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ABSTRACT: 

 

Dealing with coloured point cloud acquired from terrestrial laser scanner, this paper identifies remaining challenges for a new data 

structure: the smart point cloud. This concept arises with the statement that massive and discretized spatial information from active 

remote sensing technology is often underused due to data mining limitations. The generalisation of point cloud data associated with 

the heterogeneity and temporality of such datasets is the main issue regarding structure, segmentation, classification, and interaction 

for an immediate understanding. We propose to use both point cloud properties and human knowledge through machine learning to 

rapidly extract pertinent information, using user-centered information (smart data) rather than raw data. A review of feature detection, 

machine learning frameworks and database systems indexed both for mining queries and data visualisation is studied. Based on existing 

approaches, we propose a new 3-block flexible framework around device expertise, analytic expertise and domain base reflexion. This 

contribution serves as the first step for the realisation of a comprehensive smart point cloud data structure.

1. INTRODUCTION 

The democratization of capturing devices across a growing 

number of industries has made point clouds a mainstream spatial 

sensor’s output data. Unnamed aerial vehicles (UAV), light 

detection and ranging (LiDAR) devices, terrestrial laser scanners 

(TLS) and depth sensors are common remote sensors or 

platforms within geospatial, robotics, engineering and 

construction (AEC), mining, topography, cultural heritage, 

architecture and archaeology fields. Passive sensors such as 

thermal, infrared and RGB cameras has even become a common 

tool for creating point cloud via photogrammetry and computer 

vision implementation, making this technique a promising way 

to get quick and colour balanced point clouds. While data 

acquisition methods are increasing and applications with it, point 

clouds suffer from several structural limitations causing indirect 

exploitation through human interpreted deliverables (e.g mesh). 

  

In this paper, we address unstructured point clouds challenges. 

While answering a specific need, denaturising the original dataset 

is time-consuming, error-prone and most importantly lead to a 

loss of crucial information that could be directly exploited. 

Interpreting point clouds requires specific knowledge and 

analytical skills in order to extract pertinent information for the 

end user, indicating a necessity to attach domain information 

through visual and semantic variables. If within the point cloud 

and its attributes all the necessary information can be found and 

easily conveyed without the need for redundant tasks, it would 

become a more intelligent structure. Following the continuum 

defined by (Otepka et al., 2013), we settle that keeping the native 

point cloud rather than interpolation is advantageous for many 

applications including semantically rich systems.  

 

Solutions can be found at different processing levels from 

different approaches. However, the amount of data involved 

outlines new challenges in terms of integration, abstraction, 

structuration and algorithmic complexity. Organizing, 

segmenting and handling billions of points including outliers are 

no trivial task. Indeed, we need to retain only relevant 
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observations and avoid data saturation. This implies to identify 

internal and external influential sources over sensed data, then to 

classify and structure point clouds through indexing scheme and 

database management systems (Cura et al., 2015). Yet 

segmentation relies on data abstraction into consistent indicators 

and feature descriptors which can describe the essential 

information both spatial and semantic. This challenge remains 

highly contextual as to detect relevant objects given a specific 

context, one must understand which descriptors he should use to 

recognize an object composed of several points within a scene. 

Hence, classifying a subpart of an entity means determining 

which observations lies within an interval, defined spatially and 

semantically. Our work thus adopt a global vision over point 

cloud processing, involving many research fields that relate 

closely to the problems of data mining. Underlying tasks known 

as registration, georeferencing, segmentation, and structuration 

have a major influence to attach knowledge onto points. Linking 

spatial concepts and semantic information through collection, 

analysis and domain adaptation demands a highly functional data 

structure. But to define a new approach structuring this third type 

of data - one being raster, the other one vector (van Oosterom et 

al., 2015) - we need to identify remaining challenges.  

 

We propose a framework for the development of a new structure: 

the smart point cloud (SPC). This is the first contribution of a 

PhD research combining laserscanning and big data 

management. The first objective of this paper is to examine 3D 

capture applications, to outline current limitations in the 

workflows and the challenges that a new structure would face 

over the variety of capturing methods and platforms. While our 

proposed approach can be extended to all types of point cloud, 

we will illustrate on a multisensory coloured TLS point cloud. 

Then, we will review feature description, segmentation and 

classification both from a geometrical and artificial intelligence 

(AI) algorithmic point of view delineating automation, 

performance, completeness and relevance of the methods 

regarding the context and domain adaptation (transferring 

knowledge from the source to target). Existing multi-dimensional 

data management systems for point cloud are described while 
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revising best indexing methods for spatial, semantic and visual 

queries that allow real-time scenarios as a global need for the new 

structure. We will then discuss requirements for a contextually 

dependent SPC structure built on a topological level of detail 

(LoD) retaining both spatial and semantic relationship for 

intelligent data mining, followed by our future work in the area.  

 

2. CONTEXT AND CHALLENGES 

2.1 3D data capture: means and applications 

Due to the rapid development of surveying and reality capture 

technologies, the acquisition of point clouds continues to become 

easier and faster while incurring lower costs. The evolution and 

expansion to a wider audience is driven mainly through scene 

understanding where tasks like navigation, grasping or scene 

manipulation are essential to its applications. Image-based 

reconstructions prove useful in cases ranging from 

archaeological to full towns and complex architectural 

reconstruction, making this technique a favourable way to get 

quick and visually pleasant point clouds. Although precision for 

middle to large scale are getting increasingly better, remote 

sensing via active sensors is favoured in the industry as the 

precision characterization is more accessible. There are 

discussions in which computer vision would replace Light 

Detection and Ranging (LiDAR) (Leberl et al., 2010), but 

practical cases tend to a merging of both techniques and 

predilection applications for each, combining strengths of natural 

light independence with low-cost and highly visual image-based 

reconstruction. Overall, the evolution of the technology through 

TLS, Mobile laser scanning (MLS), Solid State LiDAR are 

extending cases for indoor mapping using HMLS (James and 

Quinton, 2014), MMS systems (Thomson et al., 2013), or more 

recently MMBS (Lauterbach et al., 2015) demands massive 

automation and structuration to limit task specific manual 

processing and storage problems (Figure 1). 

 

 
Figure 1 Common TLS workflow vs smart workflow 

3D data capture workflows would benefit from semantically rich 

point cloud. Using connectivity, material properties, date stamp 

or even description of chunk-wise group of points can even be 

useful for mesh derivation. Managing highly dimensional data 

and heterogenic sources therefore goes through the definition of 

efficient features that describe the nature and properties of a point 

cloud sample in order to classify and establish relations between 

point segments in the new data structure. However, the versatility 

in acquisition methodology and sensors is a first challenge that a 

device expertise block must address to obtain level 1 features 

regarding (Otepka et al., 2013) signal classification. 

2.2 Sensors & device expertise 

The sensor choice mainly depends on the context, the precision 

and the resolution that the specific application domain demands. 

To describe accurately a scene composed of scattered 

observations, extracting high fidelity descriptors from sensors 

becomes essential. This process requires a device expertise 

including application definition, data acquisition methodology, 

and sensor data fusion (Klein, 2004). Indeed, the combination of 

different sensors generating different yet complementary 

signature provide relevant information without the limitations of 

a single use and create a multisensory system. Overlaying colour 

over TLS point clouds is a representative example of such a 

practice which allows to correlate a spatial position of an element 

where the colour plays an important role. Minimizing fusion and 

accidental errors will however not correct the acquisition 

methodology flaws. Indeed, as referred in (Dimitrov and 

Golparvar-Fard, 2015), missing/erroneous data, misadjusted 

density, clutter and occlusion are problems that can arise from an 

improper or impossible set-up on the scene. Filtering techniques 

and knowledge based-interpretation are possible solutions to 

these problems to get the most complete description of the scene. 

Complementary, getting a high number of representative signal 

descriptors and parameters for each point permits a higher 

physical and semantic description important for classification 

and domain adaptation, thus fusing passive sensor data. 

Improving their qualities through flawless acquisition, 

multisensory fusion, normalization and filtering to improve their 

qualities is a necessary first step but depends on the contextual 

capture. Therefore feature extraction needs to address calibrated 

signal characteristics regarding the domain. 

 

2.3 Domain & analytic expertise 

Automation in detecting objects by grouping points that share a 

similarity and decisive criterion is the basis for segmentation, 

thus classification. This step is crucial since accuracy of the 

subsequent processes depends on the validity of the segmentation 

results (Pu and Vosselman, 2009). We distinguish analytical 

segmentation from domain featuring. While analytical 

segmentation plays on geometrical properties and available 

information directly computed on the point cloud, domain 

featuring relies essentially on similarity between detected or 

already classified objects with the current point cloud in process. 

Combining both approaches to overcome limitations is a major 

SPC perspective thus we review recent research in the area. 

 

2.3.1 Analytical and geometry featuring 

 

A first step in automation is to detect specific shapes in the point 

cloud. The random sample consensus (RANSAC) and the Hough 

transform are highly used in shape retrieval, for instance 

(Ochmann et al., 2016; Schnabel et al., 2008). Their efficiency 

for the 3D detection of geometrically simple parameterized shape 

such as cylinders, spheres, cones, torus, planes and cubes has 

been proven, providing an efficient shape descriptor with insight 

over the geometrical properties of a point cloud sample. As it falls 

short for complex shapes or fully automated implementations, the 

use of the richness of surface geometry through local descriptors 

provide a better solution. The pertinent paper of (Dimitrov and 

Golparvar-Fard, 2015) presents a region growing (RG) algorithm 

to automatically segment point cloud of AEC piping facilities. 

The method tackles capture conditions flaws as discussed in 2.2. 

They identify two complex problems being the abstraction of 3D 

shapes and the initial scale factor choice that heavily influence 

the offline computational need. These are research directions that 

a domain adaptation can solve. RG results relies on a smoothness 
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constraint regarding edge-based, top-down and bottom-up 

surface segmentation or scan-line as stated in (Rabbani et al., 

2006), which is mainly determined through the similarity 

criterion conditioned by the initial threshold. Normals are 

powerful local or global descriptors used as a base of RG but their 

representativity heavily relies on neighbourhood selection 

encapsulating 3D points from a search definition commonly 

spherical, cylindrical, or k-nearest points in 2D or 3D (Weinmann 

et al., 2015). Results depend on the size adaptation, therefore 

scale of the search that will generate a feature descriptor either 

global or local. Other local feature descriptors (e.g curvature, 

moment) are widely studied and used for their good fit to study 

point cloud (Rusu et al., 2008) but will not be detailed here. 

 

The structural approach connected component labelling 

implemented by (Girardeau-Montaut et al., 2005) in 

CloudCompare allows the 3D extraction of connected 

components based on a proximity criterion in an octree-based 

space. This is interesting as it could potentially extract a raw 

topology that could be used for further relationship 

determination. The work of (Douillard and Underwood, 2011) 

proposes a set of methods and empirically shows the advantages 

of extracting the ground prior to per-object segmentation. A 

voxel-based segmentation is then used retaining per-voxel 

features (means, variance and density). The contextual approach 

developed is an interesting vision that could be extended through 

different structural searches, and gravity-based computations 

provide relevant relationship estimators for terrestrial 

applications. We refer in this paper to this structural 

generalization segmentation as abstraction-based segmentation, 

working on global features extracted from a generalized spatial 

node such as a voxel or a sub-group identified spatially. Indeed, 

unstructured point cloud can benefit from structural properties 

used as part of a segmentation process, with examples in (Aijazi 

et al., 2013) creating “super-voxels” or (Okorn et al., 2010) 

extracting floor plan via 2D voxel projection for histograms. 

 

An important contribution to point cloud classification and 

feature estimation is brought by (Weinmann et al., 2015), 

discussing the suitability of features that should privilege quality 

over quantity. This shows a need to prioritize and find robust and 

relevant features to address the heterogeneity in a point cloud 

structure. We propose to build on (Weinmann, 2016) 

classification of 3D descriptors in three categories being point 

attributes (sensor descriptors obtain through measurements), 

shape and local features. We can extend the definition by adding 

structure descriptors which include global descriptors and 

structure generalization through abstraction-features for 

segmentation. While geometry-based segmentation algorithms 

can be implemented without taking the opportunity of retrieving 

information from a knowledge source or higher level descriptors, 

it shows great limitations to its validity, extensibility and 

computational complexity. Every analytical and geometrical 

descriptor could be further used as a basis on which domain 

expertise builds a classification/validation process: a similarity 

criterion extracted from acquired or available knowledge. This 

relates to machine learning either supervised or unsupervised and 

conceptual inference. Learning from the data itself and 

representative features is a potential solution, therefore we 

review recent developments and their limits. 

 

2.3.2 From human to artificial intelligence 

 

With a great deal of data to be collected and analysed, there is a 

great need to study Big Data practices. (Liu et al., 2015) 

pertinently state the problem linked with big data collection, 

quality and usage: the information is often incomplete, 

inconsistent and unreliable. A lack of validation and 

normalization needs to be addressed. This goes through reliable 

data analysis including data collection through more detailed 

representation and multi-scale analysis to enhance reliability and 

ethics reflexion. Multi-sensory systems while allowing to obtain 

more classifiers should consider data fusion principles to 

normalize properties becoming representative. Though the 

quality, completeness and usage has been review previously, 

data-driven predictions allow to statistically infer the validation 

of results and its consistency. Classifiers that learn from previous 

or available knowledge differ from their approach, thus their 

results. They are usually categorized in 3 ensembles as in being 

supervised learning (from a set of features to a labelled data) 

unsupervised learning (structure detection by pattern 

recognition) and reinforcement learning (functional inference 

through a set of state and actions). In this paragraph, we 

essentially focus on feature based automation. 

 

(Belgiu and Drăguţ, 2016) give a good overview on how is used 

the Random decision forest (RF) classifier (randomly building 

multiple trees in subspaces). Mostly supervised, RF classifiers 

provide great accuracy and are able to handle the high data 

dimensionality. However, while new approaches combining new 

features could improve the classification results, a feature 

elimination procedure can drastically increase the final accuracy 

as stated by (Belgiu and Drăguţ, 2016). (Valentin et al., 2015) 

extended the concept of RF to Streaming Random Forests (SRF) 

by building a powerful machine learning routine based on feature 

detection while interactively labelling data in real time. This very 

interesting implementation is user-centered, allowing to define 

an intuitive classification based on specific user needs. 

 

(Wang et al., 2015) focus on obtaining discriminative shape 

features to directly describe the point cloud via unsupervised 

clustering prior to classification. They introduce the multiscale 

and hierarchical point clusters (MHPCs) to extract geometric 

features from point cloud refined using the bayesian concept 

Latent Dirichlet Allocation (LDA) for finally classifying the 

point cloud into four classes (people, car, tree, building) using the 

decision tree AdaBoost. Hierarchically clustering point groups 

allows to keep information at multiple levels giving better results 

than one of the most used unsupervised clustering model K-

means (mainly used for single-scale point cloud simplification). 

As seen, multiple classifiers or ensemble learners outperform 

single classifiers in term of accuracy making them a great tool for 

multisensory data. (Koppula et al., 2011) propose a 3D point 

cloud labelling method based on support vector machines (SVM) 

empirically validated over an indoor scene captured by a RGB-D 

sensor (Kinect). They focus on detecting three pertinent 

properties (visual appearance, local shape and geometrical 

context) to detect nine classes in the scenes using a large margin 

learning approach. The developed model is closed to the 

Conditional Random Field (CRF) used in (Xiong et al., 2013). 

One identified limitation is the assumption of shapes estimated 

via planar patches as a primary criterion. (Niemeyer et al., 2014) 

proposed a context-based CRF classifier without segmentation 

over aerial LiDAR data to label the point cloud in four separate 

classes. The results show a high potential for urban classification, 

benefitting of contextual information such as topology which 

extends the scope of the included RF classifier greatly. 

 

(Garstka and Peters, 2015) presented a Reinforcement learning 

framework that is able to adapt the number of object classes 

dynamically through a finite Markov Decision process. It is an 

ongoing research that yield great preliminary results, and a 

potential powerful base for inference reasoning. Other promising 

types of learning approach that need to be explored further for 
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point clouds are neural networks (Soares et al., 2015) and 

Genetics algorithms. To better classify with high automation 

while validating using statistical principles, machine learning is 

a supplement of choice to reinforce geometrical reasoning. 

Learning algorithms, whether supervised, unsupervised or by 

reinforcement highly depend on the number and accuracy of 

samples and features. To get better descriptor we can leverage 

available knowledge through existing databases. Any existing 

knowledge-representation system via ontologies would allow the 

use of a broad new range of new inference rules. 

 

2.3.3 Domain adaptation 

 

As stated by (Tangelder and Veltkamp, 2007) “any fully-fledged 

system should apply as much domain knowledge as possible, in 

order to make shape retrieval effective”. With the rise of online 

solutions, we have seen a great potential in using knowledge 

database for classification to analogically associate shapes and 

groups of points with similar features. This association through 

analogy “is carried out by rational thinking and focuses on 

structural/functional similarities between two things and hence 

their differences. Thus, analogy helps us understand the unknown 

through the known and bridge gap between an image and a 

logical model” (Nonaka et al., 1996). This introduces the concept 

of data association for data mining, and relationships between 

seemingly unrelated data in a relational database or other 

information repositories. The use of domain knowledge over 

point cloud data by separating domain knowledge from 

operational knowledge refers to ontologies, although knowledge-

based applications do not always refer to ontology reasoning. 

 

An important contribution is made by (Rusu et al., 2008), to turn 

a kitchen point cloud into a meaningful representation for robot 

interaction and recognition called an object-map. Their algorithm 

includes data acquisition, geometrical mapping and functional 

mapping. As an end product, it produces a mesh via functional 

reasoning. It is interesting to note that hierarchy representation 

allows to validate segmentation and add refinement constraints. 

While the concept includes topological concepts, this paper bases 

functional reasoning on common-sense knowledge mostly 

hardcoded. (Lai and Fox, 2010) developed an interesting web 

object recognition workflow over point cloud using web data 

from Google warehouse and a domain adaptation framework 

where they learn a set of 3D distance functions between training 

data and classified segments. The implementation shows that the 

unsupervised use of the Web with different features in essence 

such as 3D model can decrease the accuracy of the point cloud 

classification when working without domain adaptation. 

 

(Xiong et al., 2013) contribution aims at solving the point cloud 

to BIM (Building Information Model) pipeline, and the paper 

presents results for geometrically simple elements such as walls, 

ceilings and rectangular openings. It allows the reconstruction of 

a semantically rich 3D model, based on a contextually-based 

learning method studying relationships between planar patches. 

(Ochmann et al., 2016) propose an automatic reconstruction 

retaining wall connectivity by detecting limits through a labelling 

process per scan. This implementation is a concrete use case 

benefiting of both internal relationship, geometrical and domain 

knowledge. However it could be further extended by addressing 

the predisposition and scan methodology where each room is 

considered captured from one inside scan position. (Galindo et 

al., 2005) in order to improve robot-vision understanding and 

navigation, propose an approach combining an abstracted spatial 

hierarchy graph and a semantic hierarchy that model domain 

concepts. The proposed conceptual metric-topologic-semantic 

multi-hierarchical map allows deeper comprehension; however, 

the semantics are hardcoded making it hard to extend more 

largely. (Derrac and Schockaert, 2015) describe extensively 

conceptual spaces and present some advanced principles to 

semantic reasoning. Semantic relations, beyond class retrieval 

could assess the credibility of new regions. Therefore, it is 

essential for users to be able to validate inferred solutions.  

 

Similarity-based solutions apply to point cloud segmentation 

techniques by searching a database for similar models while 

assessing segmentation on a context-dependent matter but the 

objects within the point cloud should be well defined with precise 

attributes. (Kassimi and Beqqali, 2011) use shape indexes to 

induce a semantic ontology based model, that is included in a 

learning process to directly label the 3D model, increasing 

automation. However, while proposing a way to infer knowledge 

in segmentation and classification method, these papers rarely 

cover the topic of data structuration. To keep a record and use 

ontologies over analysis process, the point cloud needs to be 

structured retaining spatial and relation information deducted or 

useful for classification and segmentation. For data visualisation, 

it is also very important to work over a structure as flexible as 

possible to handle billions of records and queries over different 

attributes for validation through visual perception. 

 

2.4 Structuring and interacting with point clouds 

The large datasets that point clouds constitute cannot directly fit 

in the main memory, demanding a new structure to exploit 

through a Database Management System (DBMS). While the 

data heterogeneity rises, existing DBMS still rely on a limited 

number of data models to manage efficiently the variability and 

redundancy of the amount of observations. Handling efficiently 

these massive unstructured datasets (heterogeneous and from 

different sources) demands high scalability, speed (when data 

must be processed/mined in a near or real time manner) and 

computational adaptation (cloud computing) to answer specific 

needs. This relates to Big Data problematics, or how to efficiently 

process big semi-structured / unstructured datasets. While 

disclosing existing data mining limitations, Big Data mining 

techniques introduce new challenges due to the high volume and 

heterogeneity of the massive datasets. Finding hidden pattern and 

information for knowledge discovery requires complex multi-

modal systems. (Dobos et al., 2014) pertinently state the limited 

dimensionality support in geographic information systems (GIS) 

to k-dimensional data with k ≤ 3 struggles for indexing higher 

dimensionality. Therefore, data interaction needs flexibility and 

scalability for different tasks: processing, data management and 

visualisation. To solve these challenges, spatial indexing and 

storage is essential. It should be able to scale up to multiple 

servers, be optimized for sequential and parallel disk access or 

for CPU/GPU intensive tasks. Relational Database Management 

Systems (RDBMS) and NoSQL DBMS for such application 

exists, but we confront several identified problems. 

 

2.4.1 Management system for high dimensional data 

 

Point cloud data large volume and high resolution make it 

suitable for LoD management and rendering. The data model that 

determines the logical structure of a database will determine in 

which manner the data can be stored, organized, and 

manipulated. While file-based are common point cloud storing 

systems managed through hierarchical-like database models, 

sharing, compatibility, query efficiency and data retrieval are the 

main limitations in these models. (Otepka et al., 2013) reviewed 

extensively existing large point cloud data structures including 

attribute and geometrical information organization. They 

rightfully state that the secondary storage access limits data-
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intense tasks, that could be solve through streaming algorithms 

to keep small parts in-memory. However this implies pre-sorting 

and structuring a priori the data. In their discussion, they propose 

to separate coordinates from features in the DBMS to permit 

efficient attribute updates as well as georeferencing and spatial 

reorganization. Their vision of a flexible model could be solved 

using relational database models (RDBMS), most used in GIS 

systems. It is very attractive because their robust data model 

allows a layer of abstraction over the file-system using a 

dedicated data retrieval language (SQL). However, multiple 

relational tables with a point per row would reach easily billions 

of tuples, which becomes problematic.  

 

(Dobos et al., 2014) introduced the concept of point cloud 

database for scientific applications. After stating the common 

dimensional space reducing techniques to treat k dimensional 

data being space reduction and PCA, they propose an approach 

based on relational tables. Classical RDBMS for such application 

exists, but binary trees limited scalability that struggle with huge 

datasets size and non-adapted vectorisation and indexation 

schemes often specific for one usage are hard to exploit on many 

different servers. Building on this, they point requirements of the 

structure for analysis of point clouds mainly filtering capabilities, 

key look-up and NN’s search, cluster analysis, outlier 

identification, histogram and density estimation, random 

sampling, interactive visualisation, data loading, insert and 

updates. (van Oosterom et al., 2015) extend the concept by 

defining a third type of spatial representation (the first one being 

vector data – row like Single Feature Specification – and the 

second raster data – multipoint object): point cloud data. Their 

work focus on benchmarking several available commercial Point 

Cloud Data Management Systems (PCDMS) (block model and 

flat model of PostgresQL-PostGIS, block model and flat table 

model of Oracle, flat model of MonetDB, file-based LAStools) 

to define which one is the most fitted for point cloud 

management. While some improvements need to be implemented 

to fix issues in available solutions, each provides a benefit 

compared to the others but none can answer efficiently combined 

queries, data I/O and real-time visualisation. The interoperability 

stays essential to combine point cloud data with vector data and 

raster data. They also show in a brilliant way the need of linking 

user needs, user type with user experience to define a standard in 

point cloud design and implementation. The NoSQL database 

robustness to massive data with weak relationship can scale up to 

many computers but functionalities are today very limited. 

 

Based on the approach available pgPointCloud defining patches 

in a XML scheme that cluster points present in PostgresQL 

RDBMS, (Cura et al., 2015) let the user create patches, allowing 

contextual groups while benefiting of high compression through 

the Point Cloud Server (PCS). The final implementation shows 

efficient loading, storing, processing, exporting and web 

visualisation and provide a very interesting RDBMS that could 

be extend when the grouped point retain a specific relationship. 

In a working paper (Cura et al., 2016) extend the PCS 

implementation by adding a MidOc LoD reordering that work on 

the barycentre of each cell bounding box. While this method 

allows better visualisation, its main interest resides in creating a 

structure flexible enough that it can allow a fast classification 

based on a multi-scale dimensionality descriptor.  

 

In their book, (Ben Hmida et al., 2012b) propose a strategy 

decomposing knowledge into 3D processing and domain. They 

structure such information in an ontology structure keeping 

information ranging from data source to object characteristics, 

hierarchy, geometrical topology, processing algorithms, … The 

final goal is to extract geometrical shapes describing the point 

cloud that retain all the information such as relationship and 

topology. The major contribution of (Ben Hmida et al., 2012a) is 

a knowledge based detection approach to create object grouping 

points using the OWL-SWRL ontology languages. They 

developed a WiDOP prototype to be able to efficiently manage 

point cloud data. Interestingly, they decompose object 

knowledge in Deutsche Bahn scene knowledge (classes and 

relevant information about objects), Geometric knowledge 

(geometrical and physical characteristics) and topological 

knowledge (adjacency relations within the scene elements) that 

provide an automatic robust framework inferring prior domain 

knowledge. While providing some solution to the integration of 

domain expertise through a priori or a posteriori knowledge, the 

efficiency and extensibility to production processes depend on 

the underlying structure for efficient processing, analysis and 

visualisation. As stated by (Otepka et al., 2013), naïve strategies 

especially considering query complexity of neighbour search 

O(n²) are unrealistic for industrial applications. The available 

memory cannot handle the amount of information, and rely on an 

indexation scheme that should efficiently allow data-retrieval and 

reactive queries. 

 

2.4.2 Spatial indexation techniques for edition / visualisation 

 

Indexation for 3D point clouds via spatial indices that subdivide 

the space through different approaches are a solution to reduce 

the overhead via chunk memory loading. The exhaustive paper 

presented by (Richter and Döllner, 2013) state that the spatial 

subdivision of k-d tree are not suited for updates (e.g. add, 

remove) operations over point clouds because the tree structure 

becomes unbalanced. However, k-d trees perform well regarding 

NN searches by efficiently eliminating large portions of the 

search space (≈ O(log n)). Octree structures, a 3D analogy of 

quad-tree (Yang and Huang, 2014), as opposed to kd-tree 

perform well for update operations thanks to their uniform spatial 

subdivision, which makes it particularly interesting considering 

point cloud varying resolution, distribution and density. 

However, as stated by (Zhu et al., 2007) , octrees are “not able to 

dynamically adjust the tree structure according to the actual 

object layout. As a result, the tree depth is high where there are 

many objects, and this also results in unstable query 

performance”. In their paper, (Gong et al., 2012) propose a data 

management indexing scheme based on a 3D R-Tree, avoiding 

unbalanced structure and overlapping. As 3D-R-Tree adjust the 

index structure based on the real structure, the object distribution 

has a relatively low impact factor. However, node overlapping 

creating multipath queries is a major challenge that optimization 

of previous work solved. They developed the promising 3DOR-

Tree, a hybrid approach combining both strength of octrees and 

3D-R-Trees to manage LoD point clouds. Other approaches such 

as modified nested octrees and sparse voxel octrees (Scheiblauer 

and Wimmer, 2011) will also be investigated. 

 

Essentially, data visualisation techniques for analytical and 

interactive tasks build themselves on indexing techniques that 

provide efficient LoD and rendering structures. In the context of 

point cloud, semantics and domain can highly influence the type 

of rendering used in order to directly transmit the correct 

information to the end user. A point cloud representation avoids 

interpolation or approximating a set of unorganized points 

benefiting of a theoretical unlimited depth in the LoD. (van 

Oosterom et al., 2015) vario-scale LoD research field would even 

allow to avoid the “Block effect” of Discrete LoD scenes. 

(Beserra Gomes et al., 2013) developed a very interesting 

approach for LoD hierarchy with point cloud data to make it more 

easily handled in Real Time. They introduce the foveated point 

cloud through top-down (task guides attention) and bottom-up 
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(external stimuli drives attention) approaches. (Richter and 

Döllner, 2010) discuss the importance of out-of-core real time 

rendering system for interactive exploration of point clouds. 

Based on LoD concepts aggregating points regarding attributes, 

they define a new class-attached point cloud out of core rendering 

system by storing points in a layered multi-resolution kd-tree. 

Point cloud object class information a priori computed allows 

different rendering techniques such as silhouette rendering and 

splatting depending on the visual information that needs to be 

communicated. (Richter and Döllner, 2013) present a system 

architecture to manage massive point cloud, including database 

integration, interactive rendering and visualisation through class-

based rendering. In the paper, the authors clearly identify 

important advantages of point clouds over models: they are LoD 

adaptive and allow fast update without the need to remodel, or 

re-extract information. Therefore, point cloud can be much less 

effort for specific task of integration and comparison. (Liu and 

Boehm, 2014) introduce a novel interactive segmentation method 

for interactively segmenting point cloud through a Max FlowMin 

Cut algorithm solely based on interaction to assign a background 

and highlight wanted objects via user drawing. (Valentin et al., 

2015) developed an extremely powerful machine learning and 

feature detection program while interactive semantic 

classification is made in Real Time. User focused, it allows to 

define a classification based on real user needs. Theses 

interactions provide a direct immersion in a coherent structure, 

bridging virtual environment with 3D capture. 

 

3. PROPOSED FRAMEWORK 

“Intelligent environment” (Novak, 1997) as an interactive and 

smart structure to transparently communicate relevant 

information to users is an attractive solution for virtual 

reconstructions, especially point clouds. The overview of current 

practices showed a need to improve automation, data 

management and interaction. Identifying links and relations 

within segmented objects becomes essential to truly understand 

how each spatial entity relates to its surroundings redefining big 

point cloud data as smart data. Independently considered, each 

reviewed paper provides a solution to one part of the global point 

cloud processing chain. But combining different approaches 

produce a more powerful and robust segmentation, classification 

and information extraction workflow. For example, merging 

shape matching methods with feature based methods (fast 

computation, pseudo-metric, discriminative abilities, robustness) 

and structure-based methods (partial matching, abstraction, 

connexion) provide a more exhaustive representation of the data, 

allowing automation and validation. Also combining geometry 

and topology with multisensory data is important to estimate 

higher level features, while normalization and ethics should be 

integrated in the pipeline (Liu et al., 2015). Certain approaches 

such as (Ben Hmida et al., 2012a) and (Ben Hmida et al., 2012b) 

provide an opening on domain knowledge integration to 

complete this analytical expertise but most of the paper hardly 

consider leveraging available information through the semantic 

web, with some experiment showing the negative effect over 

accuracy when too far from point cloud characteristics (Lai and 

Fox, 2010). But one of the main struggle that many paper address 

concerns the data integration and the management system for 

unstructured point clouds. Existing PCDBMS and indexing 

techniques provide a solution to storing, compressing and 

managing the data (Dobos et al., 2014; Richter and Döllner, 

2013; van Oosterom et al., 2015), but efficiency and extensibility 

to dynamic semantic update and ontological reasoning stays 

limited. Structural and visualisation queries over octree derived 

indexing techniques can provide an efficient solution for out-of-

core rendering and parallel processing, but data structuration 

cannot efficiently include context adaptation and inference 

reasoning. Building on this we propose a global solution that 

classify, organise, structure and validate objects detected through 

a flexible and highly contextual structure that can adapt to 

different domain and device expertise created by:  

1. Integration of the raw multisensory data; 

2. NN-oriented indexation including filtering and initial 

normalization (N0); 

3. Smart recognition including segmentation, 

classification, validation and refinement; 

4. Object-LoD Smart structuring which temporally takes 

place in parallel while recognizing objects; 

5. Contextual SPC abstraction Level X definition. 

Such a structure should therefore retain the three main expertise 

processes described being sensor, analytic and domain expertise 

that we group as shown in Figure 2. 

 
Figure 2 The Smart Point Cloud constitution 

The ability to handle neighbour’s search, cluster analysis are 

fundamental tasks that appear early for defining higher level 

features. Therefore, indexing while filtering and normalizing 

with available knowledge and data is a main concern in the 

architecture. Moreover, the pipeline should allow an easy update 

of these features, therefore a smart way of storing domain 

information. Hence, we propose a global SPC pipeline creation 

as shown in Figure 3. 

 

First, we define an operational block around the captured subject 

where context and properties of the scene will heavily define the 

chosen methodology. The device expertise will condition which 

attribute to filter, normalize and a weighted adjustment process 

regarding the technical details of the output data could be of 

interest. The raw captured data passes through normalization and 

filtering steps. The importance of interactivity and user-centered 

interaction as seen in (Liu and Boehm, 2014) introduce a 

validation process to exclude the points in question. The data 

indexing scheme needs to retain critical information while 

previsioning structuration searches (attribute-key, NN, 

semantics). KD-Tree or derived octrees such as 3DOR Tree are 

performing well for such intensive tasks, therefore this is an 

analytical-structure prior to final classification that will be further 

investigated for storing points. However, attributes and features 

are to be stored in a different structure while retaining a direct 

link to the correct point/patch index, as discuss in (Weinmann, 

2016). The structure should avoid any costly rebuilding operation 

when deleting or inserting points for example. The domain block 
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can store information in an ontology structure, directly 

exchanging information with the analytical block regarding: 

- Completeness: analytical results, both features and 

semantics will directly be transferred to the domain; 

- Validation: completeness will be evaluated statically 

and by context/domain comparison to extract relevant 

information, which will directly be injected to be 

analytically accepted for local organization; 

- Refinement: when validation fails, the data is re-

injected in an analytical loop to iteratively be 

benchmarked and further analysed, or rejected when 

the probabilities are too low. 

 
Figure 3 Workflow for Smart Point Cloud structuration 

We differentiate geometrical reasoning from statistical and 

machine learning, with a priori relationship estimation. While the 

validation takes place, we propose to detect and independently 

treat these special objects: 

- The ground: being contextually gravity dependent, the 

SPC considers the ground as the foundation on which 

every elements is then referenced. 

- Elements: which can be iteratively refined considering 

the level X of abstraction desired, but also the 

resolution and precision of the (multi)sensor data. 

- Boundaries: which can be either Walls or Ceilings, 

both including structural definition and elements. 

Because the workflow is context dependant, the user will define 

the detail level desired in the final structure which define the 

segmentation level refinement, and we propose to build on a 

common gravity-based definition: 

- Level 0: Ground and boundaries; 

- Level 1: Each independent object detected analysed 

independently to extract host and guest; 

- Level 2: The first guest, for example the cup of coffee 

(L2) on a table (L1) that stands on the floor (L0). 

The importance to play on all possible scales for feature-

descriptors (sub-space / global), structuration and visualisation is 

primordial. The concept of vario-scale (Huang et al., 2016) 

providing near-continuous capabilities is interesting and should 

be studied for its fit to our propose SPC. Some objects will then 

possibly be described in many classes, having an influence on 

how deep the selectivity can go. Studying topological 

relationship for point cloud is herein complicated when no direct 

contact can be observed through TLS measurements. Retaining 

relations and organizing hierarchically via topological LoD 

defines a final step to get a smart data structure. These conditions 

can infer physical description and combine many possible 

analysis, e.g. the possibility to recreate occluded zones through 

topology, reason about position in time and space using domain 

knowledge and semantics, conducting structural analysis... 

 

This whole pipeline describes an intelligent environment 

creation, where the end-user will directly have access to relevant 

information based on an update and refinement process to keep 

track of interactions and needs of the end users, deprecated in the 

structure through a knowledge update. In our future work, we will 

address specifically the tasks of point cloud segmentation for 

determining the topological LoD data structure. This will be 

based on connected component and variant analysis including 

abstraction-featuring to determine new methods for ground and 

boundaries recognition, as well as hierarchical iterative element 

refinement. The architecture of the domain expertise lies on a 

server database keeping two different entities: the training data 

and the expert knowledge intelligence. Each of these modules 

will participate into the classification and organization to obtain 

labelled data, which will be stored in another partition, retaining 

descriptors for each class. These classes will be context-

dependent and predictions assessment will directly link the 

domain with the data to extract applications relevant for specific 

features. Reinforcement learning can handle more complex 

environment than supervised learning, and theoretically provide 

a more powerful framework for modelling streaming data that 

will be part of future investigations. The challenge of data 

structuration will also be address, combining both 

implementation of ontology/RDBMS-variant to efficiently store 

the point cloud retaining specific device expertise, analytical 

expertise and domain expertise. Use cases extended to structure 

from motion while aggregating topographic data will be 

discussed, in order to define a SPC structure for smart data. 

 

4. CONCLUSION 

This paper gives a definition for a point cloud knowledge-based 

structure contextually subdivided according to classification 

results. The research aims at presenting a general framework for 

the development of smart point clouds. Fusing data from both 

active and passive sensors provide additional information that 

relays through high level feature descriptors precise for 

contextual classification. However, semantization relies on 

geometrical descriptors as well as domain analogy and validation 

to extract and define a new structuration of the point cloud data 

through correct indexing techniques. This implies separation 
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between relationships / topology and spatial / attribute 

information to provide efficient data mining capabilities. The 

targeted analysis of current limitations in analytic, domain 

featuring and data structuration has led us to establish a research 

agenda. While adopting the described framework, the next work 

that will be undertaken will deal with contextual LoD 

segmentation. 
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