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ABSTRACT: 

The relevance of globally environmental issues gains importance since the last years with still rising trends. Especially disastrous 

floods may cause in serious damage within very short times. Although conventional gauging stations provide reliable information 

about prevailing water levels, they are highly cost-intensive and thus just sparsely installed. Smartphones with inbuilt cameras, 

powerful processing units and low-cost positioning systems seem to be very suitable wide-spread measurement devices that could be 

used for geo-crowdsourcing purposes. Thus, we aim for the development of a versatile mobile water level measurement system to 

establish a densified hydrological network of water levels with high spatial and temporal resolution. This paper addresses a key issue 

of the entire system: the detection of running water shore lines in smartphone images. Flowing water never appears equally in close-

range images even if the extrinsics remain unchanged. Its non-rigid behavior impedes the use of good practices for image segmentation 

as a prerequisite for water line detection. Consequently, we use a hand-held time lapse image sequence instead of a single image that 

provides the time component to determine a spatio-temporal texture image. Using a region growing concept, the texture is analyzed 

for immutable shore and dynamic water areas. Finally, the prevalent shore line is examined by the resultant shapes. For method 

validation, various study areas are observed from several distances covering urban and rural flowing waters with different 

characteristics. Future work provides a transformation of the water line into object space by image-to-geometry intersection. 

1. INTRODUCTION

Because of huge costs, the overall observation of flood-prone 

areas by permanently installed measurement stations is often just 

scantily available. Unfortunately, several hydrological networks 

have an insufficient coverage for the effected regions of interest 

(ROI) in case of need. Minor rivers are often neglected but ensure 

serious damages in case of flash floods. A small municipality 

called Braunsbach in Baden-Wuerttemberg, Germany received 

worldwide recognition in summer of 2016. After heavy rainfalls, 

a small river passing Braunsbach became a devastating stream 

with high increased flow rates by more than 500 times compared 

to flood situations known there. Exact values are not available 

due to only one measurement station, located approximately 

10 km away from the hot spots. High waters and several 

landslides led to high structural damages and complicated rescue 

operations (Agarwal et al., 2016). For the development of a 

versatile mobile water level measurement system, the necessary 

input data is provided by geo-crowdsourcing using smartphones 

to capture and process hand-held time lapse image sequences to 

extract the prevalent water line as a basic requirement for the 

observation of water level changes (see Figure 1). Subsequently, 

the detected water line has to be transferred into object space to 

determine the final water level (not addressed in this paper). 

However, the segmentation of running water and nearshore 

environment is a non-trivial task and has been treated frequently 

in image processing fields (see Section 1.1). An individual image 

is only a snapshot which barely covers the characteristics of non-

rigid objects like water. In addition to the image space, the use of 

the time axis provides an efficient complement for image 

segmentation by means of spatio-temporal variability.  

* Corresponding author 

Figure 1. Schematic use case of water level determination using 

hand-held smartphone. 

Due to the investigation of the mobile water level monitoring 

system, the water line detection of diverse running waters 

represents a core function of the entire system. Thus, the 

approach is applied to several study regions of different 

characteristics and weather conditions concerning shooting 

distances and time lapse frequencies (see Section 2). In Section 3 

we present the methodology starting with the geometric co-

registration of a monoscopic time lapse image sequence (see 

Section 3.1), immediately followed by spatio-temporal texture 

and pixel by pixel mean value calculation using the registered 

dataset (see Section 3.2). Using the application interface, user 

interaction takes place in the form of a coarse selection of the 

shore line to be extracted. The resultant image areas mark 
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respectively the predominant dynamic or static part of the ROI 

and must be analyzed for their spatio-temporal distribution to 

assess the texture significance (see Section 3.3). Depending on 

the results, an automatic steered region growing is applied for 

image segmentation (see Section 3.4). Using the specified 

regions, the prevalent shore line is investigated and described in 

Section 3.5. Whereas Section 4 illustrates the resulting water 

lines of the introduced study areas, Section 5 gives an evaluation 

respectively. The paper ends with a critical examination of the 

proceeding and give a short outlook for future work (see 

Section 6). 

1.1 Related work 

In geosciences, especially in remote sensing, multispectral 

imagers provide spectral signatures from natural objects 

depending on their physical conditions, like the approved NDWI 

for water recognition (Feyisa et al., 2014; Gao, 1996; 

Li et al., 2014; Sarp and Ozcelik, 2016). Currently, it seems to be 

obvious that the application of mobile multispectral imaging 

using smartphones is not possible due to technical reasons. 

An alternative approach is provided by the analysis of image 

texture. A fundamental work written by Haralick et al. (1973), 

defines texture as ‘one of the important characteristics used in 

identifying objects of regions of interests in an image, whether 

the image be a photomicrograph, an aerial photograph, or a 

satellite image’. Thus, the combined application of single textural 

features and spectral information has been proven for image 

classification and was frequently applied and enhanced for 

precise image segmentation in geosciences (Kim et al., 2009; 

Ferro and Warner, 2002; Martino et al., 2003; Verma, 2011; 

Zhang, 1999). But, the calculation of various texture features 

requires high performance which may impede the use of 

smartphones beside flagship systems. Referring to Varma and 

Zisserman (2005), ‘a texture image is primarily a function of the 

following variables: the texture surface, its albedo, the 

illumination, the camera and its viewing position. Even if we 

were to keep the first two parameters fixed, i.e. photograph 

exactly the same patch of texture every time, minor changes in 

the other parameters can lead to dramatic changes in the resultant 

image. This causes a large variability in the imaged appearance 

of a texture and dealing with it successfully is one of the main 

tasks of any classification algorithm.’ In contrast to remote 

sensing, texture surfaces of close-range camera observations are 

highly affected by the mentioned influence factors regarding 

varying camera constellations. Tuceryan and Jain (1993) termed 

texture as a ‘prevalent property of most physical surfaces in the 

natural world’ which is why motion has to be treated as textural 

criterion as well. Figure 2 demonstrates the strongly different 

appearances of running waters due to varying camera 

constellations and mutable image content. The complementary 

use of time and space enables the investigation of spatio-temporal 

texture and thus a situation-based image segmentation in respect 

of time-dependent image content (Szummer and Picard, 1996; 

Peh and Cheong, 2002; Hu et al., 2006; Nelson and Polana, 1992; 

Xu et al., 2011). On this basis, we add the temporal variability by 

means of time lapse image sequences. Subsequently, the proper 

segmentation starts in accordance to the defined feature space. 

Several approaches prefer a supervised classification that may be 

enhanced by deep neural networks for training robust classifiers 

(Maggiori et al., 2017; He et al., 2016; Ciregan et al., 2012; 

Krizhevsky et al., 2012; Reyes-Aldasoro and Aldeco, 2000). 

Moreover, the investigation of a sufficient training dataset for 

image classification regarding running waters, appears rather 

difficult. In conclusion, the presented approach for water line 

detection is primarily based on image segmentation and 

classification which must fulfil two basic criteria: firstly, the 

algorithm deals with running waters high variability and secondly, 

it should be appropriate to run on common smartphone devices. 

Thus, high intensive processing should be avoided as much as 

possible. 

Figure 2. Appearances of different running waters, captured 

with varying camera constellations. 

A similar approach provided by Kröhnert (2016), successfully 

demonstrates the segmentation of running water and shore land 

using spatio-temporal texture. However, the approach has issues 

regarding rotation invariance of the water line location within the 

image and processing time. Besides this, the implemented 

segmentation uses hard-defined parameters which may fail in 

cases of running waters with highly different characteristics than 

the presented one. Our approach enhances the calculation of 

spatio-temporal texture regarding processing time and 

demonstrates an orientation-invariant segmentation procedure 

due to multiple seeded region growing (see Section 3.4) with 

automatic set up avoiding empirical determined parameters (see 

Section 3.2). 

2. DATA

Considering variable image content of close-range images, the 

texture of an individual image will not have a generally valid 

significance for proper image segmentation which is why our 

approach regards the time component. By means of time lapse 

image sequences, the mutable textures provide significant 

advantages for image classification (e.g. reflections on running 

water surfaces). Moreover, it allows for image segmentation and 

thus for boundary extraction like shore lines by means of the 

mapped dynamics only. 

In environmental sciences, monoscopic time lapse image 

sequences are good practice for change detection and long-term 

monitoring, e.g. for glaciological investigations using 

permanently installed camera setups (Maas et al., 2010; 

Koschitzki et al., 2014). In case of on-the-fly captured time lapse 

images or video sequences with hand-held smartphone cameras, 

the acquired images will be co-registered against a defined 

master scene to solve the issue of hand instability. In 

consideration of the prospective water line transformation into 

object space and regarding the determination of its corresponding 

level, the use of undistorted images is advantageous. Thus, we 

recommend the optional use of our implemented camera 

calibration tool to acquire an undistorted time lapse image 

sequence. As indicated above, the temporal component and the 

viewing position mainly influences texture and consequently the 

spatio-temporal texture as well. Thus, we have applied the 

approach to seven study regions that cover four urban and three 

rural rivers to extract the prevalent water lines. 
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Table 1. Study areas covering urban and rural running waters regarding situative specifications of environment and camera 

configurations. 

The urban scenes correspond to one river with different forms of 

appearance and characteristics due to varying points of view and 

camera distances. For the investigation of rural waters, we have 

observed two small creeks and one large river in forest areas 

using a HTC One M7 smartphone, released in 2013, as 

measurement device with operating system Android 5.1. Thereby, 

the dimension of the time lapse image sequences amounts to 1920 

x 1080 pixels in all test cases. Furthermore, the temporal 

variability is easily assessable though the number of images 

within the time lapse image sequence. Thus, two combinations of 

frame rate and sequence length are investigated in order to test 

the dependency of flow velocity and time lapse. Table 1 gives a 

detailed overview over the investigated areas and environmental 

conditions for image capturing. 

3. APPLICATION DEVELOPMENT

The process pipeline, illustrated in Figure 3, starts with the 

preliminary work of time lapse image sequence co-registration in 

direct succession to the initially data acquisition. By means of the 

gray level magnitudes concerning the co-registered image 

sequence (see Section 3.1), the corresponding spatio-temporal 

texture as well as the mean value (hereinafter referred to 

as ’average image’) will be calculated pixel by pixel (see 

Section 3.2). Afterwards, human interaction takes place in the 

form of a coarse selection of the shore line to be extracted. For 

this, a graphical user interface (GUI) is used displaying the 

calculated average image to the user, which depicts a virtually 

homogenized surface of the dynamic image part (see Figure 3, 

top right).  

The resultant image areas mark either the predominant dynamic 

or static part of the ROI. Both regions are analyzed for their 

spatio-temporal distribution to assess the prevalent texture 

significance (see Section 3.3). Possibly for slow-running rivers 

or large object distances, the spatio-temporal texture may not 

have sufficient resolution to serve as appropriate input for image 

segmentation purposes. In this case, the average image of the 

time lapse sequence provides a basis for the further processing.  

The segmentation process itself (see Section 3.4) is automatic 

steered and demands an automatic definition of input data and 

variables. The data required for this purpose bases on the results 

of the previously texture significance analyses. For both options, 

Section 3.4.1 and Section 3.4.2 describe the automatic definition 

of variables, necessary for the following segmentation with the 

application of region growing (see Section 3.4). Finally, the 

resultant image segments are analyzed for the prevalent shore 

line (see Section 3.5). 

3.1 Time lapse image sequence co-registration 

After image acquisition, an attempt is being made to co-register 

all individual images of a time lapse image sequence. In doing so, 

the first scene acts as so-called master image whereas all 

remaining images will be treated as slaves. In principle, we 

calculate the image homographies respectively for all slave 

images in dependence on the master scene. Consequently, all co-

registered images belong to the geometry of the master image. 

The procedure comprises in general the repeated detection and 

description of potential key points, their matching and finally the 

homography calculation using suitable matches to carry out the 

perspective transformation. For the App implementation, we 

make use of OpenCV’s framework, version 3.1.0 for Android 

development (Bradski, 2000). 

Using the Harris-Operator presented by Harris and Stephens 

(1988) for the fast detection of potential feature points in each 

image, only image points that refer to discrete corners are 

considered like stones, railings or walls. For feature description, 

we use the scale-invariant feature transform (SIFT) algorithm 

followed by fast feature point matching, described in Lowe (2004) 

and Muja and Lowe (2009). At least we need a minimum of four 

good matches to calculate the homography of each master-slave 

image pair. Otherwise, the slave has to be rejected (which may 

result due to blurred images). In doing so, RANSAC is applied 

with a threshold of three pixels to detect and eliminate outliers 

affecting the transformation. With the aid of the estimated slave 

image points that refer to individual positions as a function of the 

master point coordinates, the slave images could be co-registered 

in consideration of the master geometry using a perspective 

transformation with cubic interpolation. Obviously, the approach 

does not need further input data for image registration, but 

account must be taken during data acquisition. The homographies 

may not handle major changes in scale well which means that the 

camera must be held steadily until the acquisition has finished. 

However, this should not cause problems in case of short time 

lapse image sequences. 

Urban areas Rural areas 

Study region (I) (II) (III) (IV) (V) (VI) (VII) 

River width 8 m 8 m 21 m 16 m 15 m ≈ 2 m ≈ 1 m 

Ø Flow Rate

Q
3.5 

𝑚3

𝑠
≈ 3.4 

𝑚3

𝑠
3.3 

𝑚3

𝑠
6.9 

𝑚3

𝑠
0.034 

𝑚3

𝑠
0.0086 

𝑚3

𝑠

Weather cloudy, no rain heavy rain sun cloudy, no rain 

Shore line 

specs 
natural gravel, bricks quay wall nat. gravel reed gravel, bricks cliffs, grass 

FPS 3 fps/ 5 fps 

Sequence 

Length 
5 s 

Object 

Distance 
30 m 15 m 35 m 20 m 15 m 5 m 
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Figure 3. Process pipeline from data acquisition to result display. 

3.2 Investigation of spatio-temporal texture 

The investigation of spatio-temporal texture as well as the 

average image are treated relating to previously introduced image 

co-registration. Moreover, the transformed images are checked in 

a consecutive manner for absolute pixel differences. Difference 

images thus generated are summed up and map the magnitude of 

spatio-temporal variability known as spatiotemporal texture (see 

Figure 3, bottom). Additionally, the average image of the 

processed image sequence is calculated pixel by pixel per mean 

value. Referring to this, the appearance of the original dynamic 

image content belongs to a homogenized surface, depending on 

image frequency and observation time. In case of time lapse 

sequences, the representation of running rivers looks almost 

homogeneous or smoothed. Figure 4 shows a single image of a 

shallow urban river (study area (I)) in comparison to its average 

image and the appropriate spatio-temporal texture, calculated 

with 15 co-registered images (3 fps, 5 s). 

3.3 Histogram analysis 

After texture calculation, the user is requested to trace the water 

line within the displayed average image (see Figure 3, top right). 

In doing so, every selected image point that refers to the initial 

water line is captured. To specify the ROI for further processing, 

the line has to be expanded by a defined value orthogonally using 

the respective points. The extension value initially amounts to 50 

pixels but can be adapted using the GUI to fit the prevalent 

camera resolution and object distance. Using the water line 

selection and the buffered region, one of the halves represents the 

major part of static and the other one the part of dynamic features. 

Closing up, the algorithm is trained by a single finger tap inside 

the most static image region which refers to the land area. 

Immediately afterwards, the temporal variability of both regions 

is investigated respectively through spatio-temporal histograms 

(see Figure 3, bottom left). The number of bins amounts to the 

spatiotemporal magnitudes within the defined ROI. We assume 

that both histograms are highly different because of immutable 

and non-rigid image contents. Afterwards, both histograms are 

correlated to qualify their similarity. In case of a correlation 

coefficient less than 90 %, both regions can be clearly separated 

by pixels spatio-temporal variability. Consequently, the 

spatiotemporal texture provides a sufficient basis for the 

segmentation via the characteristics of imaged dynamics. 

Figure 4. Detail view of a co-registered time lapse image 

sequence taken with 3 fps over 5 s in study area (I). Top down: 

master image, associated average image & spatio-temporal 

texture visualized by observed pixel magnitudes 𝑀𝑃𝑥.

Otherwise, both regions appear too similar in their spatio-

temporal texture which may be caused by the image acquisition 

system or environmental issues like deep shadows or reflections. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W4, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W4-1-2017 | © Authors 2017. CC BY 4.0 License. 4



However, less spatiotemporal texture is associated with less 

variabilities inside of the imaged running water. Thus, average 

image serves as a complementary alternative for the following 

segmentation of water and environment due to its homogeneous 

appearance. Both types are visualized in Figure 5 and Figure 6. 

Figure 5. Histogram analyses of spatio-temporal textures in 

relation to respective ROIs. Left: Study area (II), dissimilarities 

enable spatio-temporal texture, correlation factor corr = 0.08. 

Right: less spatio-temporal variability (corr = 0.97). 

Figure 6. Histogram analysis of average image in respect of 

respective ROIs. Left: gray level distribution of mean values 

provides no useful information for image segmentation. Right: 

Study area (III), classifiable due to homogenized image content 

by averaged gray values. 

For shallow water in study area (I) it could be noticed that the 

spatio-temporal texture provides a good basis for image 

segmentation with respect to the static area. In contrast to this, 

the average image holds good for a region growing-based image 

separation in consideration of the homogenized water surface, 

approved in study area (III). 

3.4 Image segmentation by region growing 

Depending on the results of the histogram analysis, either the 

spatio-temporal texture or the average image serves as input for 

image segmentation. We decided to use region growing because 

of its simplicity due to multiple seed point definition with a clear 

representation of image properties as well as its robustness 

against image noise (Kamdi and Krishna, 2012). Moreover, 

region growing is able to detect connected regions in dependency 

of variable pixel neighborhoods. A well-known shortcoming of 

region growing is the high computation time. Hence, we use the 

defined ROI to restrict the search area which enhances the 

processing time significantly. 

The approach compares the prevalent attributes of a seed point 

with the characteristics of its close proximity. In doing so, a 

defined threshold value (or vector for multiple attributes) serves 

as a criterion for similarity between the starting point and the 

investigated neighborhood. If similarity is given, the considered 

points belong to one image segment whose boundary provides 

the points now to check for neighbor affiliations. In case of non-

fitting points or when the boundary of the defined ROI is reached, 

the procedure terminates. 

According to the input data the parameters for both, seed point 

and threshold should be defined automatically. Section 3.4.1 

describes the steering based on the spatio-temporal texture 

whereas Section 3.4.2 regards the approach using the average 

image. 

3.4.1 Segmentation by spatio-temporal texture analysis: In 

case of significant spatio-temporal texture, the definition of seed 

points depends on the initial masked area that relates primarily to 

immutable image content. Probably, changes which may occur 

from weather influences like rainfall or changing light conditions 

in case of moving clouds would lead to spatio-temporal noise. 

Another reason for noise may cause by small residual errors in 

the image sequence co-registration. Thus, we look for a threshold 

that corresponds to the main area of static image content while 

neglecting outliers. A solution for the issue is provided by the 

associated histogram whereas the threshold belongs to the most 

prevalent magnitude. Image points whose attributes equals the 

threshold value are carried out as potential seed points. One of 

the seeds is randomly selected as starting point for a first iteration. 

All values that show less or equal temporal stability 𝐼(𝑥, 𝑦) ≤
𝑡ℎ𝑟𝑒𝑠ℎ are assigned to the region of immutable image content. 

The remaining seeds are checked for their region assignment and 

if necessary, the process repeats until all predefined seeds are in 

connection by means of the developed region. This conversely 

means that the left pixels within the ROI point to dynamic image 

content and thus to running water (see Figure 7). 

Figure 7. Spatio-temporal texture overlay referring to study 

region (II). White polygon: ROI from coarse water line 

preselection, Blue polygon: Initial water body pointing to 

dynamic image content; Red dots: Potential seed points. 

3.4.2 Segmentation using the average image: If the spatio-

temporal texture may not be sufficient to qualify distinct areas of 

motion and rigidity, the average image offers a great alternative 

for region growing. Leading edges within the ROI mainly 

represent contours between immutable and variable objects due 

to homogenized image content. For this, an edge map is 

generated by means of the Gaussian blurred mean value using the 

Canny (1986) edge detector with an automatic defined threshold 

by application of Otsu’s approach (Fang et al., 2009; Otsu, 1975). 

Because of its simplicity only one seed point within the 

homogenized surface is needed for region growing based image 

segmentation. For this, we determine the closest bounding box 

around the masked water area with regards to the ROI using its 

center as seed point. When executed, the approach terminates in 

case of striking an edge value (see Figure 8). 
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Figure 8. Average image with canny edge map overlay of study 

region (III); White polygon: ROI from coarse water line 

preselection; Blue polygon: Initial water body pointing to 

homogenized dynamic image content; Red: Seed point. 

3.5 Water line detection 

Closing the processing, the water line is derived using the 

observed image segments. Whether for the region of immutable 

image content, examined by spatio-temporal texture or for the 

dynamic image part, described by means of the alternatively 

engaged average image of the time lapse image sequence, the 

resultant shape covers the shore line being observed. But apart 

from the water line, the contour also comprises points near or 

upon the ROI boundary and have to be eliminated. Region 

Growing can detect undercuts which may occur e.g. due to rising 

stones in the near shore area. For our water level monitoring 

system, we only need one shoreline which is why we eliminate 

such occurrences by means of Cleveland’s Locally Weighted 

Regression (Cleveland, 1979). 

4. EXPERIMENTAL RESEARCH AND RESULTS

As already was mentioned, we apply the algorithm in different 

study areas using several camera constellations and two time 

lapse configurations respectively (see Table 1 above). Regarding 

each processing step, the processing times are listed in Table 2. 

The size of bounding boxes (labeled ’BBox’ in Table 2) helps to 

qualify the processing time regarding the initial ROI. It should be 

mentioned that the first step refers to the whole image to ensure 

a sufficient number of suitable features for image co-registration 

regarding the running water environment. Both, the average and 

the spatio-temporal texture are generated parallel to the images 

co-registration but without a significant influence to processing 

time. The investigation results for the urban study areas (I)-(IV) 

and the rural areas (V)-(VII) are visualized in detail in Table 3 

(description in caption).  

5. EVALUATION AND DISCUSSION

Our paper presents a reliable approach for mobile image 

segmentation on the basis of mapped image dynamics with the 

objective of a versatile water level measurement system. We 

show an enhancement of the approach from Kröhnert (2016) with 

respect to processing time and image adjustment, proven in 

several urban and rural regions with differing running rivers and 

environmental situations. Furthermore, we integrate an 

alternative processing for images with less spatio-temporal 

information. Our approach is (semi-) automatically steered with 

a unique user interaction to define the region of interest. 

As being expected, the bottleneck regarding processing times 

occurs due to images co-registration. The longest times are taken 

by feature detection and description using SIFT that affects the 

first processing step only in respect of varying frame rates. The 

times for the remaining processing steps stay -compared to the 

different frame rates- mostly the same or very close together 

which is why we have not provided an individual statement for 

each (see Table 2). Compared to other feature detectors like ORB 

(see Kröhnert, 2016), SIFT’s accuracy and robustness were given 

priority over processing time. Naturally, the hard tasks are 

processed in background to avoid an overloaded UI thread. 

In conclusion, the water line could be successfully derived in all 

experiments. Thereby, a time lapse initialization with a frame rate 

of 3 fps and a sequence length of 5 s seems to be the best 

combination that covers the most urban and land river 

characteristics due to flow velocity and does take account of 

processing time. Higher frame rates result in more images being 

processed and thus to avoidable long processing times. 

Furthermore, Table 2 shows that the processing time increases 

nearly exponential with respect of the image number. In this 

connection, an important point that should be kept in mind is the 

spatio-temporal noise which may occur due to scaling issues 

during homography calculations. The stronger users motion and 

the higher the number of images, the more noise may occur and 

distort the result (see Table 3, study area (V)). The same applies 

for high changing backgrounds of shore environments which may 

lead to a high amount of falsely taken key points that could not 

be detected by RANSAC (e.g. vegetation moving in the wind).  

Finally, it should be noticed that the investigated boundary 

reflects the mapped situation and is valid for the corresponding 

observation time only. For the derivation of instantaneous water 

levels, this may not be relevant but should be considered in 

relation to other possible applications. 

6. FUTURE WORK

To improve the approach, future enhancements could deal with 

the bottleneck of processing time by outsourcing calculations to 

the graphic chip (GPU processing). Furthermore, the region 

growing needs more investigation in case of occurring leaks that 

are a frequently treated problem in image processing concerning 

region growing approaches. In our investigations, we have not 

detected large leaks but we cannot exclude that they will not have 

influences on water line derivation in general. 

The main aspect being developed comprises the intersection of 

the derived water line and digital terrain data to transfer the image 

to the object space which allows for the on-the-fly water level 

determination. Moreover, we will be able to verify the derived 

water levels with conventionally acquired data and estimate the 

accuracy. 
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Urban areas Rural areas 

Study region 

BBox 

(I) 

(765x140) 

(II) 

(1395x135) 

(III) 

(1755x185) 

(IV) 

(550x165) 

(V) 

(984x216) 

(VI) 

(692x253) 

(VII) 

(643x213) 

Processing times 

Frame rate 3 5 3 5 3 5 3 5 3 5 3 5 3 5 

Step 1 45.4 83.3 43.9 86.0 47.1 78.5 44.5 80.3 47.8 86.2 44.3 85.1 43.1 83.2 

Step 2 1.4 1.9 0.8 0.6 1.0 1.4 1.2 

Step 3 9.1 12.1 6.4 6.7 5.6 4.7 3.8 

Step 4 0.3 0.4 0.4 0.1 0.2 0.2 0.1 

Table 2. Summary of processing times regarding two frame rates of 3 & 5 fps with a time lapse interval of 5 seconds to observe the 

study areas (I)-(VII). Bounding box (BBox) for ROI description in pixels. Processing times in seconds with respect to single 

processing steps: (1) Co-registration, average image & spatio-temporal texture calculation, (2) Histogram analysis & initialization of 

step (3) image segmentation, (4) water line extraction. 

Investigation of urban areas 

(I) (II) (III) (IV) 

Investigation of rural areas 

(V) (VI) (VII) 

Table 3. Experimental investigations of water lines using the spatio-temporal texture (urban study areas (I) & (II)) and rural areas 

(V)-(VII)) or the average image (urban study areas (III) & (IV)) for image segmentation. Top rows: Overlay of average & spatio-

temporal texture image containing masked ROI & initial shore line (red). Lower lines: determined water line using 3 fps (blue) & 

5 fps (pink) for investigation. 
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