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ABSTRACT:

Bundle adjustment is a central part of most visual SLAM and Structure from Motion systems and thus a relevant component of
UAVs equipped with cameras. This paper makes two contributions to bundle adjustment. First, we present a novel approach which
exploits trifocal constraints, i.e., constraints resulting from corresponding points observed in three camera images, which allows to
estimate the camera pose parameters without 3D point estimation. Second, we analyze the quality loss compared to the optimal bundle
adjustment solution when applying different types of approximations to the constrained optimization problem to increase efficiency.
We implemented and thoroughly evaluated our approach using a UAV performing mapping tasks in outdoor environments. Our results
indicate that the complexity of the constraint bundle adjustment can be decreased without loosing too much accuracy.

1. INTRODUCTION

Precise models of the environment are needed for several robotic
applications and are central to several UAV-based services. Most
SLAM and visual mapping systems use a form of bundle adjust-
ment (BA) for simultaneously refining camera pose parameters
and 3D point coordinates. Thus, effectively solving the BA or the
underlying error minimization problem is essential for many ap-
proaches such as structure from motion (Agarwal et al., 2011) and
online SLAM or visual odometry. BA has favorable properties:
it is statistically optimal in case all statistical properties are mod-
eled and considered correctly, it is efficient in case sparse matrix
operations are used, and can be parallelized. A broad review is
given by Triggs et al. (2000).

Steffen et al. (2010) have shown that rigorous BA can be formu-
lated based only on epipolar and trifocal constraints. The epipolar
constraint is a relation between two camera views, that enforces
an image point to be on the epipolar line described by an corre-
sponding image point in another image and the essential or funda-
mental matrix between the views (Hartley and Zisserman, 2004).
A trifocal constraint between image points is necessary if the cor-
responding scene point lies on the trifocal plane, which practi-
cally always is true for neighbored images in an image sequence,
where projection centers are collinear or nearly collinear. Epipo-
lar and trifocal constraints lead to implicit functions that enforce
the intersection of bundle of rays in 3D space without explicitly
representing 3D point coordinates. This reduces the number of
unknown parameters of the underlying optimization problem to
the camera pose parameters. The obtained normal equations are
equivalent to the normal equation system of classical BA when
applying the Schur Complement to eliminate the unknown 3D
point coordinates. Its solution is therefore in statistical terms as
optimal as classical BA.

BA based only on epipolar and trifocal constraints has several
advantages over classical BA:

• it allows to integrate image points, whose projections rays
have small parallactic angles, which in classical bundle ad-
justments would lead to 3D points lying numerically at in-
finity. Including such observations increases the generality

of BA and improves the estimated rotations of the camera
pose parameters (Schneider et al., 2012);

• it leads directly to the normal equation system reduced to
the camera pose parameters. Classical BA needs to apply
the Schur Complement to eliminate the 3D points;

• it does not require an initial guess for the locations of the 3D
points, which is required for classical BA;

• it allows to arrive at approximate solutions, e.g., by neglect
correlations between multi-view constraints and the relin-
earization of observations, which significantly increases the
efficiency without a substantial loss in accuracy.

Nevertheless, the trifocal BA formulation without simplifying ap-
proximations leads to higher computational complexity than clas-
sical BA. Because of the implicit epipolar and trifocal constraints
one needs to employ the Gauss–Helmert Model for optimization,
which requires the costly determination of corrections for all ob-
servations, which is not needed in the Gauss–Markov Model em-
ployed for classical BA. To substantially reduce the computa-
tional complexity Indelman et al. (2012) propose to neglect (1)
correlations between the constraints and (2) corrections to the
observations during optimization and (3) fix the weights for the
individual constraints after the first iteration.

In this paper we investigate (1) the gain in efficiency and (2) the
loose of quality of several assumptions, which lead to an approx-
imate solution of BA which substantially reduces computational
complexity. Additionally we propose a new formulation for tri-
focal constraints which can be employed in BA without struc-
ture estimation. Contrary to formulations of trifocal constraints
in previous work it does not degenerate in specific situations.

2. RELATED WORK

Sparse BA is most efficient in case a sparse representation is used
(Hartley and Zisserman, 2004). The publicly available software
package SBA for generic sparse bundle adjustment by Lourakis
and Argyros (2009) is used for example in a modified version
in Bundler (Agarwal et al., 2011) to solve large-scale structure
from motion. Konolige (2010) introduced Sparse SBA (sSBA)
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which exploits the sparse secondary structure of sparse camera
to camera relations, which increases computational and mem-
ory efficiency. More recently, the popular software package g2o
(Kümmerle et al., 2011) shows a comparable efficiency as sSBA
but uses a more generic formulation of the optimization problem
using factor graphs.

BA without structure estimation has been proposed by Rodrı́guez
et al. (2011), but their approach relies only on epipolar con-
straints, which are not able to transfer a consistent scale between
cameras having parallel epipolar planes which occur on straight
camera trajectories. Thus Steffen et al. (2010) propose to use
epipolar and trifocal constraints in BA without structure estima-
tion. But their trifocal constraints can not be computed in a closed
form expression which is why a stable condition needs to be sam-
pled, where the number of samples is not fixed. Indelman et
al. (2012) propose simplifying approximations to the optimiza-
tion problem by rewriting the implicit trifocal and epipolar con-
straints into explicit expressions. This way the authors obtained
a pose graph formulation, which can be optimized with the com-
putational efficient incremental smoothing and mapping (iSAM)
algorithm by Kaess et al. (2012). But their approach can not han-
dle all possible camera configurations.

3. CLASSICAL BUNDLE ADJUSTMENT

The general objective of BA is to optimally estimate camera ro-
tations R̂t, camera positions Ẑt and 3D point coordinates X̂i si-
multaneously. In the following, we assume that each observed 2D
image point xit in view t is associated to a certain 3D point i and
that the intrinsic camera calibration is given by calibration ma-
trix Kt. Given an initial guess, i.e., knowing approximate quan-
tities R̂

a

t , Ẑ
a

t and X̂a
i , the reprojection with projection matrix

Pt = KtR̂
aT

t

[
I3 | −Ẑ

a

t

]
yields the homogeneous image point

xait = PatX
a
i . (1)

With the three rows P1,t, P2,t and P3,t of Pt we obtain
the reprojected image point in Euclidean coordinates xait =[
P1,tX̂

a
i /P3,tX̂

a
i , P2,tX̂

a
i /P3,tX̂

a
i

]T
and the reprojection error

vit = xait−xit in the image plane. Assuming the image points to
be corrupted with mutually uncorrelated Gaussian noise Σxitxit ,
maximum likelihood estimates are obtained by iteratively im-
proving the unknown parameters by minimizing the squared Ma-
halanobis distance

∑
it v

T
itΣ
−1
xitxit

vit using the Gauss–Markov
model, see (Förstner and Wrobel, 2016, Sect. 4.4).

With T camera poses and I observed 3D points, the total number
of unknown parameters to be optimized counts 6T +3I . If one is
only interested in estimating the camera poses, the normal equa-
tion system can be reduced to the 6T pose parameters by applying
the Schur complement. However, as BA needs to be solved iter-
atively due to its non-linearity one is forced to compute the 3D
point in each iteration, even if they are not of interest. In contrast
to that, we can directly obtain the reduced normal equation sys-
tem without applying the Schur complement or determining 3D
points by employing epipolar and trifocal constraints, which are
introduced in the next section.

4. EPIPOLAR AND TRIFOCAL CONSTRAINTS

The classical solution to BA seeks to minimize the reprojection
error of corresponding points. Alternatively, we can formulate

X
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Figure 1. Trifocal constraint. We choose two lines l2 and l3
through the image points x2 and x3 of the second and third

camera. The corresponding projection planes A2 and A3 raise
the intersection line L23. The constraint requires that projection
line L1 and intersection line L23 intersect in one single point.

an error minimization problem that exploits constraints from the
epipolar geometry of image pairs as well as constraints that re-
sult from observing the same point from three different camera
images, so-called trifocal constraints. This formulation has the
advantage, that only the camera extrinsics are unknown parame-
ters and we do not need to estimate the 3D point parameters in the
optimization. After describing how to formulate such constraints
in this section, we explain in Sec. 5 how to consider them in BA.

Given three corresponding image points (x1,x2,x3) in three
views t = 1, 2, 3, we need to formulate three independent con-
straints (g1, g2, g3) for each correspondence related to a 3D point.
Two-view epipolar constraints do not allow to transfer a consis-
tent scale given straight trajectories with collinear projection cen-
ters (Rodrı́guez et al., 2011), which usually appear in image se-
quences. We always use one trifocal and two epipolar constraints,
which are simpler and one trifocal constraint is sufficient.

The first two constraints are epipolar constraints and enforce the
camera rays to be on their epipolar lines w.r.t. the first camera

g1 = xT
1RT

1S(Z2−Z1)R2x2 (2)

g2 = xT
1RT

1S(Z3−Z1)R3x3 , (3)

where S(·) is the skew symmetric matrix of the input vector. Note
that we assume here, that the the camera calibration is given,
such that we can convert an image point x into a ray direc-
tion x, e.g.in case of a pinhole camera with calibration matrix K
by x = K−1

[
xT , 1

]T
.

The third constraint enforces the intersection of all ray directions
in a single point, which we formulate in the following way. Con-
sider two planes A2 and A3 that go along the ray direction x2

and x3 and are projected as 2D lines l2 and l3 such that we have
A2 = PT

2 l2 and A3 = PT
3 l3, see Figure 1. The intersection of

both planes in 3D yields the 3D line

L23 = I I (A2)A3 with I I (A)=

[
S(Ah) 03

A0I3 −Ah

]
(4)

and A =
[
AT
h , A0

]T
. The final constraint is that the 3D line L1

along the ray direction x1

L1 =

[
R1

S(Z1)R1

]
x1 (5)

has to intersect L23 in a single point. Using homogeneous coor-
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dinates this leads to the constraint

g3 = LT
1D L23 with D =

[
0 I3
I3 0

]
. (6)

where D is the dualizing matrix.

We need to guarantee that L1 intersects L23 in one single point.
In order to achieve a numerically stable constraint we choose the
two lines l2 and l3 and specify their direction v2 and v3 to be
perpendicular to the epipolar lines in the second and third image,
such that we have

l2 = S(v2)x2 with v2 = S(RT
2 (Z2−Z1))x2, (7)

l3 = S(v3)x3 with v3 = S(RT
3 (Z3−Z1))x3. (8)

When using the constraint g3 in an estimation procedure, the vec-
tors v2 and v3 can be treated as fixed entries.

These constraints work for all points if they are not close to an
epipole, which would also not work in a classical BA. Then at
least two projection planes are nearly parallel and the intersect-
ing line is numerically unstable or, in case of observational noise,
inaccurate. This especially holds for forward motion, for which
image points close to the focus of expansion, i.e. the epipole, can-
not be handled.

If none of the image points are close to the epipoles, then, follow-
ing Figure 1, the two projection planes A2 and A3 of the second
image intersect the projection line L1 of the first image in well
defined points and are not parallel, thus have a well defined in-
tersection line L23, which therefore needs to pass the projection
line L1. Hence, the triplet constraint never has a singularity and
fixes the image points x2 and x3 perpendicular to the epipolar
lines w.r.t. the first image used in Eq. (2) and (3).

Indelman (2012) uses the trifocal constraint

z3 = (S(R2x2)R1x1)T S(R3x3)(Z3−Z2) (9)

− (S(R1x2)(Z2−Z1))T S(R3x3)R2x2 ,

but this formulation degenerates in case the epipolar plane nor-
mals n12 and n23 of first and second camera and second and third
camera are perpendicular. The constraint projects normal direc-
tion n12 given with different lengths in Eq. (9) by S(R2x2)R1x1

and S(R1x2)(Z2−Z1) on normal direction n23 given with dif-
ferent lengths by S(R3x3)(Z3−Z2) and S(R3x3)R2x2. In
case of perpendicular normal directions, the constraint would be
fulfilled under multiple solutions.

So far we have only considered three-view correspondences. In
case of correspondences in less than three view we can only apply
the epipolar constraint (2). In case of Ni > 3 correspondences,
we need to avoid to use the same constraints twice, and use only
independent constraints between the different views. Each cor-
responding image observation contributes with two constraints,
therefore the total number of constraints between corresponding
views counts (2Ni−3). Each correspondence needs to be in-
volved in at least one epipolar and one trifocal constraint. In-
delman et al. incorporate an new image of an image sequence by
formulating epipolar constraints between the last two recent im-
ages and trifocal constraints between the last three recent images.

As in a classical BA the estimation of the poses of calibrated cam-
eras is only possible up to a similarity transformation. To over-
come the 7 DOF ambiguity of the overall translation, rotation and

scale, we define either the gauge by imposing seven centroid con-
straints on the approximate values of the projection centers. This
results in a free BA, where the trace of the covariance matrix of
estimated camera poses is minimal. Or we estimate the camera
poses relative to one camera, which fixes six DOF. To define the
overall scale, we constrain two cameras to have a certain distance
to each other, see (Förstner and Wrobel, 2016, Chapt. 4.5).

5. TRIFOCAL BUNDLE ADJUSTMENT

We sketch the maximum likelihood estimation with implicit func-
tions, also called estimation with the Gauss–Helmert model, see
(Förstner and Wrobel, 2016, Chapt. 4.8) and relate it to the clas-
sical regression model, also called Gauss–Markov model. This
is the basis of four variants for simplifications. These lead to ap-
proximations which are then compared with the statistically opti-
mal ones w.r.t. accuracy and speed of convergence.

5.1 The Estimation Model

5.1.1 Gauss–Helmert Model The Gauss–Helmert model
starts from G constraints, g = [gg], among the N observations
l = [ln], which are assumed to be a sample of a multivariate
Gaussian distributionN (IE(l), σ2

0Σall), and U unknown parame-
ters x = [xu]:

g(IE(l),x) = 0 and ID(l) = σ2
0Σall . (10)

We assume the covariance matrix of the observations is approxi-
mately Σall, hence we assume σ0 = 1; we will be able to estimate
this factor later. Given observations l = [ln] there are no param-
eters x for which g(l,x) = 0 holds. Therefore the goal is to find
corrections v̂ of the observations and best estimates x̂ such that
the constraints

g(̂l, x̂) = g(l + v̂, x̂) = 0 (11)

between the fitted observations l̂ = l + v̂ and the estimated pa-
rameters x̂ hold and the weighted sum of the squared residuals

Ω(̂l, x̂) = v̂T Σ−1
ll v̂ (12)

is minimum.

5.1.2 Solution in the Gauss–Helmert model The solution is
iterative. Starting from approximate values l̂

a
and x̂a for the fit-

ted observations l̂ and the estimated parameters x̂ we determine
corrections ∆̂l and ∆̂x to iteratively update the fitted observa-
tions and the unknown parameters

l̂ = l̂
a

+ ∆̂l = l + v̂ , x̂ = x̂a + ∆̂x . (13)

Each iteration solves for the corrections ∆̂l and ∆̂x with the lin-
earized substitute constraints

g(̂l, x̂) = g(l, x̂a) + A∆̂x + BTv̂ = 0 (14)

Observe, due to

g := g(l,x) ≈ g(IE(l),x) + BTv (15)

we introduce the covariance matrix of the constraints

Σgg = BTΣllB = W−1
gg (16)

which we assume is regular, thus has the weight matrix of the
constraints W gg as its inverse.
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We can determine the corrections in two steps. First, the correc-
tions ∆̂x are determined from the linear equation system

ATW ggA∆̂x = ATW ggcg with cg = −g(l, x̂a) . (17)

Second, we determine the corrections ∆̂l from

∆̂l = ΣllBW gg(cg − A∆̂x)− (̂l
a
− l) , (18)

From Eq. (12) we can determine the estimated variance factor

σ̂2
0 =

Ω(x̂, l̂)

R
with R = G+H − U (19)

and the weighted sum of the residuals Eq. (12) evaluated at the
estimated values

Ω(x̂, l̂) = v̂TW llv̂ = ĉTgW gg ĉg . (20)

5.1.3 On the Structure of the Weight Matrix W gg If each
constraint gj depends on one observational group lj , whose ob-
servations are not part of another constraint gj′ , the covariance
matrix Σgg is diagonal. The same holds, if the constraints can
be partitioned into groups gi which only depend on one observa-
tional group li; then the covariance matrix Σgg is block diagonal.
If the corresponding Jacobians for each group are AT

i and BT
i , the

matrix N of the normal equation system can be expressed as a
sum over all constraints:

N =ATWggA=
∑
i

AiΣgigiA
T
i=
∑
i

Ai(BT
iΣliliBi)

−1AT
i (21)

and accordingly ATW ggcg =
∑
i Ai(BT

i ΣliliBi)
−1cgi .

If a group of constraints gi shares observations, as in our case,
the covariance matrix Σgigi = BT

i ΣliliBi will not be diagonal or
block diagonal any more. Then their inverse, i.e. weight matrix,
will be full in general.

For example, in BA, all Ni observations referring to the same
scene point Xi will have a sparse but not diagonal covariance ma-
trix Σgigi , hence a full weight matrix of size Gi×Gi. Let us
consider three epipolar constraints g = 1, 3, 5 and two trifocal
constraints g = 2, 4 between the image points of four consecu-
tive images, xit, t = 1, 2, 3, 4. Then the structure of BT

i for this
group of cameras will be as follows

BT
i =


B11 B12 0 0
B21 B22 B23 0
0 B32 B33 0
0 B42 B43 B44

0 0 B53 B54


i

(22)

and the covariance matrix will be

Σgigi =


Σg1g1 Σg1g2 Σg1g3 0 0
Σg2g1 Σg2g2 Σg2g3 Σg2g4 Σg2g5
Σg3g1 Σg3g2 Σg3g3 Σg3g4 Σg3g5

0 Σg4g2 Σg4g3 Σg4g4 Σg4g5
0 Σg5g2 Σg5g3 Σg5g4 Σg5g5

 (23)

with Σgjgk = BT
j ΣllBk. The covariance matrix has in general a

full inverse. Hence, matrix N reads as

N = ATW ggA =
∑
j

∑
k

AjW gjgkAT
k

=
∑
j

∑
k

Aj(BTΣllB)−1
jk AT

k . (24)

The effort of inverting the generally sparse matrix Σgigi can
be significantly reduced, if the matrix product F i = W gigiAi
is determined by solving the (generally sparse) equation system
ΣgigiF i = Ai for F i.

5.1.4 Solution in the Gauss–Markov Model The solution
for the estimated parameters can also be obtained from a Gauss–
Markov model when substituting

vg = −BTv (25)

into Eq. (14). Using Eq. (15) and cg from Eq. (17) we immedi-
ately obtain the linearized Gauss–Markov model

cg + vg = A∆̂x and ID(vg) = Σgg . (26)

which leads to the same estimates as in Eq. (17).

The iterative solution of this model, however, has to take the lin-
earization point for the Jacobians A and B into account, which
are the fitted observations l̂ and the the estimated parameters x̂.
Hence, the result of estimation in the Gauss–Markov model only
is the same, if we in each iteration step determine ∆̂l via Eq. (18)
to obtain the fitted original observations l̂ via Eq. (13). This is
possible, but requires access to the Jacobian B. Then there is no
difference between the Gauss–Markov and the Gauss–Helmert
model. In addition, we need the inverse of the covariance matrix
Σgg , which in general will not be a diagonal block matrix with
small blocks referring to groups of two or three constraints.

These are reasons to investigate approximate solutions, which can
be expected to be computationally more efficient.

5.2 Approximations of the Optimal Model

We address four cases of simplifications of the original estimation
model. All are approximations of the original model and lead to
suboptimal results.

CASE A: Approximated Jacobians

The Jacobians A and B are approximated, by linearizing at the
original observations l, instead of at the fitted observations l̂. The
approximation will increase if the standard deviations of the ob-
servations increases, or if there are outliers in the observations.
The suboptimality of this approximation has already been dis-
cussed in (Stark and Mikhail, 1973).

CASE B: Approximated Weights of the Constraints

The matrix W gg is approximated by neglecting the correlations
between the constraints. Hence we use the inverse of the diago-
nalized covariance matrix,

ΣCASE B
gg = Diag

(
bTgΣllbg

)
, (27)

with the rows bg of B. This significantly reduces the effort for de-
termining W gg . For CASE B we assume the Jacobians A and B
are taken at the estimated parameters and the estimated observa-
tions. This can only be realized within the Gauss–Helmert model,
since otherwise the estimated observations l̂ are not available.

CASE C: Approximated Jacobians and Weights for the Con-
straints

We approximate both the Jacobians, by linearizing at the given
observations, and the weight matrix, by neglecting the correla-
tions between the constraints. This approximation is useful when
applying the Gauss–Markov model.
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CASE D: Approximated Weight Matrix W gg of the First Iteration

We approximate the weight matrix W gg by that obtained in the
first iteration. This reduces the computational burden in the fur-
ther iterations.

The weight matrix W gg then depends on the approximate values
for the observations and the parameters. Since the approximate
values for the parameters usually deviate more from the estimated
parameters, than the observations deviate from their fitted values,
the degree of approximating the weight matrix by the one of the
first iteration mainly depends on the quality of the approximate
values for the parameters.

This type of approximation may refer to the full weight matrix
or to its diagonal version, as in CASE C. Here, we assume the
constraints are treated as uncorrelated. Then we arrive at the same
iteration scheme as Indelman et al. (2012).

We will investigate the effect of these four approximations onto
the result as a function of the noise level, namely the assumed
variance σ2

0l of the observations, and the variance σ2
0x of the ap-

proximate values xa. In order to be able to make the two standard
deviations comparable, we assume they describe relative uncer-
tainties with unit 1, for angles units radians. The standard devia-
tion σ0l is the directional uncertainty σl/c, where σl is the stan-
dard deviation of the image coordinates and c the focal length.

5.3 Generating Approximate Values with a Specified Rela-
tive Precision

We perform tests with simulated data by taking the final estimates
of real datasets as true values and artificially generate noisy obser-
vations and noisy approximate values. In this section we describe
how to generate approximate values for the rotation matrices Rt

and the positions Zt of the projection centers.

The relative precision of directions or angles is easily specified
by their standard deviation measured in radians. Hence if we pre-
specify the relative precision of the approximate values with σ0x,
e.g. σ0x = 0.01 = 1 %, we just need to deteriorate the rota-
tion axes and rotation angles by zero-mean noise with standard
deviation σα = σ0x.

The relative precision of the coordinates of a set of camera po-
sitions, say Zt, is less clear. We propose to use the standard
deviation of the direction vectors Dtt′ = (Zt −Zt′)/dtt′ , with
the distance dtt′ = |Zt−Zt′ | between two neighbouring points
Zt and Zt′ ; here we assume isotropic uncertainty. Furthermore
we take relative standard deviation of the distance dtt′ between
neighbouring points, i.e. σrtt′ := σdtt′ /dtt′ as measure.

There is no obvious way to generate a set of points such that the
average relative standard deviation of a given point set fulfills
this measure. The following approximation appears sufficient
for the experiments. We assume the true values of the camera
positions are given by Z̃t. We distort them by taking them as
approximate values. Then we generate disturbing observations,
namely the coordinate differences Dtt′ with a covariance matrix
of ID(Dtt′) = σr dtt′ I3, with σr = σ0x. We only use pairs
(tt′) ∈ T from a Delaunay triangulation. Since coordinate dif-
ferences alone do not allow to estimate the coordinates, we fix
the gauge by requiring the sum of all estimated coordinates to

be zero. Therefore we have the following linear Gauss–Markov
model with constraints

Dtt′ = Ẑt′ − Ẑt , ID(Dtt′)= σ2
r d

2
tt′ I3 , (tt′) ∈ T , (28)

0 =
∑
t

Ẑt . (29)

Minimizing
∑
tt′ |Dtt′ |2 under the constraint leads to estimates

Ẑt. Due to the estimation process, their relative standard devia-
tions will generally be smaller than σrdtt′ , for all t′ in the neigh-
bourhood of t. Hence, we need to increase the distance of the
points Ẑt from the true values adequately: By taking the average
relative variance

σ2
r =

∑
tt′ |Dtt′ |2/d2tt′

3
∑
tt′ 1

(30)

we can adapt all coordinates by

Ẑt := Z̃t +
σr
σr

(Ẑt − Z̃t) . (31)

and thus achieve σr = σr = σ0x.

5.4 Evaluating the Results of the Approximations

As quality measure we use the differences

∆x̂CASE = x̂CASE − x̃ (32)

between estimated pose parameters x̂CASE obtained using the the
approximation of a certain case and the true values x̃. Due to the
freedom of choosing seven gauge parameters for BA, we can only
compare U= 6T−7 parameters, if we have T unknown poses.

In order to illustrate the loss in accuracy we will employ the root-
mean-square error (RMSE) of the of deviations of the coordinates

RMSEZ =

√
1

3T

∑
t

|Ẑt − Z̃t|2 (33)

and of the rotation angles

RMSER =

√
1

6T

∑
t

||R̂tR̃
T

t − I3||2 . (34)

We will give the deviation

∆RMSECASE =

√
RMSE2

CASE − RMSE2
0 (35)

of the RMSECASE of each case from the RMSE0 obtained with the
rigorous estimation. In addition to the deviation of the RMSE we
will report the loss in accuracy

LCASE =
∆RMSECASE

RMSE0
(36)

for each case compared to the ideal solution. Observe, these mea-
sures do not take the inhomogeneous precision of the estimates
into account and depend on the chosen gauge.

Therefore we also provide the squared normalized Mahalanobis
distance

FCASE =
1

U
∆x̂T

CASE Σ−1
x̂x̂ ∆x̂CASE |H0 v F (U,∞) (37)

with the covariance matrix Σx̂x̂ of the parameters obtained using
the rigorous estimation. The squared normalized Mahalanobis
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distance F is a test statistic which follows a Fisher distribution
F (U,∞), if the model is statistically optimal, which is the zero
hypothesis H0. It is a sufficient test statistic and does not depend
on the chosen gauge. The expected value for F is 1, the one-sided
confidence interval for a significance level S is [0, F (U,∞, S)];
we use S = 0.99 in the following.

In addition to the Fisher test statistic F we also give the loss in
accuracy related to the Fisher test statistic

∆FCASE =
√
FCASE − 1 =

σx̂b,CASE

σx̂
. (38)

Hence, we assume the loss in accuracy is induced due to a bias
xb,CASE caused by the approximation, so that x̂CASE = x̂+x̂b,CASE.

6. EXPERIMENTS

Our experimental evaluation is designed to investigate the accu-
racy decrease of BA when applying the individual approxima-
tions proposed in Sec. 5.2, which are meant to increase efficiency.
We illustrate the loss in accuracy as a function of the noise level,
namely the standard deviation of observations, and on the relative
precision of camera poses. We evaluate the individual simplifica-
tions on two image sequences recorded on different UAVs.

The first image sequence BUILDING contains 119 images taken
with a 5 MPixel camera with a focal length of c = 1587.87 pixel
on a 5 kg UAV platform, triggered each second. The flight was
guiding the UAV along the facade of a house, the variation in
position is around 60 m and 15 m in height, see Figure 2.

The second image sequence FIELD contains 24 images taken
with a 12 MPixel camera of the DJI Panthom 4 with a focal
length of c = 2347.1 pixel. The camera was pointing down-
wards while the copter was flying a meandering pattern at 100 m
height with three stripes, each stripe consists of eight images,
see Figure 3. The images have an front and sidelap of 80 %, this
way the 24 images cover an area of 100×90 m2.

For both datasets we match interest points in the images to ob-
tain corresponding image points. In order to determine the sim-
plification effects, we need ground truth for camera poses and
corresponding image points, to incorporate deteriorations under
controlled conditions. We use the observed image coordinates as
input for the BA software BACS (Schneider et al., 2012) to obtain
estimated pose parameters and fitted image points for two real-
istic UAV flight scenarios, which are consistent and are used as
ground truth.

6.1 Checking the Rigorous Reference Solution

First we check how the rigorous trifocal BA reacts on differ-
ent noise level σ0l of observed image points on the BUILDING
dataset. The estimated variance factor σ̂2

0 , see Eq. (19), needs to
become one, in case the noise level σ0l used to deteriorate the im-
age points is used also in the covariance matrix Σall in Eq. (10).
We follow Sec. 5.3 to generate deteriorated approximate values
by using a moderate relative precision of σ0x=0.001. We deteri-
orate the observations on each noise level 100 times with differ-
ent random noise and apply the trifocal BA. Figure 4 shows the
mean of the obtained standard deviation σ̂0 of estimated variance
factors using different noise levels σ0l to disturb the observed im-
age points. Having high noise we observe, that σ̂0 deviates from
one, as then second order effects, which are neglected in the es-
timation procedure of BA, become visible. The effects are negli-
gibly small and within the tolerance bounds [0.9943, 1.0058] of

Figure 2. Trajectory of the UAV flight capturing the images of
the BUILDING dataset overlayed with a 3D model of a near-by

building.

Figure 3. Ground truth camera poses and 3D points of the
FIELD dataset.

the fisher test using a significance level of 1 %. For the following
evaluation of the accuracy decrease of the individual approxima-
tions we will use a maximum noise level of σ0l=0.003.

Figure 5 shows the mean and standard deviation of the number
of iterations until BA achieves convergence under different noise
levels. The number of necessary iterations increases with the
noise level as expected. Convergence is achieved if all corrections
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1.002

Figure 4. The standard deviation σ̂0 of the estimated variance
factor at different noise level σ0l. With focal length

c = 1587.87 pixel, 0.001 radian corresponds to an uncertainty
of 1.5 pixel in the image points.
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Figure 5. The number of iterations needed to achieve
convergence at different noise level σ0l and moderate relative
precision of σ0x = 0.001 when using Tc = 0.001 (blue line)

or Tc = 0.1 (red line).
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Figure 6. Deviations between the RMSE of estimated camera
positions and rotations of ideal result and approximations

CASE A-D at different noise levels σ0l of dataset BUILDING.

for observations ∆̂ln and parameters ∆̂xu are small compared
to their standard deviation, |∆̂ln/σ0l| < Tc, |∆̂xu/σxu | < Tc,
with a threshold Tc = 0.001, thus requiring the corrections to be
less than 0.1 % of their standard deviation. This requires σxu to
be known, which is for this experiment derived in each iteration
from the inverse normal equation matrix.

6.2 Effects of Approximations

We now experimentally evaluate the decrease of accuracy when
applying the individual approximations for BA proposed in
Sec. 5.2 on the two image sequences recorded by UAVs.

We add normal distributed noise to the true observation values
with different magnitudes to obtain different noise levels. We
use a moderate relative precision of σ0x = 0.001 to deteriorate
the approximate values of the camera poses. After that we op-
timize the pose parameters with the rigorous estimation, which
is called CASE 0 in the following, and with the approximations
of CASE A-D. With the estimated and true pose parameters we
can determine the root mean square error of the estimated camera
positions and rotations according to Eq. (33) and Eq. (34). For
each noise level we randomly generate 100 times different noise
for the observations and determine the RMSE for each case. Fig-
ure 6 and Figure 7 give the mean of the deviations of the RMSE
of CASE A-D to the ideal result of CASE 0 obtained with Eq. (35)
under different noise levels σ0l.

In both datasets the approximation made in CASE A induces the
smallest deviations to the optimally estimated coordinates and ro-
tations in both datasets, the deviations induced by the approxi-
mation of CASE B are almost twice as big. CASE C, which con-
tains the approximations of CASE A and CASE B, shows slightly
higher deviations than CASE B, thus is mainly affected by the
approximations of CASE B. CASE D shows smaller deviations
than CASE C, even though it contains an additional approxima-
tion. The reason could be the high relative precision σ0x used in
this experiment. The convergence of CASE D is affected by the
relative precision as the weight matrix W gg is fixed after the first
iteration, while CASE A-C are not affected. Thus we will inves-
tigate the decrease in precision of CASE D by varying σ0x in a
further experiment.
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Figure 7. Deviations between the RMSE of estimated camera
positions and rotations of ideal result and approximations
CASE A-D at different noise levels σ0l of dataset FIELD.

Figure 8 gives the loss in accuracy LCASE in percent, which can
be obtained with Eq. (36), under different noise level σ0l for each
approximation. Both datasets recorded on different UAVs, flight
trajectories and cameras show nearly the same loss in the accu-
racy of the estimated poses due to the approximations.

The RMSE does not take the inhomogeneous uncertainty of the
estimated positions and rotations of all images into account and
depends on the chosen gauge. Thus we use the squared nor-
malized Mahalanobis distance given in Eq. (37) which consid-
ers the covariance information of the parameters, which are ob-
tained by the rigorous estimation. Table 1 lists the mean loss
in accuracy ∆FCASE of the estimated pose parameters in percent
when applying the individual approximation cases under differ-
ent noise levels σ0l. The loss of accuracy ∆FCASE is obtained
with Eq. (38). The obtained values are similar to the values ob-
tained by using the root mean square error.

CASE A, CASE B and therefore also CASE C are mainly affected
by the noise level σ0l, whereas CASE D is affected from both,
noise level σ0l and the relative precision σ0x of the approximate
values. Therefore we also investigate the average decrease in pre-
cision by varying σ0x from a moderate relative precision of 0.1 %
to an inferior relative precision of 10 % to deteriorate the approx-
imate values of the camera poses. We use a moderate noise level

σ0l = 0.0001 0.0002 0.0004 0.0008 0.0015 0.0030
BUILDING

CASE A 5.49 6.05 6.79 12.29 18.21 25.67
CASE B 9.87 11.34 11.73 14.75 21.90 36.92
CASE C 9.82 11.40 14.10 14.32 32.96 41.83
CASE D 9.82 11.39 13.09 14.46 26.49 38.43
FIELD

CASE A 4.52 5.24 6.31 10.96 16.09 27.86
CASE B 11.36 11.45 11.21 12.76 20.86 33.03
CASE C 11.50 11.76 11.74 16.32 24.95 43.86
CASE D 11.50 11.76 11.74 16.30 24.75 42.46

Table 1. The loss in accuracy ∆FCASE in percent of estimated
pose parameters induced by the individual approximations of

CASE A-D at different noise levels σ0l in radian.
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Figure 8. The loss in accuracy LCASE in percent of
approximations CASE A-D compared to ideal solution at

different noise levels σ0l in radian on dataset BUILDING (top)
and FIELD (bottom).

of σ0l = 0.001 for the observations by adding normal distributed
noise to the true observation values with different magnitudes to
obtain different noise levels. Note that the estimated parameters
converge differently when applying randomly generated approx-
imate values. Thus, we randomly generate 100 times different
noise for the observations and approximate values and determine
the mean loss of accuracy ∆FCASE D for each relative precision
level σ0x. Table 2 shows the obtained ∆FCASE, which increases
with the relative precision σ0x of the approximate values for the
camera poses.

In both experiments the decrease in accuracy is less than a 1/3 of
noise variance. This is a moderate loss, and – if computing time
is essential — may be accepted.

7. CONCLUSION

In this paper, we presented an approach to bundle adjustment
without structure estimation by employing epipolar and trifocal
constraints between corresponding image points. We introduced
a novel closed-form expression for the trifocal constraint, which
does not degenerate at certain configurations. The proposed bun-
dle adjustment is as optimal as classical bundle adjustment, but
leads to more computational complexity as the Gauss-Helmert
model needs to be employed for optimization.

We evaluated the quality decrease of simplifying approximations
which allow to employ the Gauss-Markov model to increase the

σ0x = 0.001 0.003 0.01 0.03 0.1
BUILDING

CASE D 9.82 10.52 17.16 20.97 31.44
FIELD

CASE D 11.50 13.28 14.52 16.94 25.36

Table 2. The loss in accuracy ∆FCASE D in percent of estimated
pose parameters at noise level σ0l = 0.0001 and different

relative precision σ0x of approximate values, both in radian.

computational efficiency on two datasets acquired by UAVs. The
empirically investigated loss in accuracy of the estimated camera
pose parameters are shown to be small in case of small noise in
the observations.

In spite of this favorable result w.r.t. the investigated approxi-
mations, the effect of the approximations onto outlier detection,
which relies on the variances of the residuals needs to be investi-
gated, in order to identify the loss in the power of outlier detection
methods.
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