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ABSTRACT:

The lack of semantic information in many 3D city models is a considerable limiting factor in their use, as a lot of applications rely on
semantics. Such information is not always available, since it is not collected at all times, it might be lost due to data transformation, or its
lack may be caused by non-interoperability in data integration from other sources. This research is a first step in creating an automatic
workflow that semantically labels plain 3D city model represented by a soup of polygons, with semantic and thematic information, as
defined in the CityGML standard. The first step involves the reconstruction of the topology, which is used in a region growing algorithm
that clusters upward facing adjacent triangles. Heuristic rules, embedded in a decision tree, are used to compute a likeliness score for
these regions that either represent the ground (terrain) or a RoofSurface. Regions with a high likeliness score, to one of the two classes,
are used to create a decision space, which is used in a support vector machine (SVM). Next, topological relations are utilised to select
seeds that function as a start in a region growing algorithm, to create regions of triangles of other semantic classes. The topological
relationships of the regions are used in the aggregation of the thematic building features. Finally, the level of detail is detected to
generate the correct output in CityGML. The results show an accuracy between 85% and 99% in the automatic semantic labelling on
four different test datasets. The paper is concluded by indicating problems and difficulties implying the next steps in the research.

1. INTRODUCTION

To carry out several 3D GIS analyses, semantic information is re-
quired. Semantics is information about what a surface represents
in the real world. For example, a surface may be attached the
information that it represents a wall, a terrain, or a roof surface.
This information is useful in different domains and applications,
such as flood modelling or disaster management (van Oosterom
et al., 2006; Biljecki et al., 2015), data harmonisation (van Oost-
erom and Zlatanova, 2008) and real estate evaluation and taxation
(Vosselman et al., 2001; Boeters et al., 2015).

Currently, many 3D city models are available as a collection of
polygons representing unstructured geometry and lacking seman-
tic meaning. While such models may still be valuable for visu-
alisation and other purposes, their full potential in 3D GIS anal-
yses is hindered by the lack of semantics (Brodeur, 2012). For
example, in such datasets the geometry of a building is not differ-
entiable from the geometry of a road, hence it is not possible to
identify the surfaces of interest, e.g. roof surfaces to estimate the
solar irradiation, or walls to calculate the total facade area.

Some 3D model generation techniques allow straightforward se-
mantic enrichment of data. However, in many cases models do
not have semantic information because it is simply not stored, it
is lost due to data transformation, or it is absent due to the lack
of additional information. Therefore, semantic enrichment, i.e.
adding of semantic information to the geometry, is necessary to
create models that meet the requirements of relevant applications
(Henn et al., 2012). As nowadays many 3D models are already
available but do not contain semantics, the proposed methods can
help to make these models useful in an additional range of ap-
plications. As a result of that, the added semantic information
brings new possibilities for leveraging their usability (Stadler and
Kolbe, 2007).

This research aims to solve the problem of missing semantic and
thematic information in 3D city models, by developing a method
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Figure 1: 3D city model of Rotterdam without semantic informa-
tion.

to automatically enrich 3D city models with semantic and the-
matic information, as defined by the CityGML standard. In this
labelling process, a polygon mesh or a soup of polygons (Fig-
ure 1) serves as input and generates a model, whereby the dif-
ferent spatial features (walls, terrain, roofs and building ground)
are recognised, distinguished, and structured in such a way that
serves the creation of a semantically rich, 3D city model stored
in CityGML. The goal is to infer the different semantic classes
together into single building entities and creating the thematic
building class entities, following their CityGML definitions.

2. RELATED WORK AND BACKGROUND

Owing to the advancement of 3D GIS analyses, the interest for se-
mantic 3D city models has been growing in the past years. How-
ever, research in enriching existing 3D city models is virtually
non-existing and holds many scientific and software opportunities
(Biljecki and Arroyo Ohori, 2015). There are just a few instances
of related work that we are aware of. For example, Xiong et al.
(2013) focus on creating semantically rich 3D models from point
clouds, while Dörschlag et al. (2007) and Pittarello and De Faveri
(2006) research the integration of CAD model data in GIS and
vice versa. Slade et al. (2017) develop a method to automatically
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detect openings of buildings to enrich CityGML models. While
the work focuses on detecting the features in imagery rather than
from the geometry of 3D models, it is relevant to mention because
it involves CityGML models.

This section elaborates on papers that focus on semantically en-
riching 3D city models. Next, it introduces the parts of CityGML
relevant for this paper, as the standard serves as a guide in defin-
ing the semantic classes.

2.1 Semantic enrichment of vector data

Verdie et al. (2015) create a workflow that produces a semanti-
cally rich 3D city model from a triangular mesh. The classifi-
cation step relies on a Markov Random Field, in order to distin-
guish between four classes: ground, trees, facade and roof. The
method is unsupervised and only uses geometric attributes. In
the research, no isolated triangles are used in the classification
process. Instead, super-facets are used, that are sets of connected
triangles with the same characteristics, also referred to as regions.
The ground class is characterized by locally planar surfaces, that
are located below the other classes. Trees have curved surfaces.
Facades are vertical surfaces, that are adjacent to roofs and are
composed of planar surfaces.

Diakité et al. (2014) propose an approach that is based on a prop-
agation method, directed by heuristic rules, in order to retrieve
semantics of the building components. The approach takes vec-
tor data as input. The C-Map data structure is used to reconstruct
the topological relations. The process entirely relies on heuris-
tic rules, which combines topological and geometrical criteria,
which gives the flexibility to define as much rules as desired,
whereby only geometry is initially required. The different se-
mantic classes are: façade, wall, ground floor and roof.

2.2 CityGML

CityGML is a standard for storing and exchanging 3D geographi-
cal data and its semantics. The standard specifies the geometrical
and semantic aspects of 3D city models. The objects are speci-
fied by a thematic class (Gröger and Plümer, 2012). The thematic
class taxonomy distinguishes between different objects, such as:
buildings and other man-made objects, waterbodies and vege-
tation. The most detailed thematic class is the building model,
which has a central thematic class: the AbstractBuilding, which
is specified to either a Building or to a BuildingPart, which again
are part of the class AbstractBuilding (OGC, 2012).

The building class comprises different semantic classes: Ground-
Surface, WallSurface, RoofSurface, OuterFloorSurface, Outer-
CeilingSurface, and so on (SIG3D, 2015). These classes are de-
picted in Figure 2, and their granularity depends on the level of
detail (LoD) of the model.

The spatio-semantic properties of buildings are tied to five differ-
ent LoDs (Kolbe et al., 2005; Gröger and Plümer, 2012), which
reflect the degree of the model’s adherence to its corresponding
subset of reality (Biljecki et al., 2014). In other words, LoD
describes how close the virtual representation reflects the actual
real-world scene, and this notion includes also the spatio-semantic
coherence (Stadler and Kolbe, 2007). Five LODs are defined in
the CityGML standard:

LoD0: 2.5D building footprints with optionally roof edge poly-
gons.
LoD1: Extruded footprints (prismatic models), represented as
block models. In other words, a vertical extruded solid, with-
out semantic boundary surfaces.

Figure 2: Semantic BoundarySurfaces classes of an LoD2 model
in the CityGML standard.

LoD2: Simple models with differentiated WallSurface, RoofSur-
face, GroundSurface, OuterFloorSurface, and OuterCeilingSur-
face.
LoD3: Detailed architectural models with, additionally to LoD2,
openings such as windows and doors.
LoD4: Basically an LoD3 model with indoor features.

2.3 Research goals

As elaborated on in the previous section, CityGML gives a com-
prehensive framework for the semantic classes which we use in
our labelling process. Besides the semantic structuring of bound-
ary surfaces, we also consider the thematic classification (e.g. a
set of surfaces is a building or a bridge). However, this work
defines a simplification of the CityGML semantic class taxon-
omy (OGC, 2012), where the earlier described classes (Figure 2)
OuterCeilingSurface and OuterFloorSurface are labelled as Roof-
Surface or GroundSurface, depending on the height of these re-
gions. This is due to the complexity of distinguishing the afore-
mentioned classes in the inferring process. Thereby, this research
aims at recomposing the different semantic classes into single
buildings, composing thematic building class entities. The se-
mantic labels of the thematic building class depend on the LoD
of the 3D city model:
LoD1: In models with LoD1, the labelling process will aim at
adding thematic information to Buildings only. This means clus-
tering the different BuildingParts together, forming a CityGML
feature with class AbstractBuilding and Building. The Building-
Parts will not be labelled separately. Thereby, the terrain is the-
matically labelled.
LoD2: In models with LoD2, the labelling process will aim at
adding thematic information to Buildings and BuildingParts. This
means clustering the different BuildingParts together, forming a
CityGML feature with class AbstractBuilding and/or Building.
Thereby, semantic information to the RoofSurface, WallSurface
and GroundSurface are stored (the latter should not be confused
with the surfaces representing ground/terrain). Separately, the
terrain is thematically labelled.
Models in LoD0, LoD3 and LoD4 will be left untouched in this
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research, and are a subject of future work. However, the method
can be used to at least partially infer their semantics.

2.4 Challenges

In the course of this research, a number of challenges are identi-
fied, partially from the work of related researchers and from our
preliminary experiments:

Complexity of the semantic classes The normal of the surfaces
in the 3D city model plays an important role in the classification
of 3D data, as a fair share of semantic information can be inferred
just by analysing the orientation of the surface. However, classi-
fication solely based on the normals of the triangles is not robust.
Figure 2 demonstrates that the classes GroundSurface, RoofSur-
face, OuterFloorSurface, and OuterCeilingSurface cannot be dis-
tinguished by only considering the surface normals. Therefore, a
method has to be devised where a class assignment depends on
the relationship with surrounding spatial features. Furthermore,
there is a conflict across different thematic classes: a RoofSurface
of a flat roof may have the same orientation as the flat ground sur-
rounding the building.

Topology Therefore, the topological relations have to be recov-
ered to obtain additional insights that may hint at the semantic
of a surface. After inspecting the test models (to be introduced
later), it turned out that these topological relations are not al-
ways directly retrievable. Some models contain double vertices,
where others hold gaps between adjacent triangles. Other cases
which cause missing topological relationships are floating roofs,
or roofs that are not connected to a wall. This topic is researched
by Ledoux (2013), investigating the validation of solids, and giv-
ing different examples of (in)valid primitives. For example, a
solid is invalid when it overlaps with another solid. Another ex-
ample of a case relevant to ours is when two adjacent triangles
do not share the same points and edge, hindering the creation of
the topology. These aspects cannot be avoided since real-world
models are virtually never error-free.

Semantic content and LoD detection To correctly classify all
the semantic classes in the 3D city model, the algorithm must
first recognise the content of the different semantic classes. This
scan is required because the labelling process should automati-
cally realise what classes it has to classify. For instance, among
the different selected models that are used to test the algorithm,
some models have a terrain, while others do not. Therefore,
some buildings in the different models have a BuildingInstalla-
tion which represent dormers or chimneys, while other models
only contain roofs, walls, together forming a Building. These
features have to be recognised, in order to make a valid classifi-
cation. The generated output also depends on the LoD of the 3D
city model, i.e. it makes no sense to classify semantic boundary
surfaces in an LoD1 dataset. Therefore, the LoD of the model
should also be detected. However, automatically detecting the
LoD of the model is also one of the main challenges in this prob-
lem, due to different reasons such as the ambiguity of the defini-
tions (Benner et al., 2013; Biljecki et al., 2016).

Lack of thematic definition Building and AbstractBuilding
The datasets which are used share no consistency in the geo-
metric aggregation of the classes Building and AbstractBuilding.
Or, as explained in the OGC CityGML standard (OGC, 2012):
“CityGML allows many different alternatives for modeling. This
is an obstacle in the validation process, because it is not unam-
biguously defined what validity actually means without further
specification”. For example, the elements Building and Building-
Part can be modelled in three different ways: as a single solid, a
composite solid or as one single multi surface geometry. All the

three options are valid in the CityGML standard (OGC, 2012).
Thereby, the aggregation of Buildings and BuildingParts is not
only based on geometrical properties and can therefore not be ag-
gregated by geometrical properties only. Figure 3 depicts a case
which shows the challenge of recognizing and aggregating dif-
ferent Buildings into one AbstractBuilding. The Buildings in this
single model can be aggregated as one AbstractBuilding, but can
also be stored separately. Both approaches are correct.

Figure 3: Aggregation of Buildings and AbstractBuilding (case
of terraced houses).

This obstacle makes it hard, or impossible, to reconstruct the
thematic aggregations and information from the original 3D city
model.

Machine learning and the lack of training data This automatic
labelling (classification) process falls under the umbrella of ma-
chine learning, i.e. automated detection of meaningful patterns
in data (Shalev-Shwartz and Ben-David, 2014). Machine learn-
ing can roughly be categorised in supervised and unsupervised
classification. The idea behind supervised classification is to au-
tomatically derive classification rules from a training dataset, so
that the classification can be performed automatically. The term
reference data, or training data, refers to data that is manually
classified by humans, and it is used as input to set up the classi-
fication. In unsupervised learning there is no distinction between
training and test data, or training data is not available (Waldhauser
et al., 2014). The goal of fully automating the labelling process
means that training data is not available. This demands a two step
approach where, in the first place, the algorithm independently
recognises, selects and processes the training data, and secondly,
the classification process uses the training data to classify the ex-
amples.

3. SEMANTIC ENRICHMENT PROCESS

This section describes the methodology. First, the architecture
of the algorithm is presented. Second, the main concepts are ex-
plained, followed up by the heuristic rules that the method uses
to come to a classification. Finally, the labelling process and the
LoD detection are described.

Architecture The labelling process takes a triangulated polygon
mesh as input. Therefore, the triangle is the main component
of the algorithm. Working with triangles has some advantages.
First, the shapes are simple, which allows simple and unambigu-
ous computations. Second, most semantically unlabelled models
come as polygon meshes. Triangles which share similar geomet-
rical properties can be clustered in regions. A region consists of
at least one triangle and represents a semantic class. An object,
which represents a thematic entity with class AbstractBuilding in
the CityGML class taxonomy, has a composite relationship with
at least two regions. The architecture is illustrated in Figure 4.
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X : float
Y : float
Z : float
Neighbours : list

Vertex

Vertex_1 : Vertex
Vertex_2 : Vertex
Vertex_3 : Vertex
Centroid : Vertex
Normal_X : float
Normal_Y : float
Normal_Z : float
Neighbours : list
Hypotenuse : Boolean
Upward : Boolean
Ground : Boolean
Roof : Boolean
Wall : Boolean
Building_ground : Boolean

Triangle

Centroid : Vertex
Collection : list
Class : string

Region

Parts : list
Roof_parts : list
Wall_parts : list
Ground_parts : list

Object

A Region is a 
Collection of Triangles

An Object is a 
Collection of Regions, 

together forming a 
building

Figure 4: UML diagram or our structure. The list in Vertices
contains the neighbours—the vertices that are within the distance
range of the set threshold.

Region growing A region is a cluster of adjacent triangles that
have a similar orientation and height. Using regions instead of
individual triangles has some benefits. First, it gives way to ex-
ploit the topological relations, in order to aggregate the different
semantic classes into single AbstractBuilding entities. For exam-
ple, recognising the WallSurfaces, by exploiting their adjacency
to a roof surface, facilitates the storage of this relationship. This
relationship can later be used to create the individual thematic
AbstractBuilding entities. Second, by using regions instead of
individual triangles, more information can be extracted, for ex-
ample: the number of triangles in one region or deviations in
height or curvature. This additional information is used in the
semantic classification.

Decision tree learning The semantic classification is based on
classification decisions. These decisions are embedded in a de-
cision tree. Decision tree learning is a widely used and practi-
cal method that works best for classification problems with con-
clusive and decisive classes (Mitchell, 1997). The classification
problem in this research satisfies this condition, as the classes are
well defined and explicit. A decision tree classifies instances by
sorting these instances down a tree, where the end node, a leaf,
assigns a semantic class (Mitchell, 1997).

Heuristic rules The decision tree is based on a logic that is de-
fined through heuristic rules, ordered in the decision tree. Heuris-
tics stands for strategies that use available and accessible infor-
mation to control or improve problem-solving processes or deci-
sions by humans or in man-machine interaction (Pearl, 1984). In
heuristics, the use of the general knowledge, or knowledge gained
by experience, is used to do a classification. In our approach we
relied on mainly on the five following heuristic rules:

1. A roof is an exterior region and is the upper boundary sur-
face of a building, building part or building installation (SIG3D,
2015). Roofs are always situated above all ground regions
in its local neighbourhood.

2. The terrain region is always situated below the roof region
in its local neighbourhood.

3. A wall surface is an exterior, lateral boundary surface of
a building, building part or building installation (SIG3D,
2015). Walls are always situated between the terrain region
and a roof region.

4. A building ground surface is always aligned under a building
roof surface and is connected to at least one wall region. The
building ground surface is always horizontally planar.

5. A building always exist out of at least one roof region and
one wall region.

These conditions and heuristic rules are embedded in the decision
tree that is visualised in Figure 5, wherein the outcomes of the
decisions are illustrated.

Figure 5: Decision tree of our method.

3.1 Labelling process

This section describes the workflow of the labelling process (Fig-
ure 6). This workflow functions as a guideline in this section,
wherein every step in the labelling process is explained sepa-
rately.

Figure 6: Workflow of the labelling process.

Recreating the topology Because the 3D city model is created
out of triangles, a recovery of the topological relations is re-
quired. After inspecting the models, as earlier described in the
challenges, the topology of the different triangles in the model
is not always stored, inconsistent or incomplete. To handle all
these different cases, a one fits all method has to be devised. The
proposed method reconstructs the topology through the use of
a kd-tree (van Oosterom, 1999). This kd-tree takes all vertices
coordinates as input, and returns a list for every vertex with its
k nearest neighbours and the distance to those neighbours. In
cases where the distance is zero, or close to zero, a double stored
vertex gets amended. The problem of gaps is overcome through
setting a threshold, where all k nearest neighbours of vertex X
are checked for if the euclidean distance to vertex X is smaller
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than the threshold. The chosen threshold is set as 1/10 of the stan-
dard deviation of the height of all vertices in the 3D city model.
Next, for every triangle, all the neighbours of all three individual
vertices are added to the list of neighbours.

Region growing of upward facing triangles After reconstruct-
ing a topology, regions of triangles that face upwards are created.
The constraints on which the region growing is based are the sur-
face normal and the height difference of the vertices of the trian-
gles, which should not exceed a set threshold. Figure 7 illustrates
the grown regions.

Figure 7: The grown regions, where every region is assigned a
different colour.

The decision to first recognise roofs and terrain is based on the
possibility to add more constraints to the region growing or in se-
lecting the regions to be either classified as terrain or roof. These
additional constraints in selecting the triangles could be added to
filter out other classes such as trees.

Distinguishing between ground and roof regions The regions
which consist of upward facing triangles can either represent a
RoofSurface, the terrain or a GroundSurface. Mostly, the terrain
and GroundSurfaces are grown as one single region, from now
referred to as the ground, and will be differentiated later on in
the process. This step differentiates between the ground and the
RoofSurfaces.

In some models, the whole ground is grown as one region, while
in other models this was not the case. Therefore a distinction
is made that is based on the relative size of the ground region,
compared with the total number of all upward looking triangles.
More concrete, if the biggest region contains more than 30 per-
cent of all upward looking triangles, it is automatically defined as
the terrain surface.

To further classify the regions, the heuristic rule that roofs are
always situated above all ground regions in its local neighbour-
hood is used. In order to get correct results in flat as well in
mountainous environments, the absolute height cannot be used.
This is depicted in Figure 8, where classification on the abso-
lute height would lead to misclassifications. Therefore, the local
neighbourhood is used to come to a classification, where a local
height threshold is used to come to a likeliness score.

This score is reckoned by analysing if a region is more likely to
represent a ground surface or a roof surface by setting a thresh-
old. This threshold is calculated by computing the average height
of the ten highest and the ten lowest vertices in the local neigh-
bourhood. Next, a score of one is added if the triangles centroid
height is higher than the threshold and zero is the triangle centroid
height is lower than the threshold. Every time a region is part of
another regions local neighbourhood, a score is added to the score

Figure 8: 3D city model with large elevation differences.

list. These scores represent a probability for every region that in-
dicates if a region is more likely to represent a RoofSurface or
ground.

To retrieve a local neighbourhood, a centre point is assigned to all
regions. These centre points, the centroids, form a simplification
of the region and are used to find the k-nearest neighbours, or the
local neighbourhood of the region. Here fore a kd-tree is used.
This kd-tree only takes the x and y coordinates of the regions
centres, creating a 2D local neighbourhood where the height is
neglected.

In all models, the scores varied between 0 and 100 percent likeli-
ness to both classes, and did, in most cases, not give a conclusive
result to assign a class to the region. Therefore, a Support Vector
Machine (SVM) classifier is used.

Support vector machine A SVM is a supervised learning algo-
rithm, whereby the aim is to automatically find regularities and
patterns in data (Henn et al., 2012). The SVM uses training sam-
ples to assign a class to a feature. These training samples are
mapped to a high dimensional feature space. The SVM com-
putes a hyper-plane, or a linear decision surface, which divides
the set of training data in a way where all the points with the
same label are on the same side of the hyper-plane. The basic
principle is that the SVM finds the most optimal hyper-plane in
a high dimensional feature space (Cortes and Vapnik, 1995). In
this approach, the just computed likeliness score is used to create
the training data and a set of examples, which will be classified
with the training data. In the selection of the training data, a score
higher than 70 percent likeliness is used as training data for roofs,
while a score lower than 30 percent likeliness represents a terrain
or BuildingGround surface. The SVM takes vectors as input from
the training data, creating a non-linear decision space and maps
the examples to assign them either the class roof or ground. The
classification process in the RBF kernel makes use of the distance
function (Pedregosa et al., 2011):

K(x, x′) = exp(−γ‖x− x′‖2) (1)

A number of five region properties are tested and selected to cre-
ate the vectors that are used to calculate the decision space. These
properties are: the standard deviation of all height values in the
region, the height of the regions centre and the total number of
polygons in the region, as used by Verdie et al. (2015). Thereby,
the sum of all normals in the height direction, divided by the total
number of polygons in the region and the percentage of triangles
with a 90 degree angle in the region, which are stored as a triangle
attribute, are used.

Exploit topological relations for seed recognition: labelling
the WallSurfaces Next, the WallSurface regions are grown. The
roof regions are used to find neighbouring triangles of the roof
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Table 1: 3D city models used for testing the performance of the
method.

Dataset Size (triangles) Size (Buildings) LoD

Rotterdam 57 581 1 544 2
Waldbruecke 12 157 606 2
New York 103 552 1 082 015 1
Switzerland 135 389 3 151 2

regions that represent a wall. A wall triangle always faces side-
ways. The selected Wall triangle functions as a seed for region
growing the Wall surfaces. In this first explorative approach, the
Wall regions are grown without any constraints, adding all neigh-
bours of the seed to the same region.

Exploit topological relations for seed recognition: labelling
the BuildingGround Finally, after the classification of the Wall
regions, a new distinction is made in the earlier classified terrain
polygons: BuildingGround surfaces are extracted, which form
the floor in buildings. The recognition of these polygons is based
on the heuristic rule that the building ground polygons are aligned
under the roof triangles and can therefore only be done after a cor-
rect classification of the roof polygons. The seeds which are used
in extracting the building ground are recognized by iterating over
the neighbours of the Wall triangles which are classified as ter-
rain. For every vertex of this seed triangle, a point on point, point
on line and point in triangle calculation is done with every trian-
gle of the roof region. All three calculations are in 2D, neglecting
the height of the triangles.

Reconstructing the thematic features The described seed de-
tection for the region growing approach allows the storage of the
topological relationships of the different regions. These relations
are used to aggregate the semantic classes into single buildings,
creating the thematic AbstractBuilding class instances.

Detecting the LoD of the model In order to generate correct
output, the LoD of the model must be recognised. The LoD de-
termines if semantic classes or only the thematic aggregations
should be returned and stored. To recognise the LoD, the nor-
malised surface normal of the roof triangles is used. Where a
random triangle of every roof region is used as a threshold, next a
deviation of the surface normal of all the other triangles in that re-
gion, which is bigger than 0.02, leads to a classification of LoD2
for the complete model.

4. RESULTS AND ANALYSIS

In order to test the performance of the developed method, we have
used a few datasets freely available as open data. The models
used to test the methods are stored in CityGML. These models
contain semantics, which are later used to validate the labelling
process. In order to test the proposed methods, the models were
stripped of semantic information and have been converted to OBJ,
which contains only unstructured geometry (triangles).

We have used four datasets: the first model is a subset of Rotter-
dam and contains houses and apartment buildings in LoD2. The
second model is from the village of Waldbruecke in Germany,
which contains small houses in LoD1 and LoD2. Third, the 3D
model of Manhattan in New York City is used. This datasets in-
cludes both high and low rise buildings in LoD1. Finally, a model
of a city in a mountainous environment in Switzerland was used.
Table 1 gives additional information about the number of trian-
gles and buildings in the 3D city models for an overview. The
sources of the models are mentioned in the Acknowledgements.

Table 2: Classification matrix: the total number of triangles, the
number of classified and the number of unclassified triangles.

Dataset Triangles Classified Unclassified

Rotterdam 57 581 57 656 75
Waldbruecke 12 157 12 077 80
New York 103 552 103 479 73
Switzerland 135 389 134 578 811

In the continuation we elaborate on the results of the classification
algorithm.

LoD detection In all models, the correct LoD was detected. The
proposed method is therefore a successful measure to distinguish
between LoD1 and LoD2 in the selected models.

Semantic classification Table 2 gives the number of total classi-
fied and unclassified triangles. Because selecting a triangle that
operates as a seed in the wall region growing algorithm is based
on a topological relationship with a roof triangle, a misclassifi-
cation of a roof region leads to wall regions not being grown,
because of non-selected and missed seeds. This leads to unclas-
sified triangles and incomplete buildings. The total classification
accuracy and the Kappa coefficient of the semantic classification
for the different test models can be found in Table 3. This table
shows a classification accuracy between 85 and 99%. This vari-
ation can be explained by height deviations in the models, which
strongly affect the setting of the threshold in the topology recre-
ating, causing multiple roofs and terrain regions being grown as
one.

In some of the selected models, such as the 3D city model of Rot-
terdam (Figure 9), which holds big height deviations, the higher
buildings are mainly apartment buildings. These buildings usu-
ally have a flat roof, while smaller houses have a sloped roof.
Such difference leads roof regions being classified as ground by
the SVM classifier, that in this case classifies the roofs of the
houses, based on training data that originates from the apartment
buildings.

Figure 9: Automatically semantically labelled 3D city model of
Rotterdam.

Figure 10 shows a visualisation of a semantically enriched model
of Paris, originating from a format other than CityGML. This
model does not originally contain semantics and therefore it can-
not be automatically validated. However, it serves as an illustra-
tion of the successful classification of terrain surfaces, and it hints
at the core value of the work: taking a 3D model without seman-
tics, enrich it with semantics using our automated approach, and
produce a CityGML dataset increasing its usability.

Thematic aggregation The number of Buildings and Building-
Part aggregations, forming an AbstractBuilding, is shown in Ta-
ble 4. This table shows the big difference in the number of ag-
gregations between the original dataset and the outcome of the
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Table 3: Classification accuracy.

Dataset Accuracy Kappa coefficient

Rotterdam 85.3 % 0.776
Waldbruecke 99.2 % 0.99
Switzerland 86.8 % 0.77

Figure 10: Semantically labelled 3D city model of Paris. The ter-
rain polygons (orange) are thematically distinguished from build-
ing surfaces.

proposed classification methods. Although the validity of the ag-
gregations of Buildings and BuildingParts is not bound to abstract
modelling rules, the proposed methods do not aggregate the dif-
ferent features correctly. This is caused by the recreated topology,
that, in some models, leads to multiple Buildings being aggre-
gated as one AbstractBuilding, while the features do not share any
adjacent spatial features (Figure 11). This particular error mainly
appears in models with a big height variations, which leads to a
too large threshold in the recovery of the topology.

Figure 11: Wrong aggregation of Buildings into one Abstract-
Building.

5. CONCLUSIONS AND FUTURE WORK

We presented in this paper an approach enabling to thematically
and semantically enrich a 3D city model, initially represented as
a set of unstructured polygons, commonly found in 3D city mod-
els stored in a format other than CityGML. This research is an
initial step towards enhancing presently available 3D city mod-
els without semantics in order to leverage them for an extended
range of spatial analyses. While previous work mainly focuses
on independently identifying structural elements of buildings, our
methods follows the CityGML standard and elaborates semantic
and thematic labelling of the buildings’ features with respect to
the LoD of the input model. Our implementation was tested on
several 3D city models and shows a satisfying accuracy, ranging
from 85 up to 99%. We have thus shown that to some reasonable
extent it is possible to automatically detect the theme of features

Table 4: Total number of aggregated AbstractBuildings.

Dataset Original dataset Classification algorithm

Rotterdam 1 544 618
Waldbruecke 606 248
New York 1 082 015 245
Switzerland 3 151 1 361

in a 3D city model and label their geometries with semantic infor-
mation. Nevertheless, the research is at its early stage and several
challenges have been exposed so several improvements can still
be brought to considerably improve it. We discuss a few of them
here as directions for future work:

LoD detection Analysing the normals of the roof (i.e. top surface
of buildings) is a simple but effective measure in the determina-
tion of the LoD of the data. However, a model of LoD2 that
holds buildings with only flat roofs will not be assigned the cor-
rect class. Therefore, more measures need to be found to catch
more cases and make the LoD classification more robust. Rec-
ognizing details in the wall surfaces and measures to evaluate
the complexity of the models can be valuable additions. Also,
a higher density of geometric properties, vertices and triangles,
could help in determining the LoD, even in higher levels of de-
tail.

Topology recreation The topology recreation gave good results
for the reconstruction of the missing topological relationships,
the setting of the threshold needs improvement or a smarter ap-
proach. Some experiments have been done, and show that taking
a number of random triangles from the model, and use the small-
est x lengths of these triangles to calculate the threshold gave
better results.

Thematic aggregation The approach of using region growing in
te reconstruction of the thematic entities is promising. To fur-
ther improve this method, the available topological information
should be utilised in order to increase the accuracy of the the-
matic aggregation of the BuildingParts, forming the aggregations
Buildings and the AbstractBuilding. The exploitation of this in-
formation, if available, should also allow the reconstruction of the
thematic aggregations from the original dataset.

Semantic classification In order to improve the semantic classi-
fication accuracy, a different order in which the different classes
are labelled should be tested. The approach of first recognising
the WallSurfaces seems to be a good alternative. In such way,
the relative height of the different adjacent classes RoofSurface,
GroundSurface and additionally OuterCeilingSurface and Outer-
FloorSurface can be used to perform the classification.
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