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ABSTRACT: 
The paper presents a new algorithm to reconstruct elongated objects defined by cross sections and trajectories in gridded three-
dimensional  models  represented  as  voxels.  Examples  of such objects  are  the  elements  of underground infrastructure  in  urban
environments, such as pipes, conduits and tunnels. Starting from a basic methodology, which is based on distance transformations,
the algorithm is extended in three ways on the basis of Voronoi datasets being produced alongside.

1. INTRODUCTION

The importance of the underground infrastructure in a modern
urban environment can hardly be over-estimated. Thousands of
kilometers  of  cables,  pipes,  ducts  and  conduits  are  located
below the street surface of any major city, supporting transport
and  distribution  of electricity, gas,  fresh  water,  waste  water,
and  signals  for  telecommunication  (such  as  telephone,  cable
TV and internet), along with manholes and tunnels to provide
access for maintenance and repair. Having good descriptions of
the various sorts of infrastructure seems vital to the companies
and agencies involved, whereas an integration of the different
datasets  will  support  planning,  preparation  and  execution  of
any kind  of installation  and  maintenance  work.  In addition,
having integrated  infrastructure  information available  will  be
vital  in  case  of  emergencies,  such  as  floods,  landslides,
earthquakes and accidents.

When  creating  and  integrating  underground  infrastructure
information,  it  is  obviously  difficult  to  make  new
measurements  (Birken  e.a.,  2002),  whereas  the  existing
information  tends  to  be  scattered  among the  various  parties
involved.  Moreover  it  should  be  acknowledged  that  free
availability  of  detailed  and  integrated  underground
infrastructure  information involves a vulnerability risk for an
urban society. Therefore, setting up such information requires
flexibility  at  the  side  of  the  input  (when  dealing  with
heterogeneous and scattered  data  sources),  as well  as on the
side  of  the  output  (when  choosing  levels  of  detail,  both
geometrically and semantically).

Fortunately, many elements of underground infrastructure, such
as conduits and tunnels, have elongated shapes, which can be
adequately described by a cross section and a trajectory. In this
paper we investigate 3d reconstruction of models on the basis
of exactly these two data sources, which exist in the databases
of the underground infrastructure  and utility organisations for
construction and maintenance purposes.

The  final  objective  of  the  project  at  hand  is  to  combine
underground  infrastructure  models  with  continuously-varying
surrounding  soil  parameters  such  as  moisture,  salinity,

pollutants  etc.  Therefore,  we  are  aiming  to integrate  all  the
information in a unified voxel representation. We believe this
approach  may  enable  resolving  spatial  conflicts  easily  and
allow  for  various  types  of  spatial  computations  such  as  3d
distances,  volumes  and  cross  sections,  or  determining  3d
topological  and  other  spatial  relationships,  which  seem
problematic  in  vector  domain.  Furthermore,  modelling
volumetric  objects,  such  as  underground,  water,  walls,  air
requires the deployment of complex shapes, which are prone to
validity errors.  We are  aware  that  the choice of representing
spatial  information  (notably geo-information)  in  raster  form,
both in two and three dimensions, is not undisputed. Entering
this  discussion,  however,  is  not  the  goal  of this  paper.  The
purpose of this effort, is to investigate direct raster algorithms
for 3d reconstruction of certain objects.

1.1 Sweeping

The  goal  of  the  algorithm  we  are  presenting  is  commonly
referred  to  as  sweeping.  In  the  field  of  Constructive  Solid
Geometry (CSG) within Computer Graphics sweeping is a way
to describe a three-dimensional primitive volume in terms of a
two-dimensional  profile shape (a cross section of the volume)
and a  trajectory (a line or curve in 3d space along which the
volume  extends).  The  primitive  is  defined  as  the  set  of  all
points that are ‘hit’ by the profile shape when it moves along
the trajectory. The moving shape is kept perpendicular  to the
trajectory, but other than that, the shape is not rotating – it is
kept  as  “upright”  as  possible,  within  the  perpendicularity
constraint (translational sweep) (Foley et al., 1996).

Sweeping  has  been  implemented  in  the  vector  domain,  for
example  in  CAD  programs,  where  it  may  be  performed
interactively and results  in a volumetric object bounded by a
polyhedral  mesh.  Sweeping  is  also  described  in  the  raster
(voxel)  domain,  for  example  in  (Chen  et  al.  2000),  which
however does not provide an implementation. A possible raster
implementation is  obviously to perform the above-mentioned
vector sweep, followed by a solid rasterization of the resulting
polyhedron (Nooruddin and Turk, 2003, Eisemann et al, 2008,
or Gorte  and  Zlatanova,  2016).  We want  to address  a direct
raster  sweep,  however, where the profile  shape is given as a
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2D  raster  “image”  (Fig.  2  below)  and  also  the  trajectory
consists of a (thin, elongated, either straight or curved) set of
voxels (Fig. 3).

An  issue  in  direct  raster  approaches  is  that  whenever  the
trajectory is  not  exactly  aligned  with  one  of  the  coordinate
axes,  the  profile  shape  has  to  be  re-sampled  into  the  voxel
space.  When,  in  addition,  the  direction  of  the  trajectory  is
varying, because the trajectory is curved or bended, then so is
the transformation between input pixel coordinates and output
voxel coordinates  used in the re-sampling. In such cases it  is
inevitable  that  some  of  the  affected  output  voxels  are  ‘hit’
multiple  times,  possibly  even  with  different  pixels  (having
different values or semantics, between which a choice has to be
made),  whereas  other  voxels  are  ‘missed’  in  the  process,
leaving holes in the resulting 3d object (Fig. 1). This has to be
repaired  by over-sampling,  interpolation  and/or  anti-aliasing.
We will  present  hereafter  a  new, output  driven,  direct  raster
sweeping  algorithm,  which  has  the  advantage  that  every
participating  output  voxel  receives  its  (correct)  value  only
once.

Figure 1: Multiple assignments and holes in input driven raster
sweep

In an attempt to make the text less abstract, we will first show
the input and the result of the basic algorithm and describe its
principle, before explaining how it works in detail in section 3.
In section 4 we will introduce a number of refinements, which
have in common that they are based on Voronoi images.

2. THE GOAL

We present  an  algorithm  that  takes  as  its  input  a  raster
representation of the cross section of an elongated underground
construction  (Fig.  2),  as  well  as  a  rasterized  2d  curve  that
marks the trajectory along which the construction extends (Fig.
3).  The result  of the algorithm is a voxel space in which the
cross section is extruded (‘swept’) along the trajectory (Fig. 4).

Figure 2: Raster image of the cross section of a subway station.
The height of the cross-section gives the height of 3d voxel

space

Figure 3: Trajectory of the subway station. The size of the
trajectory image determines the horizontal extend of the 3d

voxel space 

It is  assumed  that  the  cross  section (Fig.  2),  as  well  as  the
trajectory, are already rasterized in the target resolution of the
voxel dataset (0.25m in all examples in this paper). Therefore,
the horizontal extent of the voxel dataset is given by the size of
the trajectory grid, and its height by the cross section height. 

The purpose of the algorithm is to fill a voxel ‘block’ V, whose
dimensions are given by the trajectory image (horizontally) and
the cross section image (vertically), with values from the cross
section  image  C.  We need  a  mapping  from 3d  coordinates
(x,y,z) to cross section coordinates (u,v), to be able to execute

V[x,y,z] = C[u,v]            (1)

for all x,y,z in V. Also see Section 3.

Figure 4. The resulting 3d voxel space with object voxels in
blue and background voxels in grey.

Figure 5: Sample subway station in Melbourne (AUS)
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An anchor point (u0,v0) is given in C (Fig 7, right), as well as
an anchor height  z0 in  V. The points at the trajectory in  V at
height z0 will be mapped to (u0,v0), and any point at a height z
= z0 + dz above  or below z0 in V is mapped to a point at height
v = v0 + dz in C.   The remaining question is to which position
at that line a given (x,y) in the plane is mapped. The answer is
that the in-line coordinate u w.r.t. the anchor u0 is equal to the
(signed)  perpendicular  distance  between  (x,y)  and  the
trajectory line.

3. DETAILED METHODOLOGY

This  section explains  how to obtain  cross  sections first,  and
signed, perpendicular distances in trajectory images next. 

3.1 Cross sections

A picture of a subway station (in Melbourne, AUS, Fig. 5) was
found  on  the  Internet  and  used  as  a  basis  for  on-screen
identification  of  the  important  elements  (floors,  walls  and
ceilings). The resulting line drawing (Fig. 6) was rasterized to
an estimated  25cm resolution and skeletonized (Serra,  1988)
(Fig. 7) – the latter step is optional, but is sensible under the
assumption  that  all  relevant  elements  are  adequately
represented at a single voxel thickness.

Fig 6. Line drawing of cross section

Fig. 7. Rasterized (left) and skeletonized (right) 
cross sections

The cross section in Fig. 7 is binary, having only object (black)
and  background (white)  values.  Our  method  can  easily  be
applied  to  multi-valued  cross  sections  as  well.  The  voxel
values in  the desired  result,  for example encoding semantics
like  floor,  street  level,  wall,  upper level  space,  middle  level
space,  shop  space,  railroad  space and  outside  space  should
appear  as  the  pixel  values  in  the  corresponding parts  of the
cross section image.

The cross section pixels have integer (u,v) coordinates for their
horizontal  and  vertical  positions,  respectively.  The  indicated
anchor point is the coordinate (u0,v0) of the point in the cross
section image that will exactly follow the trajectory during the
sweep (Fig. 7 right). 

3.2  Resampling

During the sweep we fill a block of voxels V with values from
a  cross  section  image  C.  For  this  we  have  to  establish  a
relation between (x,y,z) coordinates in V and (u,v) coordinates
in  C.  In  a  way  the  problem  resembles  classical  image

resampling,  which,  for  example,  is  used  in  geometric
correction of Remote Sensing imagery. Here the objective is to
copy pixel values (densities,  radiances,  or reflectrances) from
locations (u,v) in an input image I to new locations (x,y) in an
output image O, given a geometric transformation T  that links
the two coordinate systems: (x,y) = T(u,v). In some applications
this process is also known as warping, in others as morphing.

The  input-driven (or  direct)  resampling method traverses  the
input  image  and  uses  T to  compute  at  each  input  pixel  the
location at which its value has to be put in the output image.
The  output  driven (or  indirect)  method  needs  the  inverse
transformation  T -1, which gives (u,v) =  T -1 (x,y). It traverses
the entire output image and computes at each output pixel the
location  in  the  input  from which  the  value  has  to  be  taken
(Konecny, 2003).

The input driven method has the disadvantage that T may yield
non-integer (x,y) coordinates  from integer (u,v).  The question
the becomes where to put a value when the computed location
(x,y) = (456.43,130.66).  Moreover it  may happen that certain
output  locations  are  targeted  more  than  once (probably with
different decimal fractions) when the image is being spatially
compressed, whereas other output locations are not reached at
all,  when the image is  being expanded.  Post-processing may
overcome those disadvantages, but the important observation is
here  that  output  driven  method  does  not  have  them! If the
(integer)  output  coordinates  (x,y)  transform  into  fractional
input coordinates (u,v), then interpolation can be easily applied
on-the-fly  (e.g.  nearest  neighbour,  bilinear  interpolation  or
cubic  convolution).  Moreover, every output  pixel  will  obtain
one and only one value.  For completeness  we notice that  the
choice between the  input  and the  output  driven method also
depends on the availability of T and T -1.

We will  develop voxel sweep in an output driven (“indirect”)
way,  using  a  transformation  that  gives  for  every  (x,y,z)
coordinate in the voxel space V exactly one (u,v) coordinate in
the cross section image C. This transformation would have the
role of T -1 in the above formulation. 

Note that this transformation is not necessarily expressed in a
single formula. Besides, “our” transformation cannot be easily
inverted;  for  a  direct  method  one  would  have  to  follow  a
different approach. An obvious attempt would be to define and
construct  planes  in  the  voxel  space,  perpendicular  to  the
trajectory.  This,  however,  requires  the  trajectory’s  (local)
direction,  which  may be  not  easily  established  when it  only
exists as a set of voxels. Also because of the above-mentioned
other, more general, issues of input-driven methods we will not
pursue this any further here.

The voxel  space  V  can be considered  a  stack  of rectangular
slices, each having a one voxel thickness. The voxels inside a
slice have (x,y) coordinates, and each slice has a z coordinate.
Initially V is empty (every voxel has the nodata value), except
for one slice at  z0 that contains the trajectory image of Fig. 3.
The  trajectory is  a  simple,  connected,  thin  (skeletonized,  as
mentioned above) linear shape; it  may be piecewise linear  or
curved.  In the current  implementation it  may not be a closed
loop or intersect itself.
 
V is large enough to contain the entire swept object.

3.3 Distance Computation 

We consider  an image that  contains  objects,  having non-zero
pixel values, against a background of pixels with value zero (or
nodata),  and define  distance transform as  the operation that
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computes  for  every  background  pixel  the  distance  to  the
nearest  object pixel.  The resulting distances are stored in the
image pixels (replacing the zeroes or nodata), whereby zero is
assigned to the  original  object  pixels.  An extremely efficient
algorithm  to  compute  approximate  distances  is  provided  by
Borgefors (1989),  which we mention here  because it  sparked
the  ideas  for  the  current  algorithm.  Unfortunately,  the
approximation  was  found  a  bit  too  coarse.  Therefore  we
sacrifice  some  performance  and  use  a  general  nearest
neighbour algorithm. 

0                                             125

Fig 8: Distance Transform of Trajectory Image. The location of
the trajectory is at the darkest-blue pixels with value 0 (see

Fig. 3). All other colours denote distances (in pixels) from each
pixel to the nearest trajectory pixel

The input is the trajectory image T, as shown in Fig. 3., where
the line  is  the object,  and the remainder  is background.  The
(x,y)  coordinates  of  the  image  pixels  correspond  to  the
horizontal  (x,y) coordinates  of the  voxel  space V, introduced
above. The coordinates of the object pixels form a list of (here)
400  coordinate  pairs,  called  data  points,  whereas  the  set  of
coordinates of all image pixels yields (here) 200x400=80 000
pairs,  which  we  call  query points.  The  approximate  nearest
neighbour  (ANN)  algorithm  (Arya  et  al.,  1998)  yields  two
results: 1) a list of 80 000 distances between each query point
and the nearest  data point, and 2) a list  of 80 000 id-s of the
nearest data point at each query point (here an id is a number
between  0  and  399).  We re-arrange  those  to  become  pixel
values in images having the same size as the trajectory image:
a distance image (Fig. 8) and a so-called Voronoi image (Fig
10).  The  values  in  the  Voronoi  image  denote  at  each  pixel
which is the nearest trajectory pixel.

-117                   0                     125

Fig. 9: Signed distances. The distances at one side of the
trajectory (here ‘above’ it) have been negated. The trajectory

itself is still the set of pixels with value 0 (see Fig. 3)

In this  section we only use the distance result  (Fig 8).  A bit
further down in Section 3.4 we will use the distance between a
voxel  and  the  trajectory to  select  pixels  in  the  cross  section
image having  that distance to the anchor point.  However, in
Fig.  8  all  distances  are  positive  -  the  same  values  occur  at
either  side of the trajectory. To obtain a unique identification

we need signed distances: negative at one side of the trajectory,
positive at the other side (and 0 at the trajectory). Those signed
distances are shown in Fig. 9. 

‘Signing’ the distances is a straightforward operation here, but
a  more  involved  method  is  needed  when  having  complex
trajectories, such as closed loops and self-intersecting curves. 

0                                             399

Figure 10: The trajectory pixels are numbered uniquely, here
with values 0 .. 399 (top). The values in the Voronoi image
denote at each pixel which is the nearest trajectory pixel.

(bottom). 

3.4 Pixel selection

In the next step, multiple copies of the signed distance image
are stacked on top of each other, to form a set of voxels with
the size of V. At each (x,y,z) position in this stack, therefore,
we find a distance value d(x,y,z), and d(x,y,z1) = d(x,y,z2) for all
x, y, z1 and z2.

The height of a voxel in the stack w.r.t. the trajectory, i.e. z-z0,
determines  the  height  within  the  cross  section  image,  v-v0,
from which the value for that voxel should be taken.  In other
words, the wanted pixel is in the scanline of the cross section
image at that particular height.

The signed distance d(x,y,z), at the same time, determines the
horizontal  distance  u-u0 between  the  wanted  pixel  and  the
anchor point. 

This completes the required transformation between (x,y,z) and
(u,v):

V(x,y,z) = C(d(x,y,z)+u0 , z–z0+v0)   (2)

Traversing the entire space V, i.e. visiting all valid  x, y and z
combinations,  and applying the above substitution,  assigns to
all  voxels  in  V the  corresponding value  of  C.  At voxels  far
away from the trajectory in  V, the process will  generate (u,v)
coordinates outside C. This should not be considered an error,
but a nodata value will remain in those voxels.
When looking back at Fig. 1, it should now be clear that also
the  unassigned  voxels  region on the  right  hand  side  will  be
filled with distance values, all being the distance from  a voxel
in  that  region  to  the  corner  point  of  the  trajectory.  After
applying substitution (2),  circular arcs will  be formed in this
region from each feature in  C at a particular distance, with a
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radius equal to that distance (Figures 4 and 9). At the left hand
side  in  Fig.  1,   each voxel  in  the  ‘multiple  assigned  voxel’
region  has  only one  distance  value,  and  will  be  assigned  a
value from C only once by (2). There, a set of voxels having a
certain  distance  value  will  form  a  sharp  bend,  like  the
trajectory itself (at distance 0).
 

4. REFINEMENTS AND EXTENSIONS

In order to further increase the functionality, we present three
refinements to the algorithm, based on the Voronoi image that
was  introduced  above.  They  are  intended  to  handle,
respectively

1. Slope
2. Perpendicular cut-off
3. Multiple cross sections.

First we build another block of voxels with the same size as V,
by stacking multiple copies of the Voronoi image of Fig. 10. At
each location in this block we can find which voxel (in the set
of  uniquely  numbered  trajectory  voxels)  is  closest  to  that
location.  When the  set  of (uniquely numbered)  input  voxels
forms  a  line,  the  Voronoi  stack  subdivides  the  space  into
segments that extend perpendicular to that line. 

4.1   Slope

In  the  above,  the  extruded  construction  could  only proceed
horizontally along the trajectory. The height  z in the extruded
model was always equal to the height v in the cross section.
  

Fig 11. Sloped model. The height of the object (metro station)
w.r.t. the terrain is gradually increasing when looking from the

front to the back of the view. Note that the view displays a
voxel model. Therefore the height variation occurs in discrete
steps, which show up as a kind of contour lines at the roof of

the object.

In  order  to  allow for  the  extruded  construction  to  follow a
varying  height,  we  let  the  trajectory  be  3-dimensional,
traversing multiple “layers” in the input stack. At each (x,y) in
the trajectory we can have a different  z – of course it  makes
sense to have z varying only smoothly. From the Voronoi image
we can learn at each (x,y) which is the nearest trajectory point
p and find the  zp of that  point  in  a lookup table.  This  zp is
subsequently taken  into consideration when computing the  v
coordinate  in  the  cross  section  image  (Fig.  11).  Instead  of
copying the value from height  z–z0+v0   in substitution (2), we
now use  z–zp +v0 , where  zp  varies along the trajectory.

4.2 Perpendicular Cut-off

In the examples  shown so far, the block of voxels was filled
from end to end with the extruded model. When the trajectory
is  not  covering  the  full  length  of  the  trajectory  image,  it
probably more appropriate to cut off the model at a boundary
that is perpendicular to the (local) direction at the end of the
trajectory. Rather  than trying to estimate  this  local direction,
we  propose  to  achieve  this  is  by  extending  the  trajectory
beyond the desired cut-off point, and select the wanted part of
the model on the basis of the Voronoi values within the proper
limits. In the example shown (Fig. 12), we extended both sides
of the trajectory (which was having voxels values within 0 ..
399)  with  three  additional  voxels.  The  unique  numbers  are
now between -3 and 402. Then the entire process is repeated,
but in the final stage we only give cross section image values
to those voxels where the Voronoi stack is within the original
range 0 ..  399  (leaving  nodata for the  remaining  locations).
The boundary between the sets of Voronoi voxels with values
below 0 vs. values equal to or greater then 0, respectively, is
perpendicular to the trajectory at that point (between -1 and 0).

Figure 12. Perpendicularly cut-off model

 0

 1

 2

 3

 4

Figure 13: Library of cross sections  
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4.3 Multiple cross sections

The  final  refinement  concerns  objects  having  multiple  cross
sections along a single trajectory, for example as in a subway
station having floors with different  lengths along the railway
track. In this case, the algorithm allows for using a library of
cross  sections  (Fig.  13).  In the  example  presented  we  have
three  different  ones,  and  an  additional  two  to  mark  the
boundaries  between  those  by  placing  a  vertical  wall
perpendicular to the trajectory. A lookup table (Table 1) on the
Voronoi  image  is  used  to  select  amongst  the  models  in  the
library (Fig 14). 

Whereas in the previous example the reader might consider it
doubtful to be presented a subway station with a sharp bend in
the  middle,  this  final  example  shows  a  smooth  curve.  This
possibility, however, was already covered by the algorithm of
Section 3.

Table 1: Lookup table indicating different cross section image
depending on the locations along the trajectory

Voronoi values
(trajectory voxel id)

Cross section
number

0 - 298 0

299 - 300 1

301 - 358 2

359 - 360 3

361 - 399 4

In all  the above cases  it  is  required  to slightly smoothen the
Voronoi  image,  in  order  to  ensure  its  continuity (within  the
discretization limitations).

Fig. 14: Model consisting of multiple cross sections

5. CONCLUSION

We have presented an algorithm for reconstruction of elongated
objects  with  fixed  cross  sections,  extending  along  arbitrary
trajectories.  Both  input  and  output  of  the  algorithms  are
structured  as  rasters,  in  2d and  3d respectively. The process
greatly benefits from an output driven approach, which ensures
that the correct value is once and only once assigned to each
voxel  in  the  resulting  3d  model,  without  requiring  any post
processing.
  

We also presented extensions of the algorithm to handle sloped
trajectories,  perpendicular  cut-offs and models using multiple
cross sections, each of these on the basis of the Voronoi image,
which comes as a by-product of distance transform. We expect
the algorithm to be a useful extension of a toolbox, which we
have  under  construction  in  the  course  of  an  effort  to  map
underground  infrastructure  in  urban  environments,  and  to
integrate  it  with  above-ground  voxel  models  (Gorte  and
Zlatanova, 2016).
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