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ABSTRACT: 

The common statistical methods for supervised classification usually require a large amount of training data to 

achieve reasonable results, which is time consuming and inefficient. This paper proposes a tensor sparse 

representation classification (SRC) method for airborne LiDAR points. The LiDAR points are represented as tensors 

to keep attributes in its spatial space. Then only a few of training data is used for dictionary learning, and the sparse 

tensor is calculated based on tensor OMP algorithm. The point label is determined by the minimal reconstruction 

residuals. Experiments are carried out on real LiDAR points whose result shows that objects can be distinguished 

by this algorithm successfully. 

1. INTRODUCTION

LiDAR point cloud classification in urban areas has 

always been an essential and challenging task. Due to 

the complexity in urban scenes, it is difficult to label 

objects correctly using only single or multi thresholds. 

Thus, research mainly focus on the use of statistical 

method for supervised classification of LiDAR points 

in recent years. Common machine learning methods 

include support vector machine (SVM) algorithm, 

adaboost, decision trees, random forest and other 

classifiers. SVM seeks out the optimal hyperplane that 

efficiently separates the classes, and the Gaussion 

kernel function can be used to map non-linear decision 

boundaries to higher dimensions where they are linear 

(Secord and Zakhor, 2007). Adaboost is a binary 

algorithm, but several extensions are explored for 

multiclass categorization, hypothesis generation 

routines are used to classify terrain and non-terrain area 

(Lodha et al., 2007). Decision trees can be used to carry 

out the classification by training data and make a 

hierarchical binary tree model, new objects can be 

classified based on previous knowledge (Garcia-

Gutierreza et al, 2009) (Niemeyer et al., 2013). 

Random Forest is an ensemble learning method that 

uses a group of decision trees, provides measures of 

feature importance for each class (Guo et al., 2011) 

(Niemeyer et al., 2013), and runs efficiently on large 

datasets.  

Those approaches barely consider the spatial 

distribution of points, which is an important cue for the 

classification in complex urban scenes. Some studies 

have applied graphical models to incorporate spatial 

context information in the classification. Graphical 

models take neighboring points into account, which 

allow us to encode the spatial and semantic 
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relationships between objects via a set of edges 

between nodes in a graph (Najafi et al. 2014). Markov 

network and conditional random field (CRF) are two 

mainstream methods to define the graphical model. 

However, a large amount of training data is necessary 

to obtain the classifier in those statistical studies. 

Anguelov et al (Anguelov et al. 2005) use Associated 

Markov Network (AMN) to classify objects on the 

ground. The study takes 1/6 points as training data and 

achieve an overall classification accuracy as 93%. 

Niemeyer et al (Niemeyer et al. 2014) use 3000 points 

per class to train the CRF model. Seven classes (grass 

land, road, tree, low vegetation, buildings gable, 

building flat, facade) are distinguished based on the 

CRF and the overall accuracy is 83%, which is a fine 

result in complex urban scene. As for statistical 

methods, Im (Im et al. 2008) uses 316 training samples 

(1%) to generate decision trees with an overall 

accuracy of 92.5%. Niemeyer (Niemeyer et al., 2013) 

uses 3000 samples per class to build random forest 

model, the overall accuracy achieves 83.7%. Moreover, 

Lodha uses half of dataset as training data through 

adaboost algorithm and the average accuracy is 92%. 

As a consequence, classifier training would be very 

time-consuming, especially when Markov network or 

CRF are used as classifier. 

This paper aims to use as few training data as possible 

to achieve effective classification. Therefore, sparse 

representation-based classification is used in this paper. 

Sparse representation-based classification (SRC) is a 

well-known technique to represent data sparsely on the 

basis of a fixed dictionary or learned dictionary. It 

classifies unknown data based on the reconstruction 

criteria. SRC has been successfully applied to the 

processing of signals (Huang and Aviyente 2006) and 

images (Wright et al. 2009). Normally, the dimensional 

data has to be embedded into vectors in traditional 

methods. However, the vectorization breaks the 

original multidimensional structure of the signal and 

reduces the reliability of post processing. Therefore, 

some research formulates high dimensional data SRC 

problem in terms of tensors. Tensor extensions of the 

dictionary learning and sparse coding algorithms have 

been developed, such as Tensor MOD and KSVD for 

dictionary learning (Roemer et al. 2014), tensor OMP 

(Caiafa and Cichocki 2012). Moreover, tensor based 

representation has yielded good performance in high-

dimensional data classification (Renard and 

Bourennane 2009), face recognition(Lee et al. 2015) 

and image reduction (Peng et al. 2014). 

We represent LiDAR point as a 4-order tensor to keep 

feature description in their original geometrical space. 

With few training data, the dictionary is learned based 

on the Tucker decomposition(Kolda and Bader 2009). 

Then, the sparse representation of each point can be 

obtained by projecting the tensor onto dictionaries, 

which is expressed as a sparse tensor whose nonzero 

entries correspond to the selected training samples. 

Thus, the sparse tensors of points that belong to the 

same class should have similar structure. At last, the 

label of unknown points can be predicted by the 

minimum reconstruction residual from sparse tensor 

and dictionaries. 

2. LIDAR CLASSIFICATION BASED ON

SPARSE REPRESENTATION 

2.1   Sparse Representation Classification 

The sparsity algorithm is to find the best representative 

of a test sample by sparse linear combination of 

training samples from a dictionary (Wright et al. 2009). 

Given a certain number of training samples from each 

class, the sub-dictionary 𝐷" from 𝑖th class is learned. 

Assume that there are c classes of subjects, and let 

𝐷 = 𝐷& , 𝐷( , 𝐷) ⋯ 𝐷+ which is the overall 

structured dictionary over the entire dataset. Denote by 

𝑦 a test sample, the sparse coefficient 𝑥 is calculated 

by projecting 𝑦  on dictionary 𝐷 , which is called 

sparse coding procedure.  

SRC use the reconstruction error 𝑒"  associated with 

each class to do data classification. 𝑥"  is the sparse 

coefficient associated with class 𝑖 , 𝑒"  is the 

reconstruction error from sub-dictionary in 𝑖  class. 

The class label of 𝑦 is then determined as the one with 

minimal residual. 

𝑒" = 𝑦 − 𝐷"𝑥" (  𝑐𝑙𝑎𝑠𝑠	  𝑖 = 1,2, … , 𝑐       (1) 
identify(y) = argmin

"
𝑒"
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2.2   Tensor Representation of Lidar Points 

2.2.1 Preliminaries on tensors 

The tensor is to denote a multidimensional object, 

whose the elements are to be addressed by more than 

two indices. The order of a tensor, also known as modes 

(Kolda and Bader 2009), is the number of dimensions. 

Tensors are denoted as boldface italic capital letters, 

e.g., 𝑨; matrices are denoted as italic capital letters,

e.g., 𝐴; vectors are denoted as italic lowercase letters,

e.g., 𝑎.

The tensor can be transformed into a vector or matrix,

and this processing is known as unfolding or flattening.

Given an N-order tensor 𝑻 ∈ 𝐑JK×JM×⋯×JN , the n-mode

unfolding vector of tensor 𝑻  is obtained by fixing

every index except the one in the mode n (Yang et al.,

2015). The n-mode unfolding matrix is defined by

arranging all the n-mode vectors as columns of a matrix,

i.e.,  the n-mode unfolding matrix 𝑇(P) ∈

𝐑JK×JM×⋯JQRK×JQSK⋯×JN,JQ . The n-mode product of a

tensor 𝑻 ∈ 𝐑JK×JM×⋯×JN  with a matrix 𝑈 ∈ 𝐑U×JQ  is

denoted by 𝑻×𝒏𝐔, and the processing can convert to

product that each mode-n vector is multiplied to the

matrix U. so it can also be expressed in terms of unfold

tensors:

𝒀 = 𝑻×𝒏𝐔	   	  𝑌P = 𝐔	   
The tucker decomposition is a form of higher-order 

principal component analysis. It decomposes a tensor 

𝑻 ∈ 𝐑JK×JM×⋯×JN  into a core tensor 𝑪 ∈

𝐑UK×UM×⋯×UN multiplied by the matrix 	  𝐔𝟏, 𝐔𝟐,⋯𝐔𝐍 

along each mode. The matrix can be considered as the 

principal components in each mode. Since the tensor is 

generated according to the point spatial distribution, 

the principal components in attribute mode are spatial 

connection considered.  

𝑻 = 𝑪×𝟏𝐔𝟏×𝟐𝐔𝟐×⋯×𝒏𝐔𝐍 

2.2.2 Tensor representation of Lidar points voxel 

In order to preserve spatial structure and attribution 

information, LiDAR points are represented as tensor 

data. In previous work, the LiDAR data is rasterized 

into feature images. The LiDAR tensor is generated by 

stacking images into 3-order tensor(Li et al., 2016). 

This paper consider each point voxel as a tensor. First 

of all, multiple attributes from raw LiDAR data are 

extracted to form a vector on the point 𝐩, then the 3D 

neighborhood of the point 𝐩 is selected as the voxel 

of point 𝐩. After that, the voxel is represented as a 4-

order tensor 	  𝑻 ∈ 𝐑J_×J`×Ja×Jb  of point 𝐩 , where 

Id, Ie, If, Ig  indicate the X,Y,Z coordinates and 

attributes mode, respectively. 𝐑 is the real manifold. 

Points in this voxel are regarded as entries in the tensor, 
which are arranged as r"h"i"j"k , where 𝑖l =

1, … , Id; ie = 1, … , Ie; if = 1, … , If; 𝑖n = 1, … , Ig . The 

voxel size is defined as 1m and tensor size is defined as 

10×10×10×10 . It means that the voxel is equally 

partitioned as 10 intervals along X,Y,Z coordinate, and 

10 attributes contained in each point. Therefore, the 

entries are the attributes of each point, which are 

accessed via Id, Ie, If, Ig  indices. That means, 

attributes are spatially constrained along local direction 

and implicitly exploited by tensor representation.  

The tensor can be represented in terms of its factors 

using the Tucker model, which is shown as equation(2). 

𝑻 ≈ 𝑿×&𝑈(d)×(𝑈(e)×)𝑈(f)×r𝑈(g)     (2) 

Here, U(d) ∈ J_×U_ , U(e) ∈ J`×U` , 	  𝑈(f) ∈ Ja×Ua 	   , 

U(g) ∈ Jb×Ub  are the factor matrices and contain the 

basis vectors on X coordinate, Y coordinate, Z 

coordinate and attribute mode. 𝑿 ∈ 𝐑U_×U`×Ua×Ub 	  is the 

core tensor, where Jd, Je, Jf, Jg ≤ Id, Ie, If, Ig , and its 

entries show the level of interaction between the 

different components (Tamara et al., 2007). As such 

Jd, Je, Jf, Jg ≤ Id, Ie, If, Ig, the original tensor can be well 

recovered with the core tensor and a few basis vectors 

on each mode. 

Tucker mode can be written as Kronecker 

representation: the two representations are equivalent. 

Let ⊗  denotes the Kronecker product, 𝑡  is the 

vectorized version of tensor 𝑻 , 𝑥  is the vectorized 

version of tensor 𝑿 . The equal Kronecker 

representation is shown as following: 

𝑡 = 𝑈(d) ⊗ 𝑈(e) ⊗ 𝑈(f) ⊗ 𝑈(g) 𝑥     (3) 

2.3   Dictionary Learning 

For a set of LiDAR tensors 𝑻x xy&
z  ,where𝑻x ∈

𝐑J_×J`×Ja×Jb 	  is 4-order point tensor and K is number of 

tensors. Dictionaries 𝐷 = 𝐷d, 𝐷e, 𝐷f, 𝐷g , and 

𝐷d, 𝐷e, 𝐷f, 𝐷g  are dictionaries on X coordinate, Y 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W4, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W4-107-2017 | © Authors 2017. CC BY 4.0 License. 109



coordinate, Z coordinate and attribute mode, 

respectively. Tensor dictionary learning aims to 

calculate the dictionaries 𝐷 = 𝐷d, 𝐷e, 𝐷f, 𝐷g  and 

sparse tensor 𝑿x xy&
z by following model. 

( ∙ (denotes the 𝑙( − 𝑛𝑜𝑟𝑚). 

𝐦𝐢𝐧
�_,�`,�a,�b

𝑻x − 𝑿x×&𝐷d×(𝐷e×)𝐷f×r𝐷g
𝟐

𝐊
𝒌y𝟏 	  

  (4) 

The dictionary learning can be performed 

independently for each class to build a sub-dictionary. 

Denoted by 𝐷�d, 𝐷�
e, 𝐷�f, 𝐷�g	   are sub-dictionaries

associated with class i on X coordinate, Y coordinate, 

Z coordinate and attribute mode, class	  i =

1,2, … , c .	  Let 𝑻𝐢𝐤 �y&
z  be the training tensor set 

from class i, and 	  K  is number of tensors belong to 

class i . The sub-dictionaries from each class 

𝐷�d, 𝐷�
e, 𝐷�f, 𝐷�g can be learned from model:

𝐦𝐢𝐧
��
_,��

`,��
a,��

b
𝑻�� − 𝑿��×&𝐷�d×(𝐷�

e×)𝐷�f×r𝐷�g 𝟐
𝐊
𝐤y𝟏     (5)

Equation (5) can be solved by the Tucker 

decomposition based on equation (2). 

Every training point tensor 𝑻𝐢𝐤 from class i is tucker 

decomposed to get the 𝑈(d), 𝑈(e), 𝑈(f), 𝑈(g) , then a 

certain number of basis vectors 

of 	  𝑈(d), 𝑈(e), 𝑈(f), 𝑈(g)	   are added into dictionaries 

𝐷�d, 𝐷�
e, 𝐷�f, 𝐷�g	   .The final dictionaries 𝐷d, 𝐷e, 𝐷f, 𝐷g

are described as following, c is the number of classes. 

𝐷d = 𝐷&d, 𝐷(d, …𝐷�d ; 

𝐷e = 𝐷&
e, 𝐷(

e, …𝐷�
e ; 

𝐷f = 𝐷&f, 𝐷(f, …𝐷�f ; 

𝐷g = 𝐷&g, 𝐷(g, …𝐷�g ; 

Algorithm: Tensor OMP 

Require: input point tensor 	  𝑻 ∈ R�K×�M×��×�� ,	  Dictionaries𝐷d ∈ 𝑅�K×�K , 𝐷e ∈ 𝑅�M×�M ,	  𝐷f ∈ 𝑅��×�� , 𝐷g ∈ 𝑅��×�� , 

maximum number of non-zeros coefficients k in each mode. 

Output: sparse tensor  𝑿,  non-zeros coefficients index in sparse tensor (𝑀&,𝑀(,𝑀),𝑀r) 

Step:  

1, initial: 𝑀P = [∅](𝑛 = 1,2,3,4), Residual 𝑹 = 𝑻, 𝑿 = 0, k=0, 𝑡 = 𝑣𝑒𝑐(𝑻)  

2,while 𝑀P � ≤ 𝑘 do 

3, 𝑚&,𝑚(,𝑚),𝑚r = arg𝑚𝑎𝑥[�K,�M,��,��] 𝑹×&𝐷
d (: , 𝑚&)×(𝐷e

 (: , 𝑚()×)𝐷f
 (: , 𝑚))×r𝐷g

 (: , 𝑚r)

4, 	  𝑀P = 𝑀P 	  ∪ 𝑚&,𝑚(,𝑚),𝑚r ( 𝑛 = 1,2,3,4 ). 𝑇𝐷d =𝐷d  (:,𝑀& ), 𝑇𝐷e =𝐷e  (:,𝑀( ), 𝑇𝐷f =𝐷f  (:,𝑀) ), 

𝑇𝐷g=𝐷g (:,𝑀r); 

5, 𝑥 = arg 	  𝑚𝑖𝑛£ 𝑇𝐷g ⊗ 𝑇𝐷f ⊗ 𝑇𝐷e ⊗ 𝑇𝐷d 𝑢 − 𝑡 (
(; 

6, 𝑿 = 𝒕𝒆𝒏𝒔𝒐𝒓𝒊𝒛𝒆 𝑥 ; 

6, 𝑹 = 𝑻 − 𝑿×&TD1×(TD2×)TD3×rTD4 ; 

7, t=t+1; 

8, end while 

9,return 𝑿,	  (𝑀&,𝑀(,𝑀),𝑀r) 

2.4   Tensor Sparse Representation for 

Classification 

The objective of tensor sparse coding is to find a sparse 

representation of a tensor 𝑻 with respect to the factors 

𝑫 on each mode. This means that the sparse coding is 

obtained by solving following optimization model: 

𝐦𝐢𝐧
𝑿

𝑻 − 𝑿×&𝐷d×(𝐷e×)𝐷d×r𝐷d 𝟐

𝐊

𝐤y𝟏

	   

𝒔𝒖𝒃𝒋𝒆𝒄𝒕	  𝒕𝒐	   𝑿 𝟎 ≤ 𝒏           (6) 

𝑿 (denotes the 𝑙� − 𝑛𝑜𝑟𝑚  of tensor 𝑿 , which is 

also considered as the sparsity of tensor 𝑿 . The 

problem is presented as minimizing the approximation 

error within a certain sparsity level, which can be 

approximately solved by greedy pursuit algorithms 
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such as Orthogonal Matching Pursuit (OMP). Classical 

OMP locates the support of the sparse vector that have 

best approximation of sample data from dictionary. It 

selects the support set by one index at each iteration 

until 𝐾 atoms are selected or the approximation error 

is within a preset threshold (Chen et al. 2011), where 

𝐾  is the sparsity. We use the steps of the classical 

OMP algorithm for tensors as it is shown in Algorithm 

TensorOMP. The algorithm is proposed by Caiafa and 

Cichocki (Caiafa and Cichocki, 2012). 

In the step 5 of the algorithm, 𝑇𝐷d,	  𝑇𝐷e,	  𝑇𝐷f,	  𝑇𝐷g 

correspond to the sub-dictionaries obtained by 

restricting the n-mode dictionaries to the columns 

indicated by indices 𝑀P.  

3. EXPERIMENT

3.1   Data description 

We perform the classification on two sections of 

airborne LiDAR dataset of Vienna city. The density of 

datasets mostly range from 8 to 75 points /𝑚(. The area 

of both dataset is 100×100 m. The datasest1 is with 

flat terrain and contains 710870 points. The dataset2 

has more complex environment and 817939 points in 

total. Both datasets contains complex objects like 

buildings with various height and shape, single trees, 

grouped and low vegetation, hedges, fences, cars and 

telegraph poles. In the classification procedure, the 

objects are categorized into 5 classes: open ground 

which is uncovered or not blocked by any objects; 

building roof; vegetation; covered ground which is 

usually under the high trees or building roof; building 

wall. However, in the evaluation session the open 

ground and covered ground are merged into ground to 

achieve the overall ground detection accuracy. 

To build the tensors, the neighborhood threshold is 

defined as 1 meter for selecting points into the voxel, 

then the voxel is represented as a 4-order tensor	  𝑻 ∈

𝐑&�×&�×&�×&�. It means that the spatial coordinates of 

the voxel are regularized into a 10×10×10 cube, and 

10 attributes are attached on each point. The entries are 

the normalized attribute values and accessed via four 

indices. Fig1 shows the points in the voxel and tensor 

representation by X, Y, Z coordinate indices. And the 

10 attributes are described as following: 

(1) Relative height. It is a binary value, which is

defined as 1 if the point height above the threshold,

otherwise is defined as 0. This is useful for indicating

ground and non-ground points.

(2) NormalZ. NormalZ are the normal vectors of local

planes in Z direction, which are estimated by points in

a small neighborhood.

(3)-(5) Eigenvalue1; Eigenvalue2; Eigenvalue3. The 

covariance matrix for the normal vectors is computed 

to find the eigenvalues, which include 

Eigenvalue1	  λ&; Eigenvalue2	  λ( ; 

Eigenvalue3	  λ)(λ& > λ( > λ)) . 	  λ(  λ)	   have low 

values for planar object and higher values for 

voluminous point clouds. Three structure features 

derived from eigenvalues are anisotropy, sphericity and 

planarity, which describe the spatial local points’ 

distribution and defined as following equation 

(Chehata et al., 2009). 

(6) Anisotropy. Anisotropy= (λ& − λ))/λ&.

(7) Sphericity. Sphericity= λ)/λ&(λ&-‐‑λ))/λ& .

(8) Planarity. Planarity= (λ( − λ))/λ&.

(9) NormalSigma0. The standard deviation of normal

estimation. The value would be high in rough area and

low in smooth area.

(10) Echo Ratio. the echo ratio is a measure for local

transparency and roughness. It is defined as

follows(Höfle et al. 2009)

ER = 𝑛)�/𝑛(�×100 

With 𝑛)� ≤ 𝑛(� , 𝑛)� is the number of neighbors 

found in a certain search distance measured in 3D and 

n(¼ is the number of neighbors found in same distance 

measured in 2D. The ER is nearly 100% for flat surface, 

whereas the ER decreases for penetrable surface parts 

since there are more points in a vertical search cylinder 

than there are points in a sphere with the same radius. 
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(a) LDAR ground points visualization in the voxel

(b) LiDAR ground points visualized by 4-order tensor

form 

Figure 1. Point distribution in voxel and tensor 

3.2   Classification  

The experiments show that the LiDAR tensor can be 

fully recovered with the compressed core tensor 

6×6×6×6 , which means it needs at least 6 basis 

vectors in each mode and corresponding core tensor for 

reconstruction. Hence, only 6 basis vectors are added 

into each sub-dictionary, and the final dictionary would 

be a 10×30 matrix in each mode. 

First of all, the sub-dictionary associated with a specific 

class i is created. Denote by 𝐷"d, 𝐷"
e, 𝐷"f	  , 𝐷"g	  	  the sub-

dictionary associated with class i on mode X,Y,Z and 

attribute,	  𝑐𝑙𝑎𝑠𝑠	  𝑖 = 1,2,3,4,5 	  .	  6 training tensors are 

randomly selected from each class, 𝑻�� donates the k-

th training tensor in class i, 𝑘 = 1,2…6. Training 

tensor 𝑻�� is decomposed by Tucker model to get basis 

vectors in each mode: 

𝑻�� ≈ 𝑿𝐢�×&𝑈�
(d)×(𝑈�

(e)×)𝑈�
(f)×r𝑈�

g 	  	  	  	  	  	  	  	  	  (7)

The first column in matrix 𝑈�
(d) , 	  𝑈�

(e) , 	  𝑈�
(f) , 	  𝑈�

(g)  is

added into the corresponding sub-dictionary in each 

mode. Thus, 𝐷"d, 𝐷"
e, 𝐷"f	  , 𝐷"g can be described as :

𝐷"d = 𝑈&
d : ,1 , 𝑈(

d : ,1 …	  𝑈P
d : ,1

𝐷"
e = 𝑈&

e : ,1 , 𝑈(
e : ,1 …	  𝑈P

e : ,1

𝐷"f = 𝑈&
f : ,1 , 𝑈(

f : ,1 …	  𝑈P
f : ,1

𝐷"g = 𝑈&
g : ,1 , 𝑈(

g : ,1 …	  𝑈P
g : ,1

And the final dictionary on each mode can be 

represented as following: 

𝐷d = [𝐷&d, 𝐷(d, 𝐷)d, 𝐷rd, 𝐷¿d]	   

𝐷e = [𝐷&
e, 𝐷(

e, 𝐷)
e, 	  𝐷r

e, 𝐷¿
e]	  

𝐷f = [𝐷&f, 𝐷(f, 𝐷)f, 	  𝐷r	  f , 𝐷¿f] 

𝐷g = [𝐷&g, 𝐷(g, 𝐷)g, 	  𝐷rg, 𝐷¿g]  

3.3   Classification Result And Discussion 

Visual inspection indicates that most objects are 

detected correctly in Fig2. The overall classification 

accuracy is 82% for dataset1 and 80% for dataset2. 

Tab1 and Tab2 are the confusion matrices which 

demonstrates prediction ability of the algorithm on 

various objects. 

Some buildings and trees are extracted from dataset1 

and dataset2 for error points analysis. Fig3(a) and (e) 

indicate that some parts of boundary points in roof in 

dataset2 are misclassified into ground(12.3%), but the 

algorithm performs very well in identifying roofs with 

dataset1, which achieve a high accuracy of 98.3%. 8% 

of vegetation are wrongly predicted as walls in dataset1, 

which is mainly caused by trees with a vertical 

structure or high pruned and trimmed trees (Fig 3(c) 

and (g)). And 6.9% of vegetation are misclassified into 

roofs in dataset1. This usually occurred on low flat 

vegetation which has similar attributes with roofs, 

examples can be found in Fig3 (d) and (f). Wall points 

are usually located in a more complex scenario. In Fig4 

(a) and (e), it is a balcony wall and ends up confused

with vegetation. In Fig4 (b) and (f), top and bottom wall

points are labeled as roof and ground due to the close

location to roof and ground, but middle part of walls

can obtain correct labels. Thus, this algorithm works

well in distinguishing objects with clear spatial

structures.

Considering that only 30 training points are used, this

tensor SRC algorithm can achieve an overall good

performance, especially in roof identification.
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However, high accuracy cannot be obtained in complex 

scene, such as wall boundary identification from roof 

and ground. Since the main part objects could be 

correctly labeled, the error points can be reduced by 

further filtering method. 

(a) Dataset1 classification result (b) Dataset2 classification result

Figure 2. Classification result 

Table 1. Dataset1 Classification confusion matrix 

Class Ground Roofs Veg Walls 

Ground 89.0% 7.0% 2.2% 1.8% 

Roofs 0.3% 98.3% 1.1% 0.2 

Veg 5.1% 6.9% 79.7% 8.3% 

Walls 17.9% 15.5% 9.7% 57.0% 

Table 2. Dataset2 Classification confusion matrix 

Class Ground Roofs Veg Walls 

Ground 79.5% 3.0% 15.3% 2.15% 

Roofs 12.3% 84.3% 3.4% 0% 

Veg 7.5% 2.2% 85.8% 4.6% 

Walls 4.9% 3.8% 20.9% 70.4% 

Figure 3. Reference and misclassified point in 4 scenes 

4. CONCLUSION

A tensor sparse representation classification method 

has been proposed and tested with real airborne LiDAR 

data. The method integrates spatial distribution and 

attributes by tensor representation. Only 6 training 

points from each class are utilized to build the 

dictionary. It achieves an overall classification 

accuracy of 82%. This algorithm has respectable 

performance in distinguishing object with clear shape 

pattern. Further work will focus on the dictionary 

improvement based on dictionary learning algorithm, 

which can distinguish more minor and unambiguous 

objects. 
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