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ABSTRACT:

Deploying an autonomous unmanned aerial vehicle in GPS-denied areas is a highly discussed problem in the scientific community.
There are several approaches being developed, but the main strategies yet considered are computer vision based navigation systems.
This work presents a new real-time computer-vision position estimator for UAV navigation. The estimator uses images captured during
flight to recognize specific, well-known, landmarks in order to estimate the latitude and longitude of the aircraft. The method was tested
in a simulated environment, using a dataset of real aerial images obtained in previous flights, with synchronized images, GPS and IMU
data. The estimated position in each landmark recognition was compatible with the GPS data, stating that the developed method can be
used as an alternative navigation system.

1. INTRODUCTION

Unmanned Aerial Vehicles (UAV) is one of the main strategic
technologies nowadays due to their high applicability in several
areas, such as urban areas and frontiers surveillance (Blumenau et
al., 2013); object and landmarks recognition (Zhao et al., 2013);
and remote sensing (Pajares, 2015). This popularity grew mostly
because of their ability to deploy a mission with little human in-
teraction, in other words, their applicability as autonomous sys-
tems.

The first aspect for the development of an autonomous system
is regarding its navigation control. The navigation consists in
obtaining information regarding the flight, the field and the air-
craft itself, in order to reach a specific location (Dumble and
Gibbens, 2014). Most of the autonomous navigation systems
available nowadays use the Inertial Measurement Unit (IMU) and
a Global Navigation Satellite System (GNSS), such as the Global
Position System (GPS). Even though for most environments the
GNSS+IMU navigation works well in clear sky-view, it is not a
fully reliable system. Most IMU used in UAV lose precision in
a short period of time, so it needs another position estimator, in
order to work properly again. The GNSS is an external signal and
it can be lost for many reasons such as: satellite disposition; mul-
tipath; changes in the Ionosphere and the presence of ionospheric
bubbles (Muella, 2008, Takahashi et al., 2015); and jamming or
signal blocking (LeMieux, 2012). In such a system, if the GNSS
data is lost, the UAV will not work properly and may even cause
an accident.

Several works have been developed in order to obtain an alter-
native or redundant navigation system for the autonomous nav-
igation that could deal with fails in GNSS or in GNSS-denied
areas (Rady et al., 2011, Singh and Sujit, 2016). One strong can-
didate, which is the subject of this work, is a computer vision
system that can estimate the aircraft’s latitude and longitude from
images captured and processed onboard during flight.

1.1 Visual Navigation Systems

Nowadays, there are several researches on Visual Navigation sys-
tems. Most studies work on ways to develop methods that can

adapt to the multiple circumstances an UAV may face during
flight and can affect the visual data obtained: different weather
condition; different sensors; time of day; areas over which the
aircraft is located; and others. The main strategies applied to
the navigation in development nowadays are Visual Odometry
(Quist and Beard, 2016), Simultaneous Localization and Map-
ping (SLAM) (Azizi et al., 2016), Template Matching (Braga
et al., 2015) and Landmark Recognition (DeAngelo and Horn,
2016). Each of them has advantages and drawbacks that must be
taken into consideration during development. For example, both
Template Matching and Landmark Recognition are more compu-
tationally complex and need to know the region of flight a pri-
ori, but on the other hand, works implementing them have shown
higher precision than works using visual odometry or SLAM. Vi-
sual Odometry can be used in unknown areas, but, the same way
as an IMU, it accumulates errors throughout the flight. SLAM is
one of the most discussed and studied strategy nowadays, but it
always needs to fly over previously visited areas, in order to have
a precise navigation.

There are few works on landmark recognition for aerial naviga-
tion because it is a complex system and most works on this area
are in a more heuristic and less practical approach (Silva, 2015).
The landmark recognition system aims at finding specific chosen
structures in the aerial images that are captured during the UAV
flight by an onboard camera. After the recognition, the UAV lo-
cation is then estimated in real-time, in order to support the nav-
igation system to accomplish a planned mission (DeAngelo and
Horn, 2016). Landmarks can be understood as salient, usually
man-made infrastructures that stands out on the field, for example
roads with intersections and crossings, rivers with crossing roads,
runway and taxiway structures, shores of lakes, islands, large
buildings, towers, bridges, and wood edges or isolated pieces of
woodland, clearings in woods (Michaelsen and Meidow, 2014).
Their location is well known and they are selected during mis-
sion planning, therefore, the Landmark Recognition Navigation
System needs to previously know the area of the flight (Silva
Filho et al., 2014). This work, then, develops a practical and
direct landmark recognition system for aerial navigation, com-
bining real-time with a high precision recognition system. The
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proposed method has been tested in two different experiments:
geo-referencing a videoframe using landmark recognition; and
estimating an UAV position, in a simulated flight using previ-
ously obtained aerial images.

1.2 Related Works

Even though landmark recognition is not a new subject on the
literature for autonomous ground vehicles (Farag and Abdel-
Hakim, 2004), the approach for aerial navigation systems is not
well explored yet, mostly because of its complexity and high real-
time requirements on precision and computer processing (Silva
Filho, 2016). Because of that high computational costs, there are
some works that state the need to send the data to a ground sta-
tion, which will process the images, and then send to the UAV
only the result of the recognition (Silva, 2015, Michaelsen and
Meidow, 2014).

There are several challenges in the recognition process, such
as difference in resolution, rotating, translating, scale, luminos-
ity, different sensors and many others. Most works on land-
mark recognition for aerial navigation takes on the results of al-
ready developed object-recognition algorithms and adapt them
to the different aerial circumstances. In (Cruz, 2014), His-
togram of Gradient (HOG) associated with a Support Vector Ma-
chine (SVM), Haar-like feature cascade and Local Binary Pattern
(LBP) cascade are all applied to recognize specific classes of ob-
jects, such as soccer fields and airports. It is a suitable technique
to recognize classes, but the training of the classes is time con-
suming. In (Kezheng et al., 2015), the UAV was able to localize
an specific artificial landmark (the letter H) for navigation, detect-
ing features and corners of the image using the Hough Transform
and Labourasse Transform. The project can work on a real-time
base, but is limited to recognize a specific artificial landmark.
And on (Zhu and Deng, 2016), the landmarks are recognized and
a mathematical scheme is proposed for distance and position es-
timation for the aircraft. It is still a heuristic proposal without a
practical recognition algorithm.

Feature based algorithms, such as Scale Invariant Feature Trans-
form (SIFT) (Lowe, 2004), Oriented FAST and Rotated BRIEF
(ORB) (Rublee et al., 2011), AKAZE (Alcantarilla et al., 2011),
have changed the object recognition field of study (Li et al.,
2015). In (Lee et al., 2010) the method first extracts feature
points from the image data taken by a monocular camera using
the SIFT algorithm. The system selects landmark feature points
that have distinct descriptor vectors among the feature points, cal-
culate those points location and store them in a database. Based
on the landmark information, the current position of the UAV is
estimated. It considers as a landmark just the exact feature point
instead of an object. This method has been used for indoor ap-
plications, which is a controlled environment. In outdoor flights,
though, this application could not be used properly because the
amount of similar features would result in a high rate of false
positive encounters.

2. LANDMARK AND UAV AUTOLOCALIZATION

Finding a suitable and general method for a Landmark Recogni-
tion Navigation System is not a trivial task, mostly because of the
recognition aspect. The different conditions in which the land-
mark may appear for the system (luminosity, rotation, scale, per-
spective, etc) demands a general invariant method that is quite
difficult to obtain. In addition to that, there is also the require-
ment that the algorithm processes in real-time.

Figure 1. Feature points detection, descriptors extraction and
feature matching

This work then, developed a method based on the combination of
two well known object recognition methods (Feature Points and
Template Matching) in order to obtain an algorithm with a high
reliability that can be processed in real-time. In other words, that
can provide the UAV position in such a short time, that it will still
be a valid position for the autonomous navigation system. After
the recognition, it was possible to extract the position information
of the aircraft using the position information of the recognized
landmark.

2.1 Recognition

Object recognition is a classic visual computer problem, and there
are several methods developed. As it needs to be a real-time ap-
plication, feature (keypoints) points detection and descriptors ex-
traction was selected as the first most suitable strategy. There are
several different feature point algorithms in the literature. Some
of them were tested before deciding which would work better
for the application, and the tests evaluated mostly their reliabil-
ity on recognition of the landmarks but also their execution time.
ORB, AKAZE, SIFT and SURF were tested. The basic struc-
ture of those algorithms is the feature point detection in the scale
space of the image and the descriptor extraction of each feature
point detected. This structure is performed in the image of the
landmark that needs to be recognized (this one is called the train
image) and in the aerial image captured during flight (the query
image). The difference between each feature point algorithm is
mostly on the scale-space used (linear or non-linear) and the de-
scriptor (binary or non-binary). From the tests, the feature point
with better results was AKAZE.

The feature points of each image are then matched based on their
descriptors. This matching is then analyzed and graded based on
a distance function. The pairs with the lower grades are consid-
ered the best matches and they are used to estimate the parame-
ters of a General Affine Transform that maps the query image in
the train image. A Fuzzy Inference System is then used to vali-
date the Affine Transform obtained. Figure 1 shows the matching
flow.

At first, only the feature point strategy was used to recognize the
landmarks. During tests, it was observed a high number of false
positive recognitions, which were not reduced using RANSAC or
any other algorithm to reduce the outliers. RANSAC actually just
added a higher processing time, with little gain in the reliability
of the algorithm.

A new strategy then was developed. The result from the feature
point recognition was interpreted as a candidate for the landmark.
The resulted Affine Transform was the used to modify the query
image and crop it to have an image of the candidate with the
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Figure 2. Proposed landmark recognition scheme

same size as the train image. If it were a true positive recog-
nition, both images would be the same and a false positive en-
counter would produce a different image. In order to evaluate it,
a template matching method was used. So the edges of both the
candidate and the train image were extracted, resulting in two bi-
nary images. Those images would be used to compute the classic
correlation coefficient using equation 1, where T is the train edge
image and I is the candidate edge image. In case the correlation
coefficient is higher than a threshold, the landmark is finally rec-
ognized. Figure 2 show each step for recognition.
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2.2 Auto-localization

From the recognized landmark, it is possible to extract the latitude
and longitude information for the autonomous navigation system.
This position information derivates from the general affine trans-
form obtained in the recognition process. It is generated by the
matched keypoints. Considering F : T (x, y) 7→ G(lat, long)
the Geo-referencing relation from the pattern image T with the
Object Space G, and K : T (x, y) 7→ Q(X,Y ) the Geometric
Transformation that maps the pattern image T in the query image
Q, it is possible to build the Geo-referencing transformation H ,
from the query image Q, in which:

H : Q(X,Y )
K−1

−−−→ T (x, y)
F−→ G(lat, long) (2)

It is not necessary for the pattern image to be fully geo-
referenced, to do the image-to-image Geo-referencing process of
the query image using the landmark recognition. If there are at
least three points in the pattern image data with the associated
latitude and longitude information, it is possible to perform the
geo-referencing. In extreme case, if only one point in the pat-
tern image had the latitude and longitude information, it would
be possible to register the image if at least three landmarks would
be recognized in the same frame.

Choosing the points that will have Latitude and Longitude infor-
mation in the pattern image is an important aspect, since they are
responsible for the system of linear equations for the image geo-
referencing, and the system must be a possible and determined
one. Those points will be the ground control points (GCP) for the
process.

In terms of the Image geo-referencing, though, it is necessary to
take into consideration the spatial resolution of the image when
choosing the control points. The limitation on decimal represen-
tation in computers determines a minimum real distance that the
points must have, in order not to affect the system of equations
making it an impossible one. Moreover, the floating point preci-
sion must be taken into consideration when choosing each GCP.

The affine geometric transformation obtained is now used to find
the corresponding points in the query image of each GCP of the
pattern image. The points obtained are then used to obtain the
image-to-image geo-referencing affine function, which will esti-
mate the UAV position. We consider the center pixel of the query
image as the point that maps the perspective center, since the im-
ages are taken in the nadir view, so that its estimated latitude and
longitude is the also considered the UAVs position.

3. EXPERIMENTS AND RESULTS

The experiments developed intended to validate the proposed
method to estimate the position of an UAV during flight for a
vision based navigation system. The tests performed focused on
identifying position and on how accurate those positions were,
compared with a previously known data.

There were two main tracks of experiments developed: Geo-
referencing a Satellite Video frame and Auto-localization of a
UAV. These different tests were built because of an initial lack
of proper data to compare the results and validate the method. It
is not easily found datasets of aerial images with corresponding
flight data in the literature to compare results and in order to test
the method and analyze the results this particular data was first
produced using academic small quadcopter.

The experiments were performed in a MAC OSX 10.10 with a
2.6GHz Intel Core i7, 8GB 1600MHz DDR3 RAM and NVIDIA
GeForce GT 650M 1024 MB, which could be used as a ground
station for the UAV.

3.1 Geo-referencing a Satellite Video Frame

The first experiment was performed using a dataset provided by
the IGRSS 2016 Data fusion Contest (DEIMOS, 2016). It con-
sists of a Panchromatic data at 1m spatial resolution that was ob-
tained from the DEIMOS-2 Satellite (CCD sensor) and a high
definition video, with 1032 frames, and resolution of 3840x2160
pixels, acquired from the International Space Station at also 1m
spatial resolution (CMOS sensor).

This test intended to observe three aspects. The first aspect was
the use of satellite images, as they are a possible source of train
images for landmarks. The second was related with the recog-
nition in images provided by different sensors. Different sensors
can capture different visual information and pose as a challenge
for the recognition. The third and mas aspect was how the indi-
rect image-to-image geo-referencing method would work.

The test then selected from the panchromatic data a landmark to
be recognized in the video form the International Space Station.
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Table 1. Indirect geo-referencing of the video frame, from
landmark recognition.

Video Pos. Image Pos. Error (m)
(1711;600) (1762;5057) 7.1
(2185;712) (1957;4678) 6.6
(1675;1172) (2219;5204) 16.5
(1172;1912) (2714;5783) 25.8
(2841;1103) (2426;4219) 3.9
(2751;464) (1882;4151) 6.7
(1551;1033) (2084;5273) 9.2
(335;1221) (1953;6323) 33.7
(98;1732) (2320;6633) 38.9

(2203;299) (1622;4572) 4.0

Figure 3. Result for the indirect Geo-referencing of a frame. The
green dots are the real position and the red dots are the estimated

position.

This selected landmark had latitude and longitude information
in each pixels of the train image. From the recognition of the
landmark, each frame of the video was then geo-referenced, using
the method described in section 2.2.

Ten points from the video frame were randomly chosen in every
part of the frame and used to evaluate the indirect geo-referencing
method. It was decided to used ten points in order to evaluate how
the error was distributed throughout the image. Their results on
the indirect geo-referenced frame were compared with the cor-
responding points in the satellite geo-referenced image that pro-
vided the train image. Table 1 shows the results for these ten
points.

The average error obtained is similar to the GPS error and the er-
ror that is usually obtained in image registration software, such as
ENVI. Points with higher error are the ones that are more distant
form the recognized landmark. A better registration would prob-
ably be obtained if more than one landmark were selected to be
recognized in the frame. Figure 3 shows the result on the video
frame.

3.2 UAV Auto-localization

The second experiment developed was closer to how would an
aircraft recognize the landmark and estimate its position during
flight. The dataset used for this experiment was a sequence of
aerial images obtained from a Rotary-wing UAV (a quadcopter).
The flight was performed in the 07/31/2015, at 16:30, average

Figure 4. Landmarks chosen from the pattern image flight
(07/31/2015). (a) is a roundabout landmark, (b) is the roof of the

engineering building, and (c) is the roof of a house

flight height of 30m and average speed of 3m/s. The aerial im-
ages were taken with Nadir view, and at a frequency of 3 photos
per second, with a pixel resolution of 4000x3000. It was also pos-
sible to obtain the flight logs, with information from the IMU and
the GPS embedded in the aircraft, synchronized with each image
from the sequences. The landmarks chosen were as in Figure 4,
and they were obtained in the same aerial images. Four control
points were randomly selected in each landmark, using a 2011
geo-referenced image of the area. These points are the GCP for
the image registration, which is used for the position estimation.

The algorithm then was performed in the sequence of images.
As the landmarks were recognized, the position was estimated
and compared with the corresponding GPS data for each image
in which the landmark was recognized. Table 2 shows the error
in meters of the comparison between the estimated position and
the position obtained by the onboard GPS. Figures 5, 6, and 7
illustrate the positions plotted on a map, and compared with the
position of the center of each image were the landmark was rec-
ognized.

Table 2. Autolocalization error compared with the UAV GPS

Landmark Error (m)

19.8

20.5

24.4

The results have shown that estimations are inside the error radius
(DRMS) of the data obtained by the GPS equipment embedded
in the UAV. Moreover, the position from the Landmark recogni-
tion system seems to be more accurate than the GPS, when it is
compared in a qualitative evaluation. When each aerial image in
which the landmark was recognized is taken into consideration,
if the GPS position and the estimated position are plotted in a
map, it is possible to see that only in the estimated position the
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Figure 5. Auto-localization position comparison between GPS,
Landmark Recognition Estimation, Real UAV Position in the

roundabout landmark.

Figure 6. Auto-localization position comparison between GPS,
Landmark Recognition Estimation, Real UAV Position in the

house landmark.

camera could capture a scene as the corresponding image is. In a
more quantitative way, from the 2011 image of the area of flight,
it was possible to geo-reference the UAV image using ENVI and
estimate the central pixel latitude and longitude, which was con-
sidered as the UAV real position for comparison. From these re-
sults, it can be assumed that the method developed is a suitable
alternative or redundant position estimator, to be used in a visual
navigation system.

4. CONCLUSION

Landmark recognition-based autonomous navigation systems,
then, proved to be a valid and promising strategy to be applied
and further explored for a UAV visual navigation system. There
are few works in this area and most of them are in a more heuris-
tic approach, or use artificial landmarks. There are still exper-
iments and adaptations to be developed in the recognition area,
such as flight using other sensors and other environments. The
auto-localization results although, were quite satisfactory, as they
were more accurate than the GPS data available.

As Future works, an in-flight experiment is going to be per-

Figure 7. Auto-localization position comparison between GPS,
Landmark Recognition Estimation, Real UAV Position in the

rooftop landmark.

formed, in order to better evaluate the position estimated during
flight. At first, the UAV will send its captured image to a ground
station, which will process the image and obtain the position in-
formation (Latitude and Longitude) as soon as the landmark is
recognized. The results will be compared with a usual GPS and
a Referential GPS (RTK). Then, the algorithm will be adapted in
order to be embedded in the aircraft.
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