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ABSTRACT:

The number of unmanned aerial vehicles (UAVs) is increasing since low-cost airborne systems are available for a wide range of users.

The outdoor navigation of such vehicles is mostly based on global navigation satellite system (GNSS) methods to gain the vehicles

trajectory. The drawback of satellite-based navigation are failures caused by occlusions and multi-path interferences. Beside this, local

image-based solutions like Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO) can e.g. be used to support

the GNSS solution by closing trajectory gaps but are computationally expensive. However, if the trajectory estimation is interrupted or

not available a re-localization is mandatory. In this paper we will provide a novel method for a GNSS-free and fast image-based pose

regression in a known area by utilizing a small convolutional neural network (CNN). With on-board processing in mind, we employ a

lightweight CNN called SqueezeNet and use transfer learning to adapt the network to pose regression. Our experiments show promising

results for GNSS-free and fast localization.

1. INTRODUCTION

The last years show an increasing number of UAVs operating in

industrial, military and private areas. Hence, research in the fields

of navigation, data acquisition, path planning or obstacle avoid-

ance for UAVs is increasing. Most of these systems need reliable

navigation solutions which are mostly based on GNSS methods

and often combined with alternative methods such as inertial na-

vigation systems (INS). As failures due to gaps in signal coverage

caused by occlusions or multipath effects weaken satellite-based

navigation, alternative methods for a reliable navigation of un-

manned aerial systems (UAS) are necessary.

Alternative methods for navigating in a global coordinate system,

are usually based on digital surface models, digital terrain models

or CAD models (Armenakis, 2015). However, the large memory

consumption of such models renders this approach unfeasible for

on-board processing on computational weak computers which are

currently mounted on UAVs.

Further methods are aerial image matching using feature detec-

tors, correlations or neural networks. Feature detection - like

the well known Scale Invariant Feature Transform (SIFT, Lowe

1999) - or correlation based methods are computational inten-

sive, especially for navigating in a huge area where potentially

millions of descriptors have to be stored and matched. Thus, los-

ing real time capability and making them inefficient for real time

navigation. Convolutional neural networks (CNNs), on the other

hand, can perform fast forward passes through the network even

on small on-board GPUs and have a limited memory demand and

power consumption (Nvidia, 2017).

The use of image-based local navigation methods like visual Si-

multaneous Localization and Mapping (SLAM) or Visual Odom-

etry (VO) are potential solutions for reconstructing trajectories

(Engel et al., 2014; Mur-Artal et al., 2015; Engel et al., 2016).

However, they lack navigation in a global coordinate system with-

out providing additional information, like relevant geo-referenced
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key points or initialization to a referenced model. Especially for

short frame-to-frame distances these methods have a high accu-

racy but are subject to drift for longer distances. Nevertheless,

these local solutions can support global navigation algorithms.

Visual SLAM or VO fails once the pose estimate is lost which can

be caused by fast motions or occlusions. Global re-localization

methods could be used to recover the pose. However, global na-

vigation methods are capable as standalone systems. With fast

real time capability, global solutions recover a dense trajectory

independent on any local navigation method. While most of the

SLAM and VO solutions, as well as global navigation methods

work fine on powerful computers, running them on weak or em-

bedded devices may lead to limited real time capability and in-

adequately results. Considering running a navigation framework

on small UAVs, respectively Micro Aerial Vehicles (MAVs), the

computation power is limited due to maximum payload. There-

fore all developed methods are subject to the limited computa-

tional power of the on-board processing units and need to be care-

fully designed with the target hardware in mind.

A solution may be provided by a CNN for local pose estima-

tion. CNNs are also capable of ego-motion estimation (Konda

and Memisevic, 2015). However, the results need to be improved

to compete with conventional methods. Relative pose estimation

of oblique images works successfully using CNN (Melekhov et

al., 2017). They solve image matching tasks, where methods like

Oriented FAST and rotated BRIEF (ORB) (Rublee et al., 2011)

or Speeded Up Robust Features (SURF) (Bay et al., 2006) fail

due to dissimilarity of descriptors. However a satisfying solution

for VO using CNNs trained end-to-end is not yet available.

Convolutional neural networks offer a valuable solution to run on

on-board computers, as the main computational effort of learning

the network is performed offline on a powerful computer. Subse-

quently the on-board computer only has to process captured im-

ages by performing a forward pass through the network using the

pre-trained weights. However, considering very deep CNNs like

the VGG16-Net (Simonyan and Zisserman, 2014) which have a
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high number of parameters, the storage (some hundreds of me-

gabytes) and processing requirements tend to exceed on-board

capabilities. Therefore they are cumbersome to process on weak

computing units. In contrast to this, a small CNN which is ef-

ficient in terms of processing while maintaining a satisfying ac-

curacy and generalization is desirable. For this purpose we in-

troduce a CNN-based solution for the navigation or localization

of a UAV in a known area by using a variant of SqueezeNet (Ian-

dola et al., 2016), which is originally a CNN for classification and

achieves AlexNet Krizhevsky et al. (2012) accuracy with 50x less

parameters. We modify the CNN to solve for pose regression. We

call the modification SqueezePoseNet, since it is adapted from

SqueezeNet but solves for poses.

The advantages of such a method for aerial vehicle navigation is

the GNSS-free localization allowing to maneuver in urban areas.

Further, it gives the opportunity to resolve the trajectory loss of

local navigation methods or the loss of GNSS signals, maintain-

ing a global solution. With CNN methods we are able to build

a navigation framework processable on simple computational de-

vices. Additionally, small CNNs need less computations and thus

have a lower power consumption. This leads to further energy

savings, increasing the flight time of the UAS. As the proposed

method will output a coarse pose, it is reasonable to expand the

work flow with a pose refinement step using the initially esti-

mated pose. It is an advantage to decrease the search space for

fine registration by exploiting the spatial constraints given by the

coarse pose estimation. Therefore, solutions for image matching

are given by conventional matching algorithms based on SIFT,

SURF, ORB or using CNN matching techniques like MatchNet

(Han et al., 2015).

Providing reliable navigation solutions sustains widespread re-

construction methods utilized on UAVs. Equipped with mapping

sensors like laser scanner, UAS are able to map environments

and generate dense point clouds (Droeschel et al., 2013; Jutzi et

al., 2014).Therefore, a relative calibration between a navigation

camera and a mapping sensor is necessary (Hillemann and Jutzi,

2017). Analysis of point clouds are already established and still

under development (Weinmann et al., 2017).

After reviewing the related work in Section 2 we focus on image-

based navigation solutions and introduce our method for deter-

mining poses in Section 3 and the training process in Section 4.

In Section 5 we present the data utilized for this work. Hardware

as well as the system used for capturing data is described in Sec-

tion 6. Experiments are described in Section 7 and the results are

discussed subsequently in Section 8. The final section gives an

outlook and provides ideas for future work and research.

2. RELATED WORK

The field of GNSS-free navigation is of high interest. There are

several image-based approaches available to determine camera

poses from images in a global coordinate frame.

Solutions are provided by finding correlations between aerial and

UAV images for image matching and further localization of the

vehicle (Conte and Doherty, 2009, 2011). Feature-based meth-

ods match remotely sensed data (Li et al., 2009) or oblique im-

ages (Huachao et al., 2012). Model-based approaches to deter-

mine camera poses from imagery are also available (Reitmayr

and Drummond, 2006; Unger et al., 2016). Determining the cam-

era pose in real time, in indoor environments, is practicable by

CAD model matching (Ulrich et al., 2009; Zang and Hashimoto,

2011; Urban et al., 2013; Mueller and Voegtle, 2016). Convo-

lutional neural networks are used to determine matches between

aerial images and UAV images (Altwaijry et al., 2016) or terres-

trial images and UAV images (Lin et al., 2015). However these

methods are not operable on small drones in large environments,

due to the on-board computers limited storage.

As mentioned, feasible methods to conduct local navigation are

visual SLAM or VO approaches, reconstructing a trajectory based

on image sequences. Efficient solutions are ORB-SLAM (Mur-

Artal et al., 2015), Large-Scale Direct Monocular SLAM (LSD-

SLAM) (Engel et al., 2014) or Direct Sparse Odometry (DSO)

(Engel et al., 2016). These methods provide satisfying solutions

according to accuracy and real time capability. However, their

trajectory will only have a local relation. Navigating in a higher

level coordinate frame can be achieved by fusing local solutions

with for instance GNSS or other global localization methods.

Even though SLAM or VO solutions show impressive results

(e.g. DSO) and do drift only slightly for short distances, they

will drift over long trajectories particularly if there are no loop

closures. Additionally, SLAM methods or VO fail if the track is

lost. Restoring the lost track is impossible without moving back

to a known or mapped position. However local and global na-

vigation build a complementary framework, merging the advan-

tages of both systems. The satisfying accuracy of relative pose

estimations derived from neighboring frames and the computa-

tional speed of local methods as well as the global referencing to

counter drift and track losses build a well suited framework.

This work is mainly based on PoseNet (Kendall et al., 2015), a

convolutional neural network which re-localizes an acquired im-

age in a known area. For this purpose the CNN is trained with im-

ages and their corresponding poses in order to estimate the pose

of an unknown, nearby position. The CNN is not only able to esti-

mate poses between two trained images by regression, but also to

extent the learned information to determine poses which slightly

exceed the learned space. However, we will see that these re-

sults suffer a little concerning spatial accuracy. An enhancement

is the Bayesian PoseNet (Kendall and Cipolla, 2016) which pro-

vides re-localization uncertainty by adding dropout layers after

each convolutional layer and improves the PoseNet accuracy by

averaging over multiple forward passes. For large-scale data sets

the accuracy is approximately 2m and 6◦. PoseNet is originally

build on GoogLeNet (Szegedy et al., 2015), a CNN created for

classification tasks, as the ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC). However, a CNN designed for clas-

sification requires some changes to regress poses from images.

The major adaptation to achieve this is to replace GoogLeNets

classifiers with regressors by changing the loss function. In ad-

dition, the number of output neurons of the last fully connected

layer is changed from 1000 to 7 to estimate camera poses. In

fact GoogLeNet was designed to classify 1000 different classes

whereas the camera pose is parametrized by position (3 param-

eters) and orientation represented as quaternions (4 parameters)

and thus requires 7 parameters in total. However, Kendall et al.

(2015) show the feasibility of their development. Enhanced ac-

curacies in the task of estimating poses were derived by further

improvement (Walch et al., 2016a) using Long Short-Term Mem-

ory layers (LSTM, Hochreiter and Schmidhuber 1997), a type of

recurrent neural net which was combined with CNNs in the past.

LSTM handle the problem of a dissolving gradient during the

back-propagation using so called gates. However, they showed

great success in handwriting or speech recognition and in this

case, for image re-localization. Furthermore, to improve a poten-

tial navigation approach, one may support the CNNs input with

additional data. Combining RGB data and depth data in a dual

stream CNN showed further improvements of the localization re-

sults (Li et al., 2017).

One of our aims is to develop an image-based navigation frame-
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work operational on an on-board computer, while maintaining

satisfying accuracies. Considering, that very deep CNNs with

a large number of parameters need a higher computation power

than smaller CNNs, the latter is preferred. For example, the

VGG16-Net (Simonyan and Zisserman, 2014) has 528 MB of

weights which will exceed the capacity of an on-board process-

ing unit like DJI Manifold which we use for our development

(Section 6.2). The model size of PoseNet (Kendall et al., 2015)

or the LSTM-based CNN (Walch et al., 2016b) which are based

on GoogLeNet have sizes of about 50 MB. However, these size

varies slightly due to the modification of some layers, and there-

fore the number weighting parameters, of the basic net. We need

a CNN that is small enough to run on an on-board processing

unit while maintaining sufficient accuracy. Therefore, we intro-

duce our approach on adapting SqueezeNet (Iandola et al., 2016),

a smaller CNN with a model size of only 4,8 MB which is even

10 times smaller than GoogLeNet. In future work this might be

reduced even more by quantizing (Wu et al., 2016) or binarization

(Courbariaux et al., 2016).

3. METHODOLOGY

For our demands on pose regression we adapt SqueezeNet, a

small convolutional neural network, which is developed for solv-

ing classification tasks (Iandola et al., 2016). Figure 1 depicts the

architecture of the adapted SqueezeNet. We call it SqueezePose-

Net since it is modified to solve for pose regression. SqueezeNets

originally design strategy lies in the Fire modules. Each Fire

module first decreases the number of input channels from the pre-

vious layer by 1x1 convolutions in a so called squeeze operation.

Subsequently an expand operation that is a combination of 1x1

and 3x3 filters increases the number of activation maps but keeps

the number of parameters low (Figure 2). In addition the tradi-

tional SqueezeNet architecture lacks a final fully connected layer

as these layers increase the number of parameters significantly.

Instead, the final convolutional layer consists of as many 1x1 fil-

ters as classes. Subsequently average pooling is used to yield a

vector whose length equals the number of classes. To modify

SqueezeNets architecture for pose regression, we first introduce

a fully connected layer with 500 neurons. This layer acts as a

descriptor and is meant to help the network distinguish differ-

ent poses from each other. Additionally, we change the layers

activation functions from rectified linear units (ReLU) to leaky

rectified linear units (Leaky ReLU) Maas et al. (2013). This is

meant to help convergence. In addition, we add Batch Normal-

ization Ioffe and Szegedy (2015) after each convolutional layer,

making higher learning rates possible. Finally, we add two fully

connected layers for actual pose estimation. A three neuron layer

for position (’x’) and a four neuron layer for rotation (’q’). The

rotation is parametrized as a quaternion. The training is described

in Section 4.

For evaluation purpose we also modify a deeper neural network,

the VGG16-Net (Simonyan and Zisserman, 2014) to compare it

with the smaller SqueezePoseNet. Deeper networks obviously

tend to be more accurate than small ones (Iandola et al., 2016).

As the modification on SqeezeNet, two dense layers (’x’ and ’q’)

for pose regression were added and the layers activation functions

were set to Leaky Rectified Linear Units.

CNNs are optimized by iteratively changing their weighting pa-

rameters using back-propagation. To optimize SqueezePoseNet

for pose regression we minimize the following loss (Kendall et

al., 2015):

Lossi = ‖xi − x̂i‖2 + β ‖qi −
q̂i

‖q̂i‖
‖2

Figure 1. SqueezePoseNet. We add a fully connected layer

(’fc11’) with 500 neurons. For pose estimation we added two

dense layers (’x’ and ’q’) with 3 respectively 4 neurons. All

weighting parameters up to the ’pool10’-layer are initialized from

a pre-trained version of SqueezeNet that was trained on a subset

of the Places365 data set (Zhou et al., 2016). The additional lay-

ers are pre-trained using the Shop Façade data set and later on

our test set of the Atrium.
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Figure 2. Architecture of a Fire module. A so called squeeze

operation is performed by the 1x1 convolutional layer. Subse-

quently an expand operation that is a combination of 1x1 and 3x3

filters increases the number of activation maps while keeping the

number of parameters low.

The loss is calculated as the sum of the position error and the

weighted orientation error. x̂i and xi are ground truth and esti-

mated position in metric dimensions. q̂i and qi are ground truth

and estimated orientation in quaternions. Since position and ori-

entation are not in the same unit space and therefore are not com-

parable, a weighting is done by using β to keep the errors in the

same range. This prevents the CNN to minimize only one of the

two error values. Typically, beta is set between 250 and 2000 for

outdoor data sets. We set β to 500 for the experiments on our

own data in Section 7.

4. TRAINING

Convolutional neural networks usually need a huge amount of

training data to work well, which is often not available. Transfer-

learning is a valuable process to overcome this issue. For that, a

net is initially pre-trained with a huge amount of data, which is

often publicly available, to determine weights for the nets layers.

These weights are used as initial values for later training.

For our purpose we initialize SqueezeNet with weighting param-

eters trained on the ImageNet data set (Krizhevsky et al., 2012). It

was shown that for pose regression, training on the Places data set

(Zhou et al., 2014, 2016) leads to further improvement in terms

of accuracy (Kendall et al., 2015), as it is a more suitable data set

for pose regression. Since that, training was subsequent carried

out on the Places data set.

Before starting training on our own re-localization data set Atrium

(Section 5.2), we chose to pre-train our CNN with a data set for

pose regression, the Shop Façade benchmark data set (Section

5.1). However, we only set our added layers (’fc11’, ’position

x’ and ’rotation q’) as trainable, since the preceding layers should

already be well initialized by the pre-training steps. After training

our network on the Shop Façade benchmark we finally fine-tune

the CNN on our training data of the Atrium data set consisting of

864 images. The inputs for our CNNs are 757 training images

and 95 evaluation images with their corresponding camera poses.

The training on SqueezePoseNet ended with errors of 4.45 m for

position and 14.35◦ for orientation.

For accuracy evaluation of SqueezePoseNet, we chose the deeper

VGG16-Net, which should tend to be more accurate. Consider-

ing VGG16-Net is built to solve classification tasks, we adapt it

in a similar manner as the SqueezeNet described above to esti-

mate poses. We initialize the nets layers with weights obtained

by training on the Places365 data set. We also train our adapta-

tion on Shop Façade to get initial weights for our added layers.

With that we train our modified net on the data set Atrium. The

training errors result in 2.35 m and 9.09◦ for position respectively

rotation.

Summarizing, the work flow of our methodology can be described

as follows. (i) Choose a suitable CNN for classification tasks. (ii)

Initialize the CNN with pre-trained weighting parameters. (iii)

Transfer learning on a suitable data set, e.g. Places (optional).

(iv) Prepare the CNN to solve for pose regression by adding ap-

propriate layers. (v) Produce training data for a test environment,

e.g. by Agisoft PhotoScan, a Structure from Motion software

(Agisoft, 2017). (vi) Train the network, whereas the trainable

layers are restricted to the last fully connected layers. (vii) Train

the CNN with own training data. (viii) Run the CNN on evalua-

tion images.

The training procedure is carried out on a 64 GB RAM computer

equipped with an Intel R© CoreTM i7-3820 3.6 GHz processor and

an 8 GB GeForce GTX 980 graphics card.

5. DATA

In this section, we describe the data sets Shop Façade and Atrium

that we used for training and evaluating the convolutional neural

networks for pose regression. Besides, we also use the ImageNet

and Places data sets for pre-training.

5.1 Shop Façade data set

The Shop Façade data set is part of the Cambridge Landmarks

benchmark (Kendall et al., 2015). This outdoor data set for vi-

sual re-localization contains three video sequences recorded with

a smartphone camera and their extracted image frames separated

in 231 training and 103 evaluation images. A pose is provided

for every image. We train our modified CNNs on Shop Façade

to yield initial weighting parameters for further training on the

Atrium data set. The data set containing image sequences and

poses of Shop Façade is available online1. The dimension of

the area in which the images were captured is denoted with 35

x 25 m2.

5.2 Atrium data set

The Atrium data set consists of 864 images collected within the

LaFiDa2 benchmark collection by KIT (Urban and Jutzi, 2017).

We use the high resolution images3 to determine their poses with

Agisofts Structure from Motion routine (Agisoft, 2017). The 3D

model in top view is shown in Figure 3. The dimension of the

captured area (39 x 36 x 18 m3) is similar to the Shop Façade en-

vironment, at least for the ground area. However, we experienced

higher training errors than on the Shop Façade data set, as the

camera poses are sparser distributed and additionally extended in

height (up to 18 m).

For evaluation of the CNNs, two sequences were captured in the

Atrium with a X3 Zenmuse camera attached to the UAV. The

medium coverage sequence (Section 7.1) captured on a low al-

titude is spatially close to the training data. The images of the

low coverage sequence (Section 7.2) are spatially far away and

have high discrepancies in perspectives compared to the training

data. However, the medium coverage sequence includes 145 ex-

tracted images, which show a medium coverage to the training

1http://mi.eng.cam.ac.uk/ (last access 17th March 2017)
2https://www.ipf.kit.edu/lafida.php (last access 21st June 2017)
3https://www2.ipf.kit.edu/ pcv2016/downloads/photos atrium recon-

struction.zip (last access 21st June 2017)
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Figure 3. Atrium from above. Notice, the red bricked walls with

the windows show very similar structures, which is a challenging

environment for computer vision algorithms.

data shown in Figure 6.a. High coverage can be stated, if train-

ing and testing data show very similar poses. The low coverage

sequence is captured with a higher altitude than the medium cov-

erage sequence and shows a low coverage to the training data, as

no images with high altitude or a downward facing field of view

are present in our training images. Therefore, the positions as

well as the orientations are ’far away’ from our training poses.

However, the low coverage sequence should be challenging for

a convolutional neural network, as it has not learned similar im-

ages nor poses during the training process. Ground truth is built

by adding the evaluation images to the SfM pipeline to determine

their poses. For evaluation, the resulting poses are used to com-

pute differences to the corresponding camera poses estimated by

the CNN.

Figure 4 shows examples of training and testing images. Fig-

ure 4.a shows a test image where reflections could be detected.

Figure 4.b shows a blurred image caused by angular motion of

the UAV, both effects are known for challenging computer vision

tasks. Figure 4.c and Figure 3 show the very ambiguous struc-

tures on the Atriums walls. Figure 4.d shows a test image of the

low coverage sequence. A similar image is not contained in the

training data. The position as well as the orientation are very far

away from any training pose. All data for training and evaluation

will be available online after the papers acceptance.

6. UNMANNED AERIAL SYSTEM

This Section presents an overview on our UAS, which mainly

consist of a UAV (Section 6.1), an on-board processing unit (Sec-

tion 6.2) and a camera (Section 6.3).

Figure 5. DJI Matrice 100 with on-board processing unit DJI

Manifold and camera Zenmuse X3.

6.1 Unmanned Aerial Vehicle

A Matrice 100 from DJI (Figure 5) and the X3 camera (Section

6.3) serve to capture images for the experiments (Section 7). The

on-board processing unit, a DJI Manifold (Section 6.2) is used

for data storage. Besides, it is capable of running the proposed

SqueezePoseNet. The quadrocopter is able to carry about 1 kg of

payload with a maximum take off weight of 3600 g. The training

of the CNNs is processed offline, merely the actual re-localization

or navigation process has to be processed on-board.

6.2 On-board processing unit

The DJI Manifold is based on a NVIDIA R© Tegra K1 with a

Quad-core Arm R© Cortex A-15 32-bit processor. The Kepler GPU

consists of 192 CUDA R© cores. CUDA R© is NVIDIAs R© software

architecture to process computations on a graphics processing

unit (GPU) which is necessary for most deep learning tasks. Fur-

thermore, the Manifold is compatible with cuDNN R©, NVIDIAs R©

GPU based deep neural network library, which includes standard

routines for CNN-processing and CNMeM, a memory manager

for CUDA. Besides, the DJI Manifold has 2 GB of RAM. With

SqueezePoseNet, we are able to process our computations in real

time. The weight of the device is less than 200 g.

6.3 Camera

The UAS is equipped with DJIs Zenmuse X3 camera. Its capable

of taking single shot images with a resolution of 4000 x 2250

pixels or capturing video streams with a resolution of 3840 x 2160

pixels and 30 frames per second. The camera has a 1/2.3” CMOS

sensor (6.2 x 4.6 mm) with 12.4 megapixel. Its field of view is

94◦. The camera and its gimbal weigh 254 grams.

7. EXPERIMENTS

We evaluate SqueezePoseNet on the medium and low coverage

sequences mentioned in Section 5.2. For comparison, we also

evaluate the VGG16-Net adaptation and PoseNet (Kendall et al.,

2015) on these two sequences. In Section 7.1 and 7.2 we show

visual results as well as metric evaluations against ground truth.

7.1 Medium coverage sequence

This sequence shows a medium coverage of training and evalua-

tion poses. A high coverage would be given by a more dense dis-

tribution of training data or a high similarity of training images

and evaluation images. However, Figure 6 shows the training,

ground truth and estimated camera poses for the medium cover-

age sequence. The resulting poses derived by the adaptation of

VGG16-Net are visualized in Figure 6.b. The poses derived by

SqueezePoseNet are plotted in Figure 6.c.

The histograms in Figure 7 show the derived errors to the ground

truth poses. Figure 7.a and 7.b show the spatial errors of our

VGG16-Net and SqueezePoseNet to ground truth. Figure 7.c and

7.d show the related angular errors in the same manner. The

numerical results are represented by the difference between the

spatial and angular error to the ground truth. The pose estima-

tion accuracy is 4.91 m and 33.30◦ for the modified VGG16-Net,

5.19 m and 29.28◦ for SqueezePoseNet and 8.60 m and 50.83◦

for PoseNet (Table 1).

7.2 Low coverage sequence

This sequence shows a low coverage of training poses and eval-

uation poses. Figure 8 shows the training, ground truth and esti-

mated camera poses for the low coverage sequence. The result-

ing poses derived by the modified VGG16-Net are visualized in

Figure 8.b. The poses derived by SqueezePoseNet are plotted in

Figure 8.c.

The histograms in Figure 9 show the derived errors to the ground

truth poses. Figure 9.a and 9.b show the spatial errors of our

VGG16-Net respectively SqueezePoseNet to ground truth. Fig-

ure 9.c and 9.d show the related angular errors in the same man-

ner. The pose estimation accuracy is 11.34 m and 37.33◦ for our

modified VGG16-Net, 15.18 m and 65.02◦ for SqueezePoseNet

and 11.47 m and 46.40◦ for PoseNet (Table 1).
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a) b) c) d)

Figure 4. Image examples of the Atrium. a) Windows in the scene cause reflections, this is challenging for computer vision tasks, b)

captured with high (angular) motion and therefore shows motion blur, c) shows ambiguous structures. d) is a test image of the low

coverage sequence (Section 7.2) captured at high altitude. A similar perspective is not contained in the training data, the pose is ’far

away’ from any training pose (position as well as orientation).

Evalutaion Errors PoesNet VGG16-Net (modified) SqueezePoseNet

Medium coverage sequence 8.60 m, 50.83◦ 4.91 m, 33.30◦ 5.19 m, 29.28◦

Low coverage sequence 11.47 m, 46.40◦ 11.34 m, 37.33◦ 15.18 m, 65.02◦

Table 1: Position and rotation errors on the medium respectively the high coverage sequence. Bold text marks best result on a sequence.

a) b) c)

Figure 6. Atrium data set, medium coverage sequence. a) Visualization of ground truth, b) results derived by the CNN adaptation of

VGG16-Net, c) results derived by SqueezePoseNet. Green cameras indicate training data, blue cameras depict the ground truth and red

cameras are estimated poses derived by the modified CNNs.
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Figure 7. Medium coverage sequence. The histograms show the spatial and angular errors of the CNN derived poses to ground truth.

Whereas a) and b) depict the spatial errors of our VGG16-Net respectively SqueezePoseNet and c) and d) show the angular errors.
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a) b) c)

Figure 8. Atrium data set, low coverage sequence. a) Visualization of ground truth, b) results derived by the CNN adaptation of

VGG16-Net, c) results derived by SqueezePoseNet. Green cameras indicate training data, blue cameras depict the ground truth and red

cameras are estimated poses derived by the modified CNNs.
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Figure 9. Low coverage sequence. The histograms show the spatial and angular errors of the CNN derived poses to ground truth.

Whereas a) and b) depict the spatial errors of the VGG16-Net respectively SqueezePoseNet and c) and d) the angular errors.
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8. DISCUSSION

The experiments show that convolutional neural networks are able

to estimate camera poses. Furthermore SqueezePoseNet has a

small net size and is therefore very well suited for UAS or MAV

on-board applications.

We tested our approaches on the medium and the low coverage se-

quence. The medium coverage sequence show satisfying results

for regressing a coarse pose. It works well for the VGG16-Net

adaptation as well as for SqueezePoseNet. However, VGG16-

Net shows comparable results, as its deeper than SqueezePose-

Net. Both CNNs, with postition differences to ground truth of

4.91 m respectively 5.19 m, would provide good initial poses for

a further and optional pose refinement step. Besides that, the cal-

culation of these poses is processed within a few milliseconds.

As expected, the low coverage sequence where no similar train-

ing data was captured showed less accurate results. The spatial

differences of 11.34 m and 15.18 m in an environment of about

39x36x18 m3 should not be satisfying. We found, that the ma-

jority of the position error is contributed by a spurious height

determination. The poses are systematically estimated too low.

Its reasonable that the CNN can not extend its knowledge too far

from the trained data, as it has never learned such extends. Even

though interpolation works well, the extrapolation on the other

hand does seem to perform less accurate. We are very interested

to overcome this limitation in the future, seeing that it is unprac-

tical to collect data of an environment with such a high density.

It is obvious that a high coverage of training data serves better

to train a CNN than a low coverage. Obviously, one can achieve

better results having a high similarity between training and test-

ing images. Besides that, the pose error scales proportional to

the environments scale. Therefore, indoor environments of small

spatial dimensions, lead to better results than large areas. Be-

yond that, it has to be mentioned that different cameras are used

to capture the evaluation images and training data of the Atrium

data set, therefore the CNN does not know the camera with its in-

trinsic parameters, which may be a further reason of insufficient

accuracies. However, this should only cause slight errors.

9. CONCLUSION AND OUTLOOK

We conclude that CNN based solutions for pose regression can

satisfy the needs to improve UAV based navigation applications.

It is possible to derive a coarse pose within milliseconds, e.g. to

initialize a navigation framework or for a subsequent pose refine-

ment. In combination with other navigation solutions like SLAM

or VO, one may build a navigation framework suitable for navi-

gating in urban areas and street canyons or even indoor environ-

ments.

A drawback of the proposed idea is the necessity of training data.

Considering that a pose can only be determined if sufficient train-

ing data of the environment is available. This is often not given.

However, image data is captured all over the globe commercial

by companies or publicly available by private persons. A well

known example is the reconstruction of parts of the city of rome

by using solely online data (Agarwal et al., 2011). On the other

hand, there is a lot of aerial imagery available covering urban and

rural areas, which may serve as training data.

Of further interest is the amount of data content which can be

learned by a CNN, especially by a small CNN. Even though the

weighting parameters of the CNNs do not increase with a higher

amount of training images, a CNN should only be able to recog-

nize a finite part of the training data. Small CNNs like Squeeze-

PoseNet may fail or at least lose accuracy with an increase of the

spatial dimension of the training environment. We are looking

forward to investigate that in future work.
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