ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W1, 2016
11th 3D Geoinfo Conference, 20-21 October 2016, Athens, Greece

TOWARDS AUTOMATIC PROCESSING OF VIRTUAL CITY MODELS FOR
SIMULATIONS

R. Piepereit™* A. Schilling®, N. Alam®, M. Wewetzer®, M. Pries®, V. Coors®

* Beuth Hochschule fiir Technik Berlin - University of Applied Sciences, Department II, Luxemburger StraBe 10, 13353 Berlin, Germany -

(rpiepereit, mwewetzer, pries) @beuth-hochschule.de
" HFT Stuttgart - University of Applied Sciences, Faculty C, SchellingstraBe 24, 70174 Stuttgart, Germany -
(nazmul.alam, volker.coors) @hft-stuttgart.de
¢ virtualcitySYSTEMS GmbH, Tauentzienstrale 7b/c, 10789 Berlin, Germany -
aschilling @virtualcitysystems.de

KEY WORDS: 3D City models processing, CityGML, STEP, B-splines, Coons, Quality

ABSTRACT:

Especially in the field of numerical simulations, such as flow and acoustic simulations, the interest in using virtual 3D models to
optimize urban systems is increasing. The few instances in which simulations were already carried out in practice have been associated
with an extremely high manual and therefore uneconomical effort for the processing of models. Using different ways of capturing
models in Geographic Information System (GIS) and Computer Aided Engineering (CAE), increases the already very high complexity
of the processing. To obtain virtual 3D models suitable for simulation, we developed a tool for automatic processing with the goal to
establish ties between the world of GIS and CAE. In this paper we introduce a way to use Coons surfaces for the automatic processing
of building models in LoD2, and investigate ways to simplify LoD3 models in order to reduce unnecessary information for a numerical

simulation.

1. INTRODUCTION

Virtual 3D city and landscape models are mainly used for visu-
alization and planning purposes nowadays. The technology for
streaming and displaying huge virtual models is readily available
and can be used for embedding spatial 3D assets in web pages.
Many city municipalities and regional administrations are in the
process of including 3D city models in their geospatial data in-
frastructure. In this context, the OGC CityGML standard (Open
Geospatial Consortium, 2012) has been adopted by many author-
ities for storing and managing their 3D geo data sets (Kolbe,
2009). Geographic Information System (GIS) and Spatial Data
Infrastructures (SDI) are well suited for documentation, distri-
bution, and spatial analysis of geo data, but not for engineer-
ing tasks, as for example numerical simulation. There is still a
technological gap between GIS and Computed Aided Engineer-
ing (CAE), which is partly due to different data capturing prac-
tices and methods (Schilling, 2014). While engineers are mostly
dealing with digital prototypes used for production, GIS data sets
are created using surveying techniques such as aerial or terrestrial
laser scanning. CAE tasks, such as numerical simulation, require
a high degree of geometric, topologic, and semantic consistency,
which detailed 3D building models as used for GIS can barely
meet. Therefore, making 3D city models available to CAE in-
volves not only a format conversion from 3D GIS formats such as
CityGML to a CAD / CAE readable format, but also the geometry
healing, preparing and optimization processes for eliminating in-
consistencies in the 3D model. In many cases, a generalization is
necessary because urban simulation use cases usually operate on
large scale models comprising several hundreds of building ob-
jects. Details such overhanging roofs, windows, doors, chimneys
and other elements present in CityGML LoD3 and LoD4 models
must be removed. Otherwise, the capabilities of current enter-
prise workstations will not suffice for coping with the excessive
number of Finite Elements involved in the physical model defini-
tion.

*Corresponding author

The aim of the research work described in this paper is to close
the gap between GIS and CAE by processing virtual city mod-
els with a high degree of automation in order to reduce manual
effort. The implemented healing operations are applied on the
CAD representation level.

For the automated processing, it has to be ensured, that the result
will not falsify the outcome of a numerical simulation. Some ge-
ometry features are approximated by a plurality of thin polygons,
of which meshing tools of common simulation software use the
edges for orientation. Thin mesh elements within these polygons
can lead to numerical instability in the simulation. To avoid this
instability, we used Coons surfaces for the automatic processing
of building models in LoD2, as they replace a great number of
thin polygons with one analytical surface.

Furthermore, we investigated ways to simplify LoD3 models, in
order to reduce unnecessary information for a numerical simula-
tion, without changing the simulation’s result.

The paper is organized as follows: Section 2 describes unneces-
sary details of 3D building models for simulation and lists typical
problems found in CityGML. A short insight into the mathemati-
cal basics of B-spline surfaces and Coons surfaces is presented in
section 4. In section 5, we explain in more detail the procedure
for replacing polygons of LoD2 buildings with Coons surfaces.
In section 3, we describe the steps for a simplification of LoD3
buildings and the occurring challenges.

2. ENABLING 3D BUILDING MODELS FOR
SIMULATION

The described processes are embedded in an SDI for managing
3D city models, which is based on open standards for storing,
exchanging, and visualizing 3D data. At the core, a 3DCityDB
is used as data repository and for extracting project and use case
specific data as CityGML. Connectivity to third party software is
provided as OGC Web Feature Service (WFS) and Extract, Trans-
form, Load (ETL) custom workflows catering a range of popular

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprs-annals-IV-2-W1-39-2016 39

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W1, 2016
11th 3D Geoinfo Conference, 20-21 October 2016, Athens, Greece

3D graphics and GIS formats. A visual inspection of the database
content is enabled by an online 3D map portal, which is based on
the open source Cesium.js virtual globe. Support for simulation
scenarios has been added to this SDI only recently. In contrast
to GIS and graphics applications, numerical simulations require
different optimization methodologies, which have not been em-
bedded in SDI so far. Since the involved processes cannot be
supported by ETL or by OGC services, an additional branch of
SDI components must be developed. Figure 1 shows how gen-
eralization, geometry healing and the generation of freeform sur-
faces can be attached to an already existing 3D SDI. The benefit
of having a bridge between a 3D SDI and simulation frameworks
is that

1. up-to-date information on the building structures is readily
available for engineers working on CAE workstations,

2. time consuming manual corrections of subsets of a 3D city
model becomes obsolete if all automatic geometry process-
ing operations can be performed successfully,

3. scenarios and subsets can be defined by non-experts, e.g.
decision-makers using an online 3D map.

Freeform
Surfaces

AZBR
N
STEP

Generalization Geometry

LoD3 -> LoD2 Healing

ay

T

Bridge to
Urban Simulation

Data o
Management 3D citypa ﬁ*
/ Visualization
:.:]@@ CiyGML

N

® o
aprocesses KL
CCULLADA

Figure 1. Conceptual integration of simulation related
components into a 3D SDI

When preparing CAD construction models for CAE software, a
so-called de-featuring is often performed in order to reduce the
model complexity and running time of the simulation. This typi-
cally involves removing small drill holes, ridges, engravings, etc.,
which have no influence on the final simulation results. In the
case of 3D building models, details such as window ledges, dec-
orative elements, eaves, installations, ceilings, and so forth can
often be omitted, depending on the simulation scenario. Wind
simulations of entire districts, for example, work well on simpli-
fied LoD2 models (according to the CityGML LoD definitions).
CityGML LoD?2 specifies that buildings must be represented as
closed outer shells without any interiors and openings. Further-
more, there must be no facade details and overhanging roofs.
LoD3 models must be simplified in order to be used in numerical
simulations, partly because of the model complexity, partly be-
cause the separation into thematic surfaces often causes topolog-
ical inconsistencies. Because 3D city models can be quite large

and the number of objects used for urban simulation scenarios
can easily exceed one thousand, it is mandatory to fully automate
the conversion and healing process, so that it can be embedded in
a data preparation workflow. This workflow can then be part of a
SDI with a geo database holding the entire 3D city model, so that
subsets used for a simulation can be extracted on demand.

Typical geometrical / topological problems that have been found
in CityGML datasets include:

Gaps

Holes

Non-planar faces
Self-intersections
Non-manifold geometries
Interior surfaces

T-nodes

Figure 2 compares versions of building models without geome-
try healing (left) and with geometry healing enabled (right). In
contrast to approaches working directly on CityGML representa-
tions and specializing in building models, as described in (Zhao et
al., 2013) and (Alam et al., 2013), the healing operations imple-
mented for this workflow are applied on the CAD representation
level and are quite generic. Each operation, for instance fixing
T-nodes, modifies only the local vicinity by deleting elements or
introducing new elements and establishing new topological con-
nections.

T

\ :

b
e

Figure 2. Geometry optimization operations on typical LoD2
building models. Top: removing interior faces. Bottom:
resolving self-intersections

3. SIMPLIFICATION OF LOD3 BUILDINGS
3.1 Simplification Process

Currently, 3D city models are mostly created in CityGML as
LoD1 and LoD2 models. Through further development of data
acquisition parties, it can be expected that the amount of build-
ings modelled in LoD3 with detailed facade geometry, such as
window and door elements, will increase. LoD3 models are usu-
ally complex and contain a lot of detailed information which may
have no significant effect on the simulation result, but could lead
to a considerable increase of its duration. Here model simplifi-
cation is necessary to reduce information that is not useful for
the simulation. After this simplification process the Coons algo-
rithm as described in section 5 can be applied easily. In this paper
we investigated which simplifications of the model are useful and
which details must be obtained for the simulation. Generally, we
used the following steps for model simplification of LoD3 mod-
els:

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprs-annals-IV-2-W1-39-2016 40

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W1, 2016
11th 3D Geoinfo Conference, 20-21 October 2016, Athens, Greece

e Investigation of surfaces which represent doors and win-
dows. Identification of the surrounding wall or roof surface
for projection, in which the corresponding door or window
element is located.

e Determining the projection area and the corresponding poly-
gons.This involves identifying the polygons in a wall or roof
surface with the largest outer rings, and which contain an
opening. Then calculate the surface normal of the identified
projection polygons.

e Projecting the polygons of the window / door geometry on
the projection surface.

e Merging of the intersected polygons type panel with the wall
and merging of the type opening with the window or door
opening.

e Deleting unwanted polygons (degenerated polygons, double
polygons, etc.).

One of the LoD3 models used and successfully tested with the
simplifications as described above is shown in Figure 3. The
figure shows the original model on the right and the simplified
model on the left.

Figure 3. Model simplifications of a LoD3 model

3.2 Simplification Challanges

The following section deals with some of the simplification chal-
langes:

M

The core element of the algorithm for model simplification is the
identification of the polygon within the boundary surface element
on which all other polygons are to be projected. Four possible
results of a simplification process in which the projection polygon
is not clearly defined, are depicted in Figure 4. The options 1
to 4 show the projection on different polygons. In most cases
seeking out polygons with the longest side and the largest area,
and defining these as the projection polygons, will lead to a good
result. Another option would be putting a bounding box around
each polygon and selecting the polygon with the largest bounding
box.

@3]

Figure 5 shows an example of two buildings with a loggia. The
only geometrical difference is the length of the loggia. If the poly-
gon is modeled around the door opening in a separate boundary
surface bs2 then the loggia remains the same after the model sim-
plification (option 1). In option 2 the wall surface bsl is used
as the projection surface and the door along with the loggia are
projected onto the wall surface. For a very long loggia a single
boundary surface might cause loss of information as is shown in
building 1. On the other hand, a projection on the wall surface

Original Option 1 Option 2

™
¥
Ny .
Option 3 ‘ ~ Option 4
| |
|

Figure 4. Options for choosing the right projection surface

Option 1 = Original

Building1 Building2
Figure 5. Impact of mapping the polygons to the
BoundarySurfaces on the model simplification

would make more sense for a short loggia like building 2 (option
2). Ultimately, the result depends on the initial model.

(3)

When a window is positioned with an angle instead of vertically,
generalization procedures could be challanging, and projecting
arises redundant polygons (see Figure 6). Following are some
ways to simplify: 1) The window is projected horizontally on the
wall surface and the resulting redundant wall surfaces are merged
and overlapping windows and surfaces will be deleted. In this
case, the window remains as it is visible from the outside. 2) The
window is projected horizontally on the wall and the overlapping
wall surface is deleted. In this case, the window area remains the
same. 3) The wall surface remains unchanged, and the horizontal
positioning of the window is changed.

Original SideView Top View
View .
from Overlapping

s of surfaces

inside

. = after

" the simplification
building P
[] E [|
]]

Option 1 Option 2 Option 3

Figure 6. Window positioned at different level than the hole in
the wall.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprs-annals-IV-2-W1-39-2016 41

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W1, 2016
11th 3D Geoinfo Conference, 20-21 October 2016, Athens, Greece

C))

Figure 7 shows the problem with opening elements, which are
connected with two boundary surfaces (bs). This is usually the
case with corner windows or corner doors.

e Case 1: Door is projected on bs1 (result 1)
e Case 2: Door is projected on bs2 (result 2)
e Case 3: Door is splitted into two parts and projected on both

boundary surfaces. (result 3)

We recommend the assignment of the door to the boundary sur-
face, which is facing the street.

|

Originél 7

L
Option 1)
ption Option 2 ——
Option 3

Figure 7. Impact of mapping the polygons to the boundary
surfaces

(5)

Figure 8 shows a building with arches. The arcades are aggre-
gated together with the building wall in a boundary surface. Af-
ter execution of simplification, the arcades are no longer solid and
projected in the wall surface, so that they exist only as a plane.

Figure 8. LoD3 Model with arches (left: after simplification)
(SIG-3D Quality Working Group, 2012)

4. FREEFORM SURFACES

The following sections give a brief introduction to B-spline sur-
faces and Coons surfaces. For detailed explanations, refer to
(Piegl and Tiller, 2012) and (Farin, 2014).

In CAD, freeform surfaces, such as NURBS surfaces and B-spline
surfaces, can be used for representing curved facades, barrel roofs,
domes, and other building elements with curved surfaces. Nu-
merical simulation software usually operates on finite elements,
small tetrahedrons or prisms. The quality of the derived finite ele-
ment mesh from a CAD model is usually better if curved surfaces
are described as free form geometries. Faceted surfaces consist-
ing of many small polygons cause problems regarding the solu-
tion of the numerical equations and result in longer simulation
running times. The cylinder in Figure 9 illustrates the difference
between using an analytical surface (red) and a surface approxi-
mated with thin polygons (blue). After the discretization of the
cylinder with a simulation tool 9(b), the cylinder surface requires
less mesh elements for the analytical surface than the approxi-
mated one.

N o W W
L R R R VR VAR W Y ¥

(b)

Figure 9. Difference between using an analytical surface (red)
and a surface approximated with thin polygons (blue).
Before (a) and after (b) discretization of the cylinder

4.1 Introduction to B-spline Surfaces

Parametric surfaces, such as Bézier, B-spline and NURBS, are
wildly used in CAD and they are generally supported by today’s
CAD systems. The ability to describe nearly any type of shape
with only a few design variables makes parametric surfaces suit-
able to represent complex free-form shapes (Ma and Kruth, 1998).
In this paper we only use B-spline surfaces (and curves).

A B-spline surface of degree p in u direction and ¢ in v direction
is defined by

n m

S(u,v) =Y > Nip(u) Njg(v) Py

i=0 j=0

u,v € [0,1] (1)

with the knot vectors U and V' and the nonrational basis functions
N; p(u) and N; 4(v).

Figure 10 shows a B-spline surface with 4 x 4 control points.

Figure 10. B-spline surface

Some properties of B-spline surfaces will be covered below:

1. B-spline surfaces are defined by

(a) their degrees p and g,
(b) the (n 4+ 1) x (m + 1) control points and
(c) the knot vectors U and V.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprs-annals-IV-2-W1-39-2016 42

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W1, 2016
11th 3D Geoinfo Conference, 20-21 October 2016, Athens, Greece

2. The knot vectors U and V' contain + 1 and s + 1 knots
with: r =n+p+lands=m+q+ 1.

3 n = p,m = ¢ U = {0,..,0,1,...;,1} and V =
{0,...,0,1,...1}, then S(u,v) degenerates to a Bézier sur-
face.

4. The B-spline surface interpolates the four corner control points,

thus S(0,0) = PO,O, S(l,O) = Pn,o, S(O7 1) = Po}m and
S(1,1) = Pr.m.

5. B-spline surfaces are invariant under affine transformations.

4.2 Coons Surfaces

For the creation of B-spline surfaces used in this paper, we ap-
plied the Coons algorithm. This allows for a creation of surfaces,
which interpolate four given B-spline curves co(u), ¢1(v), c2(u)
and c3(v), that are connected at four corners (Po,0, Pn,0, Po,m
and P, ,,), forming a closed curve chain (see Figure 11). Sup-
posing that the opposing curves co(u), c2(u) in u-direction and
c1(v), cs3(v) in v-direction have the same curve degree, the same
number of control points and they share a common knot vector,
we can use Coons algorithm to compute the inner control points
for our Coons surface (the outer control points for the surface are
already given by the curves). If the curves are not compatible,
knot insertion and degree elevation has to be used first in order to
adjust them. Equality of control point size will also be archived
with these methods (Piegl and Tiller, 2012).

FPo.m)3
: y

colu)

o Prl.ll

Figure 11. The boundary for a Coons surface
given by four B-spline curves

Using a linear interpolation between co(u) and c2(u) to create
the ruled surface

Ri(u,v) = (1 —v)co(u) + vea(u), 2)

the linear interpolation between ¢1 (v) and ¢z (v) for

Ra(u,v) = (1 —u)ecr(v) +ues(v), 3)

and the bilinear tensor product surface

T(u,v) = (1—u)(1l—wv)S(0,0)

+(1—u)vS(0,1)
+u (1 —v)S(1,0) +5(1,1), “)

we can define the bilinear blended Coons surface as

S(u,v) = Ri(u,v) + R2(u,v) — T'(u,v). Q)

The process of creating the bilinear blended Coons surface by
the three surfaces Ri(u,v), Rz(u,v) and T'(u,v) is shown in
Figure 12 .

Figure 12. Creation of a bilinear blended Coons surface by
Ri(u,v), Ra2(u,v) and T'(u, v)

5. USING COONS SURFACES TO SIMPLIFY
BUILDINGS

5.1 The Overall Algorithm

In the simulation process of CAE, meshing is an essential issue.
A good mesh can increase the accuracy, convergence, and speed
of the simulation. Automated meshing tools of common simu-
lation software use the edges of polygons for orientation. As a
result, thin polygons might lead to equally thin mesh elements.
This could have a negative impact on the simulation. Seeing that
a numerical instability could occur as well, the outcome of the
simulation would be useless. As a consequence thin mesh ele-
ments are to be avoided. Simply decreasing the size of the mesh
elements might solve this issue, but it will also lead to an increase
of the duration of the simulation. In our approach, we use the al-
gorithm illustrated in section 3 to replace a certain number of thin
polygons with Coons surfaces. Making use of this method en-
ables simulation software to adjust the size of the mesh elements
more freely. Round surfaces in buildings, for example in the form
of barrel roofs, are usually represented by a number of connected
polygons. The basic idea of our algorithm is to combine these
polygons, and to replace them with B-spline surfaces. To cal-
culate the B-spline surfaces we used the algorithm of Coons, as
it interpolates the boundary curves and therefore ensures that no
gaps between adjacent surfaces are formed during the process-
ing. For this algorithm, the CityGML models had already been
converted into a CAD / CAE readable format that allows for an
easy manipulation of the model’s topological and geometrical el-
ements.

The process is divided into the following steps:
1. Combining and assigning surfaces of each building to col-
lections.
2. Creating the boundary curves of the collections.

3. Deciding which of the collections are going to be replaced
by Coons surfaces (new distribution of collections if neces-
sary).

4. Replacing the collections by Coons surfaces.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprs-annals-IV-2-W1-39-2016 43

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1V-2/W1, 2016
11th 3D Geoinfo Conference, 20-21 October 2016, Athens, Greece

5.2 Separating Buildings into Collections

In step (1) the building’s polygons are broken down into col-
lections by means of their topological neighbor relations, their
semantic properties, and the enclosing angles between adjacent
polygons. Figure 13 shows a building divided into collections,
with each color representing a different collection. A polygon
Fj is placed in a collection K if all of the following criteria are
satisfied for a polygon F; € K

e [shares a mutual edge with F); (F; and F} are topological
neighbors),

e [and Fj are of the same semantic type (roof, wall or ground),

e The enclosed angle between the normal vectors of F; and
F; is smaller than a given parameter.

Figure 13. Polygons of a building separated into collections

After all the polygons have been assigned, new boundary curves
have to be defined for each collection in step (2). They con-
sist of a composition of the original edges and are to represent
the boundaries of potentially emerging B-spline surfaces. The
boundary curves for the building in Figure 13 are highlighted in
red.

5.3 Replace Collections with Coons Surfaces

The actual processing takes place in step (4), in which the bound-
aries are replaced by B-spline curves and the collections by Coons
surfaces. In order to compute the B-spline curves, we used the
method of least squares for approximation of the boundary curves.
As explained in subsection 4.2, knot insertion and degree eleva-
tion is used, if the curves are not compatible. It should be pointed
out that collections share boundaries. If one boundary curve is re-
placed by a spline curve during the processing of one collection,
the neighboring collection will not have to process that bound-
ary curve again, as the properties have been carried over from
the already processed collection. Therefore the boundary will be
topologically and geometrically correct after the algorithm.

If the four B-spline curves for a collection are given, it can finally
be replaced by using the Coons algorithm. The corresponding
topological and geometrical elements of the boundary represen-
tation model are changed. In Figure 14 the building of Figure 13
is depicted with some collections replaced by Coons surfaces.

The above explained process starts from the premise that all col-
lections feature exactly four boundary curves. In order to proceed
with collections that have more or less than four boundary curves,
merging several curves or splitting collections could be an option.
Figure 15 (a) shows a collection with five edges. To create a col-
lection with four boundary curves the two top edges are merged
into one curve. The lateral surface of a cylinder, like the one de-
picted in Figure 15 (b), can be splitted into several collections by
simply cutting the cylinder vertically. Both methods need to be
investigated in the future.

Figure 14. Building with Coons surfaces

(@) (b)

Figure 15. (a) Redistribution of five edges into four boundary
curves (b) Lateral surface of a cylinder divided into several
collections

5.4 The Original Model in Comparison to the Processed One

In this subsection the results of our algorithm will be explained
using the model depicted in Figure 13 and Figure 14. After sep-
arating the 280 polygons of the original model to 23 collections,
and replacing six of these collections with Coons surfaces, our
algorithm recreated a building model with a total of 23 surfaces.
This simplification of the building model reduced the required
memory by 90%. Figure 16 shows the mesh created for the origi-
nal model (a) and the one created after using the Coons algorithm
(b). Having applied the algorithm, the meshing tool did not have
to use the thin edges of the polygons of the original building for
orientation. As a result, we were able reduce the number of mesh
elements by 80 percent for the processed model, while the aver-
age aspect ratio got closer to one and therefore the quality of the
mesh increased. For this example we used a rough mesh to make
the difference obvious.

(a) Mesh of original building

(b) Mesh of building with Coons
surfaces

Figure 16. Comparison of meshes of (a) original building with
arches represented by thin polygons and (b) building with arches
replaced by Coons surfaces

6. CONCLUSION

The algorithm for automated processing of LoD2 city models, as
described in section 5, has been tested on several examples. We

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprs-annals-IV-2-W1-39-2016 44

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W1, 2016
11th 3D Geoinfo Conference, 20-21 October 2016, Athens, Greece

observed that many building elements were replaced by Coons
surfaces without a deformation of the original shape. Using the
Coons surfaces in city models produced satisfying results as one
can see in Figure 16 in subsection 5.4. By replacing multiple
small polygons, the model was greatly simplified and the required
memory of the CAD model notably reduced. Furthermore, we
were able to improve the quality of the derived finite element
mesh. While many buildings could be processed using our algo-
rithm, we also found various complex buildings, where our algo-
rithm could not be applied yet. In most cases this is traced back
to the algorithm of Coons, which requires four boundary curves,
that are not always given.

The automated simplification or generalization of LoD3 build-
ings is challenging, as there is no general algorithm which works
with every model. The simplification algorithm needs to be ad-
justed due to differences in model and requirement. Thus, auto-
mated model simplification of LoD3 buildings might not provide
the expected or needed results, but it still helps to reduce manual
processing for many models.

Nevertheless, there is still a lot more that can be done to advance
in the field of simplification.

REFERENCES

Alam, N., Wagner, D., Wewetzer, M., von Falkenhausen, J.,
Coors, V. and Pries, M., 2013. Towards Automatic Validation
and Healing of CityGML Models for Geometric and Semantic
Consistency. ISPRS Annals of Photogrammetry, Remote Sensing
and Spatial Information Sciences 1(1), pp. 1-6.

Farin, G., 2014. Curves and surfaces for computer-aided geo-
metric design: a practical guide. Elsevier.

Kolbe, T. H., 2009. Representing and exchanging 3D city mod-
els with CityGML. In: 3D geo-information sciences, Springer,
pp- 15-31.

Ma, W. and Kruth, J.-P., 1998. Nurbs curve and surface fitting
for reverse engineering. The International Journal of Advanced
Manufacturing Technology 14(12), pp. 918-927.

Open Geospatial Consortium, 2012. OGC city geography
markup language (CityGML) encoding standard V2. 0. OGC
Doc.

Piegl, L. and Tiller, W., 2012. The NURBS book. Springer Sci-
ence & Business Media.

Schilling, A., 2014. Integrated 3D City Models Support Blast /
Evacuation Visualization for Critical Infrastructure in Urban En-
vironments. 3D Visualization World feature article, published on
14 April 2014. http://3dvisworld.com.

SIG-3D Quality Working Group, 2012. Handbuch fiir die Model-
lierung von 3D Objekten-Teil 2: Modellierung Gebidude (LODI,
LOD2 und LOD3).

Zhao, Z., Ledoux, H. and Stoter, J., 2013. Automatic repair
of CityGML LOD2 buildings using shrink-wrapping. In: 8th
3DGeolnfo Conference & WG I1/2 Workshop, Istanbul, Turkey,
27-29 November 2013, ISPRS Archives Volume II-2/W1, ISPRS.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprs-annals-IV-2-W1-39-2016

45

