three
channels corresponding to the near-infrared, red and green do-
mains) and the corresponding DSM derived via dense image
matching techniques are provided. In addition, a reference la-
beling with respect to six semantic classes represented by Imper-
vious Surfaces, Building, Low Vegetation, Tree, Car and Clut-
ter/Background is given for 16 of the 33 tiles on a per-pixel
basis. For extensive tests, we split the set of 16 labeled tiles
into two subsets (Volpi and Tuia, 2017). One subset comprises
the tiles with IDs ∈ {1, 3, 5, 7, 13, 17, 21, 23, 26, 32, 37} and is
used for training. The other subset comprises the tiles with IDs
∈ {11, 15, 28, 30, 34} and is used for evaluation. Please note that
the definition of training and test data thus differs from the one
used for the ISPRS Benchmark on 2D Semantic Labeling.

4.2 Experiments and Results

Our implementations are based on the MXNet deep learning
framework (Chen et al., 2015) and tested on a high-performance
computer (Dual Intel Xeon E5-2609, 2.4 GHz, 256 GB RAM)
equipped with a NVIDIA TITAN X GPU with 12GB memory.
The network parameters are initialized with the method intro-
duced in (He et al., 2015). As loss function, we adopt the cross-
entropy loss which is summed over all the pixels in a batch of
8 patches. To optimize this objective function, we use the stan-
dard Stochastic Gradient Descent (SGD) with a momentum of
0.9. Each patch fed into the network is cropped randomly and
temporarily as proposed in (Chen et al., 2017a) and then normal-
ized by the subtraction of the mean value and a subsequent divi-
sion by the standard deviation of the patch. We employ “poly”

Flip+Rotate MSA OA mIoU
83.89 57.76

X 84.29 58.60
X X 84.65 58.48

Table 2. The contribution of data augmentation. In this experi-
ment, only the reflectance values in the near-infrared (NIR), red
(R) and green (G) bands are used as features.

learning (Chen et al., 2016), whereby the learning rate is multi-
plied by (1 − Niter

Nmax iter
)p with Niter and Nmax iter denoting the

number of iterations and the maximum number of iterations (and
with p = 0.9 in our experiments). During training, we first use
cropped patches of 224×224 pixels for 60k iterations with an ini-
tial learning rate of 0.007, and we then fine-tune the network us-
ing cropped patches of 448×448 pixels for further 15k iterations
with an initial learning rate of 0.001. As evaluation metrics, we
consider the Overall Accuracy (OA) and the mean Intersection-
over-Union (mIoU). To reason about the performance for single
classes, we additionally consider the classwise F1-scores.

Inference Strategy: When making inference for the tiles in
the evaluation set, two different strategies may be applied. The
first strategy relies on resizing the tiles to suitable sizes in or-
der to meet the size requirement of the networks. After making
the prediction, the results are resized to the original sizes of the
tiles. In this way, the shapes of objects are always distorted be-
fore the resized tiles are fed into networks. Therefore, we denote
this strategy as “warp”. The second strategy is based on making
predictions for the cropped patches from the tiles as the Field-
of-View Enhancement (FoVE) (Chen et al., 2018a; Chen et al.,
2017a). This involves two hyper-parameters given by the size of
the cropped patches and the step size.

Data Augmentation: To address the problem of overfitting, we
apply data augmentation by randomly scaling the input images
from 0.5 to 2.0 (known as Multi-Scale Augmentation, MSA),
horizontally flipping and rotating by 90◦, 180◦ or 270◦, respec-
tively. Based on the RSCNN-101, we investigate the importance
of data augmentation for which numerical results are provided in
Table 2. In this experiment, we only make use of features based
on the reflectance values in the near-infrared (NIR), red (R) and
green (G) bands. To get the prediction for each tile, we crop
patches of 992 × 992 pixels with a step size of 812 pixels from
the tile and make a patch-wise prediction following (Chen et al.,
2018a). As can be seen in the table, the overall accuracy increases
from 83.89% to 84.65% when involving data augmentation.

Multi-scale Feature Fusion and Deep Supervison: To ex-
plore the contribution of multi-scale fusion and deep supervision,
we train the RSCNN-101, the MSCNN-101 and the DSCNN-101,
respectively, and evaluate their performance on the validation set.
The numerical results are provided in Table 3 and corresponding
visualizations for Patch 30 are provided in Figure 5. Here, we
only make use of features based on the reflectance values in the
near-infrared (NIR), red (R) and green (G) bands. When mak-
ing predictions, we feed a whole tile into the respective network
after being resized to a suitable size. As can be seen in this ta-
ble, the OA increases from 84.37% to 85.71% and the mIoU in-
creases from 58.31% to 60.64% after fusing multi-scale features
and adopting deep supervision.

Multi-modal Data: To explore the influence of additionally us-
ing hand-crafted features to define the input to the deep network,
we focus on a separate and combined consideration of radiomet-
ric and geometric information (cf. Section 3.1) as input to the
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DSCNN-101. The achieved classification results when relying
on the Prediction 3 are provided in Table 4. In this table, we list
the results derived for the use of both inference strategies given
by FoVE and “warp”, respectively. For Patch 30 of the dataset,
a visualization of the ground truth and the semantic labelings de-
rived with the DSCNN-101(3) based on different sets of involved
features is given in Figure 6.

5. DISCUSSION

Inference Strategy: Table 4 reveals that the inference strategy
of “warp” is not as stable as FoVE. Especially when the input
contains the DSM, the performance of “warp” is much worse than
that of FoVE (more than 1% drop with respect to OA). In other
cases, there is no big difference between these two strategies.

Data Augmentation: Data augmentation is an efficient way to
address the problem of overfitting. As can be seen in Table 2,
when training with horizontal flip and rotation, the OA increases
by 0.40% and the mIoU increases by 0.84%. Adding MSA,
the OA is further increased by 0.36% while the mIoU shows a
slight drop by 0.12%. This drop is due to the unbalanced con-
vergences between classes as the F1-score of the class Car drops
from 74.39% to 71.37% when adding MSA.

Multi-scale Feature Fusion and Deep Supervison: Both the
fusion of multi-scale features and deep supervision contribute to
the improvement in performance. As can be seen in Table 3, fus-
ing multi-scale features results in an improvement of 0.65% in
OA and 1.21% in mIoU, respectively. Additionally considering
deep supervision leads to a further improvement of 0.69% in OA
and 1.12% in mIoU when considering the prediction based on
DSCNN-101(3). Therefore, compared with the original RSCNN-
101, our proposed network yields an improvement of 1.37% in
OA and 2.23% in mIoU. This improvement comes from two as-
pects. On the one hand, an improvement arises from the fusion
of multi-scale features, where high-level features provide more
semantic information and low-level features provide more spa-
tial information. Through the fusion modules, the network can
take advantage of both high-level features and low-level features.
On the other hand, an improvement arises from the deep supervi-
sion which provides a better optimization of the network. Though
there exist skip connections in the residual modules, the vanish-
ing gradient problem cannot be eliminated thoroughly. With deep
supervision, it can be alleviated to some extent and put more se-
mantic constraints on the intermediate layers. Furthermore, the
derived results reveal that predictions based on finer features out-
perform predictions based on coarser features. As can be seen
in Table 3, DSCNN-101(3) outperforms DSCNN-101(2) which
in turn outperforms DSCNN-101(1) in OA. The same conclusion
can be obtained through observing the second row of Figure 5.
Meanwhile, taking the average of the score maps of Prediction 1,
Prediction 2 and Prediction 3 in the DSCNN-101 does not con-
tribute to an improvement in performance. As can be seen in
Table 3, the OA achieved with the DSCNN-101(E) is only 0.01%
higher than the OA achieved with the DSCNN-101(3) while the
mIoU drops by 0.08%. Therefore, in the experiments of explor-
ing the contribution of multi-modal data for classification, we
adopt the results of DSCNN-101(3). Visualizations of the pre-
dictions of different networks are shown in Figure 5. The figures
reveal the gridding effect (i.e. the result is not very smooth and
contains many scatters in grids) in the prediction of RSCNN-101.
The gridding effect is alleviated to a large extent with the fusion
of multi-scale features. Adding deeper supervision, the result be-
comes much smoother.

Multi-modal Data: Height features such as the DSM and the
nDSM can provide complementary information to the spectral
features (near-infrared, red and green). As can be seen in the
first block of Table 4, the combinations of spectral features and
height features yield the best results. The highest OA (86.31%) is
reached with the combination of NIR, R, G and nDSM. The high-
est mIoU (61.33%) is reached with the combination of NIR, R, G,
DSM and nDSM. Similarly, as can be seen in Figure 6, the height
information provides vital information for identifying some spe-
cific objects, e.g., the building at the top left corner. Interestingly,
there is no numerical improvement when using additional hand-
crafted features (cf. Section 3.1) in comparison to the standard
RSCNN where an improvement can be observed (Chen et al.,
2018b). One reason might be that these features can be learned
by this deep network. However, in Figure 6, it can be observed
for some objects that the additional use of hand-crafted features
contributes to the classification, while they also introduce some
noise which may result in incorrect classification. Therefore, we
believe that the consideration of hand-crafted radiometric and ge-
ometric features is still significant.

6. CONCLUSIONS

In this paper, we have proposed the Deeply-supervised Shuf-
fling Convolutional Neural Network (DSCNN) for semantic im-
age segmentation. The DSCNN extends the standard SCNN by
fusing multi-scale features and introducing deep supervision. The
results derived for a benchmark dataset reveal that our proposed
network outperforms the baseline network, where both the multi-
scale fusion and the additional losses contribute to the improve-
ment. By fusing multi-scale features, the proposed network effec-
tively addresses the gridding effect and produces much smoother
results than the original network. Via feeding different combina-
tions of the multi-modal data and derived hand-crafted features,
we have investigated the value of the data of both modalities and
the derived features. The derived results reveal that using all ra-
diometric and geometric features does not achieve the best result.
However, via analyzing the visualization of the results, we find
that the results derived from using all features are smoother and
the predictions of some objects are improved. However, it also
introduces some misclassifications. Hence, we conclude that the
effective use of hand-crafted features remains a challenge to be
addressed in future work.

ACKNOWLEDGEMENTS

This work is supported by the foundation of China Scholarship
Council under Grant 201704910608. The Vaihingen Dataset
was provided by the German Society for Photogrammetry, Re-
mote Sensing and Geoinformation (DGPF) (Cramer, 2010):
http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html.

REFERENCES

Audebert, N., Le Saux, B. and Lefèvre, S., 2016. Semantic segmen-
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(a) True orthophoto (b) Ground truth (c) RSCNN-101 (d) MSCNN-101

(e) DSCNN-101(1) (f) DSCNN-101(2) (g) DSCNN-101(3) (h) DSCNN-101(E)

Figure 5. Visualization of the true orthophoto of Tile 30, the corresponding ground truth and the results for semantic segmentation
when using the different deep networks defined in Section 3.2 and the “warp” inference strategy (Impervious Surfaces: white; Building:
blue; Low Vegetation: cyan; Tree: green; Car: yellow; Clutter/Background: red).

(a) Ground truth (b) NIR-R-G (c) NIR-R-G-nDSM (d) All defined features

Figure 6. Visualization of the ground truth of Tile 30 and the classification results achieved with the DSCNN-101(3) when using
different subsets of the features defined in Section 3.1 and the “warp” inference strategy, and the same color encoding as in Figure 5.
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