
 SWEEPING RASTER CROSS SECTIONS ALONG TRAJECTORIES
IN THREE-DIMENSIONAL VOXEL MODELS

Ben Gorte1*, Sisi Zlatanova2, Alan Leidner3

1Dept. of Geoscience and Remote Sensing, 2Dept. of Urbanism,
Delft University of Technology, the Netherlands
b.g.h.gorte@tudelft.nl, s.zlatanova@tudelft.nl

3New York Geospatial Catalysts (NYGEOCATS),
leidnera@nyc.rr.com

Commission IV

KEY WORDS: Sweeping, voxelization, 3D grid, underground infrastructure model

ABSTRACT:
The paper presents a new algorithm to reconstruct elongated objects defined by cross sections and trajectories in gridded three-
dimensional models represented as voxels. Examples of such objects are the elements of underground infrastructure in urban
environments, such as pipes, conduits and tunnels. Starting from a basic methodology, which is based on distance transformations,
the algorithm is extended in three ways on the basis of Voronoi datasets being produced alongside.

1. INTRODUCTION

The importance of the underground infrastructure in a modern
urban environment can hardly be over-estimated. Thousands of
kilometers of cables, pipes, ducts and conduits are located
below the street surface of any major city, supporting transport
and distribution of electricity, gas, fresh water, waste water,
and signals for telecommunication (such as telephone, cable
TV and internet), along with manholes and tunnels to provide
access for maintenance and repair. Having good descriptions of
the various sorts of infrastructure seems vital to the companies
and agencies involved, whereas an integration of the different
datasets will support planning, preparation and execution of
any kind of installation and maintenance work. In addition,
having integrated infrastructure information available will be
vital in case of emergencies, such as floods, landslides,
earthquakes and accidents.

When creating and integrating underground infrastructure
information, it is obviously difficult to make new
measurements (Birken e.a., 2002), whereas the existing
information tends to be scattered among the various parties
involved. Moreover it should be acknowledged that free
availability of detailed and integrated underground
infrastructure information involves a vulnerability risk for an
urban society. Therefore, setting up such information requires
flexibility at the side of the input (when dealing with
heterogeneous and scattered data sources), as well as on the
side of the output (when choosing levels of detail, both
geometrically and semantically).

Fortunately, many elements of underground infrastructure, such
as conduits and tunnels, have elongated shapes, which can be
adequately described by a cross section and a trajectory. In this
paper we investigate 3d reconstruction of models on the basis
of exactly these two data sources, which exist in the databases
of the underground infrastructure and utility organisations for
construction and maintenance purposes.

The final objective of the project at hand is to combine
underground infrastructure models with continuously-varying
surrounding soil parameters such as moisture, salinity,

pollutants etc. Therefore, we are aiming to integrate all the
information in a unified voxel representation. We believe this
approach may enable resolving spatial conflicts easily and
allow for various types of spatial computations such as 3d
distances, volumes and cross sections, or determining 3d
topological and other spatial relationships, which seem
problematic in vector domain. Furthermore, modelling
volumetric objects, such as underground, water, walls, air
requires the deployment of complex shapes, which are prone to
validity errors. We are aware that the choice of representing
spatial information (notably geo-information) in raster form,
both in two and three dimensions, is not undisputed. Entering
this discussion, however, is not the goal of this paper. The
purpose of this effort, is to investigate direct raster algorithms
for 3d reconstruction of certain objects.

1.1 Sweeping

The goal of the algorithm we are presenting is commonly
referred to as sweeping. In the field of Constructive Solid
Geometry (CSG) within Computer Graphics sweeping is a way
to describe a three-dimensional primitive volume in terms of a
two-dimensional profile shape (a cross section of the volume)
and a trajectory (a line or curve in 3d space along which the
volume extends). The primitive is defined as the set of all
points that are ‘hit’ by the profile shape when it moves along
the trajectory. The moving shape is kept perpendicular to the
trajectory, but other than that, the shape is not rotating – it is
kept as “upright” as possible, within the perpendicularity
constraint (translational sweep) (Foley et al., 1996).

Sweeping has been implemented in the vector domain, for
example in CAD programs, where it may be performed
interactively and results in a volumetric object bounded by a
polyhedral mesh. Sweeping is also described in the raster
(voxel) domain, for example in (Chen et al. 2000), which
however does not provide an implementation. A possible raster
implementation is obviously to perform the above-mentioned
vector sweep, followed by a solid rasterization of the resulting
polyhedron (Nooruddin and Turk, 2003, Eisemann et al, 2008,
or Gorte and Zlatanova, 2016). We want to address a direct
raster sweep, however, where the profile shape is given as a

* Corresponding author

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W1, 2016
11th 3D Geoinfo Conference, 20–21 October 2016, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprs-annals-IV-2-W1-271-2016

271

https://webmail.tudelft.nl/owa/redir.aspx?C=5BspGDG6X2x34XwOKBS0VUY-OuyQ4fIZ-1GMMV5RafYsA4YRutLTCA..&URL=mailto%3Aleidnera@nyc.rr.com
mailto:s.zlatanova@tudelft.nl
mailto:b.g.h.gorte@tudelft.nl

2D raster “image” (Fig. 2 below) and also the trajectory
consists of a (thin, elongated, either straight or curved) set of
voxels (Fig. 3).

An issue in direct raster approaches is that whenever the
trajectory is not exactly aligned with one of the coordinate
axes, the profile shape has to be re-sampled into the voxel
space. When, in addition, the direction of the trajectory is
varying, because the trajectory is curved or bended, then so is
the transformation between input pixel coordinates and output
voxel coordinates used in the re-sampling. In such cases it is
inevitable that some of the affected output voxels are ‘hit’
multiple times, possibly even with different pixels (having
different values or semantics, between which a choice has to be
made), whereas other voxels are ‘missed’ in the process,
leaving holes in the resulting 3d object (Fig. 1). This has to be
repaired by over-sampling, interpolation and/or anti-aliasing.
We will present hereafter a new, output driven, direct raster
sweeping algorithm, which has the advantage that every
participating output voxel receives its (correct) value only
once.

Figure 1: Multiple assignments and holes in input driven raster
sweep

In an attempt to make the text less abstract, we will first show
the input and the result of the basic algorithm and describe its
principle, before explaining how it works in detail in section 3.
In section 4 we will introduce a number of refinements, which
have in common that they are based on Voronoi images.

2. THE GOAL

We present an algorithm that takes as its input a raster
representation of the cross section of an elongated underground
construction (Fig. 2), as well as a rasterized 2d curve that
marks the trajectory along which the construction extends (Fig.
3). The result of the algorithm is a voxel space in which the
cross section is extruded (‘swept’) along the trajectory (Fig. 4).

Figure 2: Raster image of the cross section of a subway station.
The height of the cross-section gives the height of 3d voxel

space

Figure 3: Trajectory of the subway station. The size of the
trajectory image determines the horizontal extend of the 3d

voxel space

It is assumed that the cross section (Fig. 2), as well as the
trajectory, are already rasterized in the target resolution of the
voxel dataset (0.25m in all examples in this paper). Therefore,
the horizontal extent of the voxel dataset is given by the size of
the trajectory grid, and its height by the cross section height.

The purpose of the algorithm is to fill a voxel ‘block’ V, whose
dimensions are given by the trajectory image (horizontally) and
the cross section image (vertically), with values from the cross
section image C. We need a mapping from 3d coordinates
(x,y,z) to cross section coordinates (u,v), to be able to execute

V[x,y,z] = C[u,v] (1)

for all x,y,z in V. Also see Section 3.

Figure 4. The resulting 3d voxel space with object voxels in
blue and background voxels in grey.

Figure 5: Sample subway station in Melbourne (AUS)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W1, 2016
11th 3D Geoinfo Conference, 20–21 October 2016, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprs-annals-IV-2-W1-271-2016

272

An anchor point (u0,v0) is given in C (Fig 7, right), as well as
an anchor height z0 in V. The points at the trajectory in V at
height z0 will be mapped to (u0,v0), and any point at a height z
= z0 + dz above or below z0 in V is mapped to a point at height
v = v0 + dz in C. The remaining question is to which position
at that line a given (x,y) in the plane is mapped. The answer is
that the in-line coordinate u w.r.t. the anchor u0 is equal to the
(signed) perpendicular distance between (x,y) and the
trajectory line.

3. DETAILED METHODOLOGY

This section explains how to obtain cross sections first, and
signed, perpendicular distances in trajectory images next.

3.1 Cross sections

A picture of a subway station (in Melbourne, AUS, Fig. 5) was
found on the Internet and used as a basis for on-screen
identification of the important elements (floors, walls and
ceilings). The resulting line drawing (Fig. 6) was rasterized to
an estimated 25cm resolution and skeletonized (Serra, 1988)
(Fig. 7) – the latter step is optional, but is sensible under the
assumption that all relevant elements are adequately
represented at a single voxel thickness.

Fig 6. Line drawing of cross section

Fig. 7. Rasterized (left) and skeletonized (right)
cross sections

The cross section in Fig. 7 is binary, having only object (black)
and background (white) values. Our method can easily be
applied to multi-valued cross sections as well. The voxel
values in the desired result, for example encoding semantics
like floor, street level, wall, upper level space, middle level
space, shop space, railroad space and outside space should
appear as the pixel values in the corresponding parts of the
cross section image.

The cross section pixels have integer (u,v) coordinates for their
horizontal and vertical positions, respectively. The indicated
anchor point is the coordinate (u0,v0) of the point in the cross
section image that will exactly follow the trajectory during the
sweep (Fig. 7 right).

3.2 Resampling

During the sweep we fill a block of voxels V with values from
a cross section image C. For this we have to establish a
relation between (x,y,z) coordinates in V and (u,v) coordinates
in C. In a way the problem resembles classical image

resampling, which, for example, is used in geometric
correction of Remote Sensing imagery. Here the objective is to
copy pixel values (densities, radiances, or reflectrances) from
locations (u,v) in an input image I to new locations (x,y) in an
output image O, given a geometric transformation T that links
the two coordinate systems: (x,y) = T(u,v). In some applications
this process is also known as warping, in others as morphing.

The input-driven (or direct) resampling method traverses the
input image and uses T to compute at each input pixel the
location at which its value has to be put in the output image.
The output driven (or indirect) method needs the inverse
transformation T -1, which gives (u,v) = T -1 (x,y). It traverses
the entire output image and computes at each output pixel the
location in the input from which the value has to be taken
(Konecny, 2003).

The input driven method has the disadvantage that T may yield
non-integer (x,y) coordinates from integer (u,v). The question
the becomes where to put a value when the computed location
(x,y) = (456.43,130.66). Moreover it may happen that certain
output locations are targeted more than once (probably with
different decimal fractions) when the image is being spatially
compressed, whereas other output locations are not reached at
all, when the image is being expanded. Post-processing may
overcome those disadvantages, but the important observation is
here that output driven method does not have them! If the
(integer) output coordinates (x,y) transform into fractional
input coordinates (u,v), then interpolation can be easily applied
on-the-fly (e.g. nearest neighbour, bilinear interpolation or
cubic convolution). Moreover, every output pixel will obtain
one and only one value. For completeness we notice that the
choice between the input and the output driven method also
depends on the availability of T and T -1.

We will develop voxel sweep in an output driven (“indirect”)
way, using a transformation that gives for every (x,y,z)
coordinate in the voxel space V exactly one (u,v) coordinate in
the cross section image C. This transformation would have the
role of T -1 in the above formulation.

Note that this transformation is not necessarily expressed in a
single formula. Besides, “our” transformation cannot be easily
inverted; for a direct method one would have to follow a
different approach. An obvious attempt would be to define and
construct planes in the voxel space, perpendicular to the
trajectory. This, however, requires the trajectory’s (local)
direction, which may be not easily established when it only
exists as a set of voxels. Also because of the above-mentioned
other, more general, issues of input-driven methods we will not
pursue this any further here.

The voxel space V can be considered a stack of rectangular
slices, each having a one voxel thickness. The voxels inside a
slice have (x,y) coordinates, and each slice has a z coordinate.
Initially V is empty (every voxel has the nodata value), except
for one slice at z0 that contains the trajectory image of Fig. 3.
The trajectory is a simple, connected, thin (skeletonized, as
mentioned above) linear shape; it may be piecewise linear or
curved. In the current implementation it may not be a closed
loop or intersect itself.

V is large enough to contain the entire swept object.

3.3 Distance Computation

We consider an image that contains objects, having non-zero
pixel values, against a background of pixels with value zero (or
nodata), and define distance transform as the operation that

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W1, 2016
11th 3D Geoinfo Conference, 20–21 October 2016, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprs-annals-IV-2-W1-271-2016

273

computes for every background pixel the distance to the
nearest object pixel. The resulting distances are stored in the
image pixels (replacing the zeroes or nodata), whereby zero is
assigned to the original object pixels. An extremely efficient
algorithm to compute approximate distances is provided by
Borgefors (1989), which we mention here because it sparked
the ideas for the current algorithm. Unfortunately, the
approximation was found a bit too coarse. Therefore we
sacrifice some performance and use a general nearest
neighbour algorithm.

0 125

Fig 8: Distance Transform of Trajectory Image. The location of
the trajectory is at the darkest-blue pixels with value 0 (see

Fig. 3). All other colours denote distances (in pixels) from each
pixel to the nearest trajectory pixel

The input is the trajectory image T, as shown in Fig. 3., where
the line is the object, and the remainder is background. The
(x,y) coordinates of the image pixels correspond to the
horizontal (x,y) coordinates of the voxel space V, introduced
above. The coordinates of the object pixels form a list of (here)
400 coordinate pairs, called data points, whereas the set of
coordinates of all image pixels yields (here) 200x400=80 000
pairs, which we call query points. The approximate nearest
neighbour (ANN) algorithm (Arya et al., 1998) yields two
results: 1) a list of 80 000 distances between each query point
and the nearest data point, and 2) a list of 80 000 id-s of the
nearest data point at each query point (here an id is a number
between 0 and 399). We re-arrange those to become pixel
values in images having the same size as the trajectory image:
a distance image (Fig. 8) and a so-called Voronoi image (Fig
10). The values in the Voronoi image denote at each pixel
which is the nearest trajectory pixel.

-117 0 125

Fig. 9: Signed distances. The distances at one side of the
trajectory (here ‘above’ it) have been negated. The trajectory

itself is still the set of pixels with value 0 (see Fig. 3)

In this section we only use the distance result (Fig 8). A bit
further down in Section 3.4 we will use the distance between a
voxel and the trajectory to select pixels in the cross section
image having that distance to the anchor point. However, in
Fig. 8 all distances are positive - the same values occur at
either side of the trajectory. To obtain a unique identification

we need signed distances: negative at one side of the trajectory,
positive at the other side (and 0 at the trajectory). Those signed
distances are shown in Fig. 9.

‘Signing’ the distances is a straightforward operation here, but
a more involved method is needed when having complex
trajectories, such as closed loops and self-intersecting curves.

0 399

Figure 10: The trajectory pixels are numbered uniquely, here
with values 0 .. 399 (top). The values in the Voronoi image
denote at each pixel which is the nearest trajectory pixel.

(bottom).

3.4 Pixel selection

In the next step, multiple copies of the signed distance image
are stacked on top of each other, to form a set of voxels with
the size of V. At each (x,y,z) position in this stack, therefore,
we find a distance value d(x,y,z), and d(x,y,z1) = d(x,y,z2) for all
x, y, z1 and z2.

The height of a voxel in the stack w.r.t. the trajectory, i.e. z-z0,
determines the height within the cross section image, v-v0,
from which the value for that voxel should be taken. In other
words, the wanted pixel is in the scanline of the cross section
image at that particular height.

The signed distance d(x,y,z), at the same time, determines the
horizontal distance u-u0 between the wanted pixel and the
anchor point.

This completes the required transformation between (x,y,z) and
(u,v):

V(x,y,z) = C(d(x,y,z)+u0 , z–z0+v0) (2)

Traversing the entire space V, i.e. visiting all valid x, y and z
combinations, and applying the above substitution, assigns to
all voxels in V the corresponding value of C. At voxels far
away from the trajectory in V, the process will generate (u,v)
coordinates outside C. This should not be considered an error,
but a nodata value will remain in those voxels.
When looking back at Fig. 1, it should now be clear that also
the unassigned voxels region on the right hand side will be
filled with distance values, all being the distance from a voxel
in that region to the corner point of the trajectory. After
applying substitution (2), circular arcs will be formed in this
region from each feature in C at a particular distance, with a

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W1, 2016
11th 3D Geoinfo Conference, 20–21 October 2016, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprs-annals-IV-2-W1-271-2016

274

radius equal to that distance (Figures 4 and 9). At the left hand
side in Fig. 1, each voxel in the ‘multiple assigned voxel’
region has only one distance value, and will be assigned a
value from C only once by (2). There, a set of voxels having a
certain distance value will form a sharp bend, like the
trajectory itself (at distance 0).

4. REFINEMENTS AND EXTENSIONS

In order to further increase the functionality, we present three
refinements to the algorithm, based on the Voronoi image that
was introduced above. They are intended to handle,
respectively

1. Slope
2. Perpendicular cut-off
3. Multiple cross sections.

First we build another block of voxels with the same size as V,
by stacking multiple copies of the Voronoi image of Fig. 10. At
each location in this block we can find which voxel (in the set
of uniquely numbered trajectory voxels) is closest to that
location. When the set of (uniquely numbered) input voxels
forms a line, the Voronoi stack subdivides the space into
segments that extend perpendicular to that line.

4.1 Slope

In the above, the extruded construction could only proceed
horizontally along the trajectory. The height z in the extruded
model was always equal to the height v in the cross section.

Fig 11. Sloped model. The height of the object (metro station)
w.r.t. the terrain is gradually increasing when looking from the

front to the back of the view. Note that the view displays a
voxel model. Therefore the height variation occurs in discrete
steps, which show up as a kind of contour lines at the roof of

the object.

In order to allow for the extruded construction to follow a
varying height, we let the trajectory be 3-dimensional,
traversing multiple “layers” in the input stack. At each (x,y) in
the trajectory we can have a different z – of course it makes
sense to have z varying only smoothly. From the Voronoi image
we can learn at each (x,y) which is the nearest trajectory point
p and find the zp of that point in a lookup table. This zp is
subsequently taken into consideration when computing the v
coordinate in the cross section image (Fig. 11). Instead of
copying the value from height z–z0+v0 in substitution (2), we
now use z–zp +v0 , where zp varies along the trajectory.

4.2 Perpendicular Cut-off

In the examples shown so far, the block of voxels was filled
from end to end with the extruded model. When the trajectory
is not covering the full length of the trajectory image, it
probably more appropriate to cut off the model at a boundary
that is perpendicular to the (local) direction at the end of the
trajectory. Rather than trying to estimate this local direction,
we propose to achieve this is by extending the trajectory
beyond the desired cut-off point, and select the wanted part of
the model on the basis of the Voronoi values within the proper
limits. In the example shown (Fig. 12), we extended both sides
of the trajectory (which was having voxels values within 0 ..
399) with three additional voxels. The unique numbers are
now between -3 and 402. Then the entire process is repeated,
but in the final stage we only give cross section image values
to those voxels where the Voronoi stack is within the original
range 0 .. 399 (leaving nodata for the remaining locations).
The boundary between the sets of Voronoi voxels with values
below 0 vs. values equal to or greater then 0, respectively, is
perpendicular to the trajectory at that point (between -1 and 0).

Figure 12. Perpendicularly cut-off model

 0

 1

 2

 3

 4

Figure 13: Library of cross sections

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W1, 2016
11th 3D Geoinfo Conference, 20–21 October 2016, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprs-annals-IV-2-W1-271-2016

275

4.3 Multiple cross sections

The final refinement concerns objects having multiple cross
sections along a single trajectory, for example as in a subway
station having floors with different lengths along the railway
track. In this case, the algorithm allows for using a library of
cross sections (Fig. 13). In the example presented we have
three different ones, and an additional two to mark the
boundaries between those by placing a vertical wall
perpendicular to the trajectory. A lookup table (Table 1) on the
Voronoi image is used to select amongst the models in the
library (Fig 14).

Whereas in the previous example the reader might consider it
doubtful to be presented a subway station with a sharp bend in
the middle, this final example shows a smooth curve. This
possibility, however, was already covered by the algorithm of
Section 3.

Table 1: Lookup table indicating different cross section image
depending on the locations along the trajectory

Voronoi values
(trajectory voxel id)

Cross section
number

0 - 298 0

299 - 300 1

301 - 358 2

359 - 360 3

361 - 399 4

In all the above cases it is required to slightly smoothen the
Voronoi image, in order to ensure its continuity (within the
discretization limitations).

Fig. 14: Model consisting of multiple cross sections

5. CONCLUSION

We have presented an algorithm for reconstruction of elongated
objects with fixed cross sections, extending along arbitrary
trajectories. Both input and output of the algorithms are
structured as rasters, in 2d and 3d respectively. The process
greatly benefits from an output driven approach, which ensures
that the correct value is once and only once assigned to each
voxel in the resulting 3d model, without requiring any post
processing.

We also presented extensions of the algorithm to handle sloped
trajectories, perpendicular cut-offs and models using multiple
cross sections, each of these on the basis of the Voronoi image,
which comes as a by-product of distance transform. We expect
the algorithm to be a useful extension of a toolbox, which we
have under construction in the course of an effort to map
underground infrastructure in urban environments, and to
integrate it with above-ground voxel models (Gorte and
Zlatanova, 2016).

References

Arya S., D. M. Mount, N. S. Netanyahu, R. Silverman and A.
Wu, 1998, Optimal Algorithm for Approximate Nearest
Neighbor Searching in Fixed Dimensions, Journal of the ACM,
1998, 45(6): pp. 891-923

Birken R., D. E. Miller, M. Burns, P. Albats, R. Casadonte, R.
Deming, T. Derubeis, Th. B. Hansen, M. Oristaglio, 2002.
Efficient large-scale underground utility mapping in New York
city using a multichannel ground-penetrating imaging radar
system. Proc. SPIE 4758, Ninth International Conference on
Ground Penetrating Radar, 186 (April 15, 2002);
doi:10.1117/12.462307

Borgefors G., 1989, Distance transformations in digital images,
Computer Vision, Graphics, and Image Processing Volume 34,
Issue 3, pp. 344-371

Eisemann, E. and Décoret, X., 2008, Single-pass GPU solid
voxelization for real-time applications, Proceedings of
Graphics Interface 2008, pp. 73-80

Foley J.D., A. van Dam, S.K. Feiner and J.D. Hughes, 1996,
Computer Graphics Principles and Practice, Addison-Wesley,
1996.

Gorte B. and W Koolhoven, 1990, Interpolation between
isolines based on the Borgefors distance transform, ITC
Journal 1990 No. 3, pp. 245-249

Gorte, B, and S. Zlatanova, 2016, Rasterization and
voxelization of two- and three-dimensional space partitionings.
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 2016,
XLI-B4, pp. 283-288

Konecny, G, 2003, Geoinformation: Remote Sensing,
Photogram-metry and Geographical Information Systems,
Taylor and Francis

Nooruddin F. and G. Turk, 2003, Simplification and Repair of
Polygonal Models Using Volumetric Techniques, IEEE Trans.
on Visualization and Computer Graphics, vol. 9, nr. 2, April
2003, pp. 191-205

Serra J., 1988, Image Analysis and Mathematical Morphology,
Volume 2: Theoretical Advances, Academic Press, ISBN 0-12-
637241-1

Wu Z., H. S. Seah and F. Lin, 2000, NURBS Volume for
Modelling Complex Objects in: Chen M, A.E. Kaufman, R.
Yagel (eds.): Volume Graphics, Springer (2000) p. 159-170

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W1, 2016
11th 3D Geoinfo Conference, 20–21 October 2016, Athens, Greece

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprs-annals-IV-2-W1-271-2016

276

	1. Introduction
	1.1 Sweeping

	2. The GOAL
	3. DETAILED Methodology
	3.1 Cross sections
	3.2 Resampling
	3.3 Distance Computation
	3.4 Pixel selection

	4. REFINEMENTS and ExTensions
	4.1 Slope

	5. CONCLUSION

