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ABSTRACT: 

 

Georeferencing gathered images is a common step before performing spatial analysis and other processes on acquired datasets using 
unmanned aerial systems (UAS). Methods of applying spatial information to aerial images or their derivatives is through onboard GPS 

(Global Positioning Systems) geotagging, or through tying of models through GCPs (Ground Control Points) acquired in the field. 

Currently, UAS (Unmanned Aerial System) derivatives are limited to meter-levels of accuracy when their generation is unaided with 

points of known position on the ground. The use of ground control points established using survey-grade GPS or GNSS receivers can 
greatly reduce model errors to centimeter levels. However, this comes with additional costs not only with instrument acquisition and 

survey operations, but also in actual time spent in the field. This study uses a workflow for cloud-based post-processing of UAS data 

in combination with already existing LiDAR data. The georeferencing of the UAV point cloud is executed using the Iterative Closest 

Point algorithm (ICP). It is applied through the open-source CloudCompare software (Girardeau-Montaut, 2006) on a ‘skeleton point 
cloud’. This skeleton point cloud consists of manually extracted features consistent on both LiDAR and UAV data. For this cloud, 

roads and buildings with minimal deviations given their differing dates of acquisition are considered consistent. Transformation 

parameters are computed for the skeleton cloud which could then be applied to the whole UAS dataset. In addition, a separate cloud 

consisting of non-vegetation features automatically derived using CANUPO classification algorithm (Brodu and Lague, 2012) was 
used to generate a separate set of parameters. Ground survey is done to validate the transformed cloud. An RMSE value of around 16 

centimeters was found when comparing validation data to the models georeferenced using the CANUPO cloud and the manual skeleton 

cloud. Cloud-to-cloud distance computations of CANUPO and manual skeleton clouds were obtained with values for both equal to 

around 0.67 meters at 1.73 standard deviation. 
 

 

1. INTRODUCTION 

 
The significant advancement of photogrammetric processing 

software has transformed UAVs (Unmanned Aerial Vehicles) 

from being recreational devices into important tools for the 

geospatial field. UAVs or pilotless remotely controlled aircraft 
capture images from an aerial perspective. These images can 

further be processed to generate Digital Elevation Models 

(DEMs), and Orthomosaics for mapping. Without using GCPs, 

GPS tracking devices that can be carried by these small 
instruments are limited to meter-levels of accuracy such as the 

popular Sensefly eBee (Sensefly, 2015). Adding GCPs (Ground 

Control Points) in processing can greatly reduce model errors to 

centimeter levels but these can only be acquired by doing ground 
surveys in the field. For survey grade mapping of large areas, 

such as whole cadasters, UAS manufacturers have developed a 

way of using RTK with the UAV simultaneously. As the extra 

equipment brings accuracies to centimeter level, the cost of 
procuring the system as a whole also increases. Moreover, using 

any of these extra steps in the field would require more man-

power and more time. Eliminating on-site methods, this research 

looks at post-processing steps instead. 
 

One alternative method is by using already existing data of 

relatively higher levels of accuracy and use them as reference for 
the UAV derivatives. Such reference data must also have high 

availability to be of actual use or at least have overlaps with the 

study areas to be mapped. For the case of the Philippines, a high 

accuracy collection of data is provided by its nationwide Aerial 
LiDAR Surveys (ALS). From as early as 2011, parts of the 

Philippines have been mapped using LiDAR (Light Detection 

and Ranging) with derivatives being used for flood modeling and 

hazard mapping (DREAM Program, 2012). Aside from disasters 

and hazards, programs have also been conceptualized with aims 
for using those same point clouds in providing a detailed 

inventory of the country’s natural resources (Blanco et al, 2015). 

In 2016, an online web portal was launched that serves as a data 

distribution center of these various LiDAR derivatives such as 
DEMs, maps, orthophotos, and classified point clouds. These 

LiDAR data have accuracies of 0.5 meters on the horizontal plane 

and 0.2 meters along the vertical axis. 

 
Given this collection of reference data, automated georeferencing 

becomes a viable approach for UAV data. A similar concept 

applied to TLS or Terrestrial Laser Scanning can be used for this 

study. TLS is a grounded version of ALS opting instead for a 
terrestrial perspective in scanning objects and environments. In 

place of an aerial platform, an instrument set-up is placed to 

perform the scan and if need be, multiple set-ups to cover the 

whole scene of interest. A simple step called Point Cloud 
Registration could get a whole environment in one coordinate 

system by fusing datasets from multiple views (Rajendra et al, 

2014). Cloud registration is performed along overlapping areas 

of different scans and as those areas of overlap become consistent 
with each other, so do the rest of the dataset. The parameters used 

for this process include translation and rotation. This ensures that 

the cloud transforms only with location and distance.  
 

 

2. METHODOLOGY 

 
Imagery was acquired for this study using a Sensefly eBee drone 

flown over the College of Science Complex of the University of 

the Philippines - Diliman. It is a fixed-wing type UAV with a 96 
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cm wingspan weighing approximately 700 grams. It performs 

data acquisition by means of an 18 MP RGB camera loaded 
inside the drone with a circular opening at its belly for the lens. 

The UAS included a flight planning tool that automatically 

designs a mission for the flight using the desired parameters such 

as image overlap, ground sampling distance, and survey area. The 
option of doing a crisscrossed flight was implemented meaning 

that the whole area was surveyed using two sets of flightlines 

with the second set perpendicular in direction to the first one. 

This ensures a higher overlap and redundancy for the data and 
minimizes any effect of deformation in the generated cloud. With 

a less deformed cloud, a rigid transformation can be implemented 

on the dataset. A crisscrossing flight also minimizes shadows in 

the created cloud by increasing viewing angles with increased 
camera stations. The same software is also used in geotagging the 

collected images using data from an onboard GPS (Global 

Positioning System) and IMU (Inertial Measurement Unit). 

 
The 3D modeling itself was done in Pix4D by processing the 

geotagged images. An initial sparse point cloud is first created 

after matching recurring key points in multiple images that were 

detected using computer vision algorithms. This process also 
refines the spatial coordinates from the image geotags. Next, a 

denser point cloud is produced by using camera coordinates 

refined from the previous step as well as the camera calibration 

parameters automatically derived. The results for point cloud 
densification were saved and exported in LAZ format. Normal 

Pix4D pipeline finishes with mesh and orthomosaic generation, 

but for this study the raster files produced by Pix4D were used 

for feature detection to be used in registration. The final UAS 

derivatives will be generated using LAStools (Rapidlasso, 

GmbH). 

 

Due to the immense size of the obtained point cloud, it is 
preferable to split it first into smaller tiles and then ‘sort’ the data. 

Pix4D sequences each point by the number of matches from the 

obtained images, the tool lassort will sequence the points instead 

by location. This step should reduce the processing times for the 
succeeding tools in the pipeline such as DEM generation in 

blast2dem which uses Delaunay triangulation before generating 

a raster. A separate lighter version of the sorted cloud was used 

in obtaining transformation parameters for faster computations. 
A thinning algorithm was used to thin the sorted point cloud by 

picking central points on a grid with dimensions defined by the 

user as a step size parameter. Generation of point clouds by 

photogrammetry is also prone to outliers. This thinning step 
lessens high and low noise in order to prevent them from being 

included in registration computations,  

 

One problem of performing comparative studies between 3D data 
from different acquisition dates is the natural tendency of features 

to change. These differences could erroneously contribute to the 

calculated errors or worse alter the registration results if not noted 

correctly during processing. Obvious elevation differences due to 
vegetation and structural developments can easily be detected 

using DSMs or archived imagery such as Google Earth. The 

orthomosaic produced by Pix4d showed well that the majority of 
change can be attributed to vegetation growth and at certain 

locations, the lack thereof. 

 

Upon detection, features of significant change was masked from 
processing to maintain the integrity of both georeferencing and 

validation steps. Consistent features between the two 3D datasets 

was then selected such as roads and buildings. A drawn polyline 

shapefile following non-occluded road centerlines can be 
buffered to estimate whole roads. Additionally, consistent roofs 

of buildings can be extracted by following their edges from the 

orthomosaic. These features were extracted from the thinned 

cloud using lasclip as the ‘skeleton’ point cloud. Using the 
thinned cloud eliminated noise along building facades ensured 

the planarity of smooth surfaces for better registration with their 

LiDAR counterparts. 

 

 
For larger datasets, manual extraction of possible consistent 

features is a tedious task. A classification algorithm used for 

LiDAR point clouds was tested for this process but yielded less 

than favorable results. For this study, a point cloud classification 
algorithm implemented in CANUPO software suite (Brodu and 

Lague, 2012) was used to separate vegetation from non-

vegetation classes as the first class contributes largest to the 

changes between the two datasets. The algorithm uses a multi-
scale approach wherein classes are distinguished through 

dimensionality in varying scales. For example, as discussed by 

its authors, CANUPO observes vegetation in a centimeter scale 

as objects comprised of 1-dimensional (sticks) and 2-dimensional 
objects (leaves), while as a 3-dimensional complex shrub object 

when viewed in a larger scale (decimeters and above). A smooth 

ground area however, consistently appears as a 2-dimensional 

object in both scales. Figure 3 shows multiple dimensionality 
diagrams of different classes in increasing scales. The left, right, 

Figure 2. The skeleton point cloud consisting  

of roads and roof of consistent buildings. 

Figure 1. Google Earth image from 2011 (a) and from 2016 (b). 

Figure 3. Brodu and Lague’s dimensionality diagrams for 

four classes in a mountain river environment. 
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and top vertices correspond respectively to 1D, 2D, and 3D 

characteristics with the red colorization showing the clustering of 
training points for that dimensionality. 

 

The authors chose this method of classification as the CANUPO 

algorithm exhibits efficiency and robustness in calculations for a) 
high-density datasets b) point clouds with shadow zones in areas 

obstructed from the sensor; both a) and b) are very common 

descriptions of point clouds from dense-matching.  

 
The reference data for this study, unfortunately only in its raster 

form, is a LiDAR DSM of the study area. It is a part of a dataset 

encompassing the Metro Manila area surveyed in 2011 in 

cooperation with the Australian government. Working closely in 
this effort were local government agencies known together as 

CSCAND agencies (Collective Strengthening of Community 

Awareness on Natural Disasters) composed of the country’s 

technical mapping agencies (Australian Embassy in the 
Philippines, 2011). For this study, the dataset was sampled using 

a GIS application that extracts LiDAR elevations at a grid of 

known x and y coordinates into a simple text file. LAStools’ 

conversion tool, las2las, was used to generate the LAZ point 
cloud from the xyz text file.  

Given the ‘skeleton’ point cloud and a reference point cloud, 

registration using the Iterative Closest Point algorithm could then 

be executed. ICP algorithm is an iterative process that can be 

divided into three steps. Considering two point clouds A and B, 
the algorithm first performs matching by identifying for each 

point in cloud A its nearest counterpart in cloud B. The distance 

between all point pairs is considered as the error metric. The goal 

of the second step is to minimize that error metric. 
Transformation would then constitute the final step as the data 

points are transformed depending on the spatial deviations of 

both clouds. These three are done repeatedly until the maximum 

number of iterations has been reached or the algorithm itself has 
converged (Kjer and Wilm, 2010). 

 

For ICP to converge to good results, the skeleton point cloud was 

roughly translated along the horizontal plane. The transformation 
parameters on the skeleton cloud was extracted from 

CloudCompare’s console and was easily applied on the entirety 

of the dataset. The resulting georeferenced point cloud, as well as 

the georeferenced skeleton cloud was saved and compared with 
the LiDAR dataset. This was done for the two skeleton point 

clouds: manual identification and CANUPO classification. 

 

Cloud-to-cloud distance computations were executed as well for 
the two registered clouds versus the reference LiDAR cloud. The 

values and their standard deviations were recorded. In addition, a 

ground validation survey was conducted using a Total Station. 

An observation point was established and the distances relative 
to this point were measured along the XY-plane and Z-axis. A 

total of six points were observed in the field and identified in the 

registered orthomosaic. A comparison of model distances and 

ground distances yielded error values used for accuracy 
assessment of the georeferenced models in this study. 

 

With a georeferenced point cloud, LAStools was used in 

generating a new set of DSMs and a new set of orthomosaics 
using the RGB statistics of points in the registered dataset.  

 

 

3. RESULTS AND DISCUSSION 
 

A dense point cloud consisting of around 106 million points was 

generated using Pix4d for an area of 16 hectares. This translates 

to a density of almost 72 points per cubic meter with a ground 
sampling distance of around 4 cm per pixel. However, the 

processed point cloud has to be clipped as the decrease in image 

overlap along its edges affects the integrity of modeling for these 

areas. What remained is a point cloud spanning 16 hectares on 
the ground with dimensions of 400 meters along the x and y axes 

and composed of around 106 million points. The camera 

alignment step of the modeling process reports RMS errors of 

0.38, 0.41, and 0.43 m errors for x, y, and z respectively. This 
means that locally, the model has an accuracy at the sub-meter 

level. The total processing time from camera alignment to point 

cloud densification was clocked at 11 hours. Figure 5 shows the 

output of image processing: the generated DSM and RGB 
orthomosaic. 

Road centerlines nearly 1 kilometer in length were digitized and 
buffered three meters on either side to generate road polygons. 

Consistent buildings were also added to this polygon shapefile 

which makes the total area of the skeleton point cloud equal to 

2.5 hectares. This cloud was translated giving the translational 
matrix followed by the ICP matrix. Figure 6 delineates the 

original position of the skeleton point cloud over the 

georeferenced mosaic after performing registration. Overlaying 

the two shows a significant change in position after performing 
the transformation. 

Figure 4. Equivalent point cloud of the  

LiDAR data used as a reference. 

Figure 5. The georeferenced DSM and  

Orthomosaic of the study area. 

Figure 6. Clipping polygons overlaid with 

the orthomosaic after registration. 
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For the second cloud, the non-registered orthomosaic generated 

by Pix4D was segmented using eCognition instead of manually 
delineating image features for training data collection. Selection 

of various objects that represent the two classes, vegetation and 

non-vegetation, was done and fed to the CANUPO algorithm for 

classification of the whole cloud. For this branch of processing, 
the non-vegetated classes are used in registration instead of a 

manually selected skeleton cloud. The workflow proceeds with 

registration of the whole UAS dataset and the generation of 

derivatives. 
 

Figure 7 shows a 3-dimensional view of the UAS point cloud 

overlaid on the LiDAR point cloud after one of the registrations. 

The UAS data has blended near seamlessly with the position of 
the LiDAR data while also providing an ‘updated look’ on the 

LiDAR cloud as features that weren’t present in the LiDAR cloud 

before but are present now can be appended using the registered 

UAS data.  

 

Raster subtraction of the generated DSM was done to illustrate 
areas of high and low elevation differences. As expected, 

vegetation growth constitutes negative values while the higher 

ones are from newly constructed buildings. Cyan colored areas in 

Figure 8 show pixels with elevation differences lying between 
positive and negative 20 cm. The red arrow point to buildings 

under construction that were finished in between the acquisition 

dates of LiDAR and UAS data. 

 
 

 

 

The results of the field validation with the use of a Total Station 

is summarized in Tables 1 and 2. From the two validation sets, it 

 

Model vs Ground 

MANUAL IDENTIFICATION 

POINT Z XY XYZ 

1 0.12 0.050 0.130 

2 0.148 0.062 0.161 

3 0.095 0.026 0.099 

4 0.227 0.001 0.227 

5 0.098 0.115 0.151 

6 0.169 0.004 0.169 

RMSE 0.150 0.058 0.161 

 

 

Model vs Ground 

CANUPO CLASSIFICATION 

POINT Z XY XYZ 

1 0.12 0.104 0.159 

2 0.148 0.008 0.148 

3 0.155 0.005 0.155 

4 0.147 0.092 0.173 

5 0.088 0.203 0.221 

6 0.139 0.008 0.139 

RMSE 0.133 0.100 0.168 

 

 

was observed that registered derivatives using the Manually 

Identified and CANUPO classified skeleton cloud had nearly 
similar RMSE values in the XYZ-axes. Both workflows had 

relative distance differences of around 16 centimeters from the 

field data. When compared to UAS derivatives before 

registration, this is a significant improvement considering that no 
GCPs were used in aiding the photogrammetric processing of the 

obtained images. 

 

Using cloud-to-cloud distance computations for further 
comparison of the results of the two pipelines yielded a similar 

observation. For the Manual Identification cloud, a distance of 

1.339 meters was computed with a standard deviation of 2.154, 

while the CANUPO Classification cloud computed a distance of 
1.342 meters at 2.153 standard deviation. The meter level 

distances and standard deviations can be attributed to the fact that 

the entirety of both results were used in cloud-to-cloud distance 

computation. This included vegetation that experienced meter-
levels of elevation changes as well as new buildings that changed 

between the acquisition dates of the two datasets. Performing the 

distance algorithm only on non-vegetation classes, the CANUPO 

cloud had a distance from the reference cloud of 0.68 meters at a 
smaller standard deviation of 1.73. These values are similar to the 

manually derived cloud with cloud-to-cloud distance of 0.67 

meters with a standard deviation of 1.73 meters as well. The 

remaining source of deviations could be caused by elevation 
differences by new buildings which were still included in the 

non-vegetation class of the CANUPO cloud. 

 

Figure 7. The registered UAV point cloud overlaid  
with the reference LiDAR point cloud. 

Table 1. Manually Identified model to ground differences 

of measured distances from reference point 

Table 2. CANUPO classified model to ground differences 

of measured distances from reference point 

Figure 8. Raster difference of the the registered DSM  

and LiDAR DSM (units are in meters). 
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The movement of the cloud before and after registration can 

further be illustrated by analyzing the cloud distances of both 
Manual and CANUPO cloud subsets. Before georeferencing, the 

CANUPO cloud had a cloud distance of 1.20 meters while the 

Manual cloud had a distance of 1.40 meters. This is nearly a 50% 

reduction in distance from the LiDAR data.  
 

The similarity in accuracy assessment values for both pipelines, 

manual identification and CANUPO classification, suggests that 

for this dataset, CANUPO classification produces similar results 
while reducing the amount of time for pre-processing of the 

cloud. Instead of relying solely on the judgement of the processor 

for the entirety of the cloud, subsets could be used to permit 

automation. This could be helpful when performing a similar 
georeferencing method for larger datasets. 

 

 

4. CONCLUSIONS 
 

In this study, a post-fieldwork methodology was designed to 

georeference derivatives generated from UAS images. With this 

workflow, a survey party could proceed with the UAV survey 
itself without the need for increasing the party’s size, period in 

the field, or procuring specialized instruments in the hopes of 

getting data of higher spatial accuracy.  

 
One of the limitations of this method of model production would 

be on the changes inherent in the area of study. High amounts of 

changes between the two datasets would limit the UAS data from 

having a reliable basis from which to derive the appropriate 

transformation parameters. 

 

It is worth noting that the reference data used, even though 

LiDAR data, was still derived from a raster dataset. With 
LiDAR’s multiple number of returns and and non-grid spacing, 

it is recommended to do further research on whether its use as 

reference could produce better results. Nevertheless, readily 

available LiDAR data in the Philippines are often archived and 
distributed as generated raster files for ease of distribution. For 

users especially those not in the research field with no access to 

these huge LAS files restricted point clouds, this research has 

shown that the use of archived LiDAR DSMs would suffice for 
georeferencing of UAV derived datasets. 
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