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ABSTRACT: 

The least square plane fitting adjustment method has been widely used for registration of the mobile laser scanning (MLS) point 
clouds. The inputs for this process are the plane parameters and points of the corresponding planar features. These inputs can be 
manually and/or automatically extracted from the MLS point clouds. A number of papers have been proposed to automatically 
extract planar features. They use different criteria to extract planar features and their outputs are slightly different. This will lead 
to differences in plane parameters values and points of the corresponding features. This research studies and compares the results 
of the least square plane fitting adjustment process with different inputs obtained by using different segmentation methods (e.g. 
RANSAC, RDPCA, Cabo, RGPL) and the results from the point to plane approach – an ICP variant. The questions for this 
research are: (1) which is the more suitable method for registration of MLS sparse point clouds and (2) which is the best 
segmentation method to obtain the inputs for the plane based MLS point clouds registration? Experiments were conducted with 
two real MLS point clouds captured by the MDL – Dynascan S250 system. The results show that ICP is less accurate than the least 
square plane fitting adjustment. It also shows that the accuracy of the plane based registration process is highly correlated with the 
mean errors of the extracted planar features and the plane parameters. The conclusion is that the RGPL method seems to be the 
best methods for planar surfaces extraction in MLS sparse point clouds for the registration process. 

1. INTRODUCTION
1.1 General Instructions 

MLS has become increasingly popular in many applications. In 
many MLS projects, in order to obtain the desired point density 
or obtain features which may be occluded by the presence of 
unwanted objects in other scans, the same area of interest may 
be scanned twice or more. Ideally, point clouds captured from 
different runs will overlap perfectly. However, there are always 
gaps between these captured point clouds caused by the errors 
from the losses of GNSS signals and IMU drifts, especially in 
urban area. 

Different approaches are proposed to eliminate or compensate 
for these problems. They can be classified into two groups: (1) 
point based matching and (2) feature based matching. 
According to Nguyen et al. (2016) point clouds captured from 
low scanner rate and low scan pulse rate are sparse. This will 
lead to special challenges in finding the corresponding point 
pairs for point based matching. Meanwhile, feature based 
matching seems to be more suitable for registration as features 
of interest can be extracted from different sets of sparse point 
clouds. The feature based registration is based on the fact that 
the same features exist in different point clouds. The least 
square adjustment algorithm is used to find the six 
transformation parameters (i.e. three rotation and three 
translation parameters) by fitting points of the same features to 
the corresponding features in the other point cloud. There are 
number of researches using feature based matching for point 
clouds registration, they can be classified into three categories: 
(1) semantic virtual feature points matching (Ting On Chan et
al., 2016; Yang et al., 2016); (2) model to model (Khoshelham
& Gorte, 2009; Rabbani et al., 2007); and (3) points  to model
(T. O. Chan & Lichti, 2012; T. O. Chan, Lichti, & Glennie,
2013; Rabbani et al., 2007; Skaloud & Lichti, 2006). The
semantic feature points matching approach aims to perform
coarse registration for TLS point clouds. Meanwhile, Rabbani
et al. (2007) claim that model to model approaches can only
provide the approximate values for further processing steps

(e.g. ICP or point to model approaches). In this study, only the 
points to model approaches are investigated. 

Different types of features have been utilized for this purpose, 
such as cylinders, spheres, planes and octagonal lamp poles 
(Ting On Chan et al., 2016). Since planar objects are the 
dominant objects in the captured MLS point clouds, especially 
point clouds of urban areas. Moreover, there are not always 
enough points to detect other features in a MLS sparse point 
cloud. Hence, planar features are more suitable to be used as 
the inputs for the matching process.  

The mathematical parameters of the feature models and points 
of the corresponding features are the inputs for feature based 
matching approaches. As a result, determining these 
parameters and points is an essential step for feature based 
matching approaches. The mathematical parameters of a planar 
feature can be estimated based on the group of points 
representing this feature. This group of points can be manually 
or automatically extracted from the captured point clouds. In 
reality, point cloud datasets captured by a MLS system are 
normally very big with millions of points. Consequently, there 
is a need to automatically detect and segment these features of 
interest. Until now, RANSAC is the most popular methods 
used by researcher for this purpose. Recently, further 
approaches were proposed for detecting and segmenting planar 
features (Cabo et al., 2015; Nguyen et al., 2016; Nurunnabi et 
al., 2015; Rabbani et al., 2007) using different criteria to detect 
and extract planar features. Depending on the properties of the 
captured point clouds (e.g. sparse or dense) and the pre-defined 
parameters, the segmentation outputs of different approaches 
may be different. These differences may lead to differences in 
the final results of the registration process.   

In order to evaluate the impacts of the outputs from different 
segmentation approaches and to find the most suitable method 
for registration of the MLS sparse point clouds, this paper will 
compare the results of plane based matching approaches with 
the inputs provided by four different state of the art 
approaches: (1) RANSAC; (2) robust segmentation method 
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based on robust diagnostic PCA (RDPCA); (3) Plane detection 
based on line arrangement (Cabo) and (4) Region growing 
based on the planarity of the scan profiles (RGPL). The 
accuracy from each approach will be compared based on the 
RMS values of the check planar features fitting residuals. 
Furthermore, the results from the least square plane fitting 
adjustment and ICP (e.g. point to plane) for the registration of 
MLS will also be compared. The rest of the paper is organized 
as follows: In the section 2, we will briefly review the 
principles of the plane based fitting and introduce the four 
segmentation methods in more details. The results of the 
experiments will be presented and discussed in section 3. The 
paper closes with the conclusion in section 4. 
 

2. OVERVIEW OF THE RELATED ALGORITHMS 

2.1 Plane based fitting registration 

A plane is defined by its normal vector n = [a, b, c] and 
its distance to the origin d. A point is considered as belonging 
to a planar feature if its 3D coordinates p = [x, y, z] 
satisfy the following equation: 
 
       nT * p + d = 0          (1) 
 
The rigid transformation model of a point to a target coordinate 
system is express as follows: 
 
      pn = R * p0T + T  (2) 
 
Where: pn is the coordinate of the point in the target 
coordinate system, po is the coordinate of the point in the 
original coordinate system, R is the rotation matrix and T is 
the translation matrix.  
 
If plane parameters are known in the target coordinate system, 
the least square adjustment for plane fitting can be formulated 
as follow: 
 
   nT *(R * p0T + T) + d = 0  (3) 
 
In the rigid transformation, one point cloud dataset is 
considered as the master and other datasets (i.e. the slave) will 
be registered to the master. In other words, all of the point 
clouds dataset will be registered to fixed pre-defined models 
(i.e. plane parameters). The unknown parameter vector of the 
least square adjustment consists of 3 rotation parameters and 3 
translation parameters. These pre-defined models can be 
obtained from other datasets that have higher accuracy than the 
captured MLS point clouds (e.g. point clouds captured using 
TLS) or one of the captured point cloud in the project. Xiao et 
al. (2012) claimed that the transformation parameter can be 
calculated from three unparalleled planar surfaces. This 
requirement does not always assure the success of the 
transformation calculation. As shown in Figure 1: G1, G2 and 
G3 are three groups of points representing three different 
unparalleled surfaces P1, P2 and P3. As can be seen from the 
Figure 1 (b) and (c), there are more than one solution 
preserving the fitted on plane condition and the relative 
relationships between points. According to Skaloud and Lichti 
(2006), planes need to be vary in slope and orientation in order 
to assure the success of the least squares plane fitting 
adjustment. This requirement is too general. Theoretically, 
from the geometry point of view, the three rotation parameters 
can be computed from a pair of corresponding planes that is 
not parallel with any of the three axes (i.e. X, Y and Z axes) or 
from two corresponding pairs of planes parallel with two axes 
and intersect with each other. With respect to the calculation of 
the translation parameters, a pair of corresponding points is 
required. However, it is almost infeasible to find a pair of 

“true” corresponding points in two different MLS point clouds, 
especially MLS sparse point clouds. Therefore, one of the 
requirements for the success of the least square adjustment is 
that there are at least a triplet of planes that intersect with each 
other and the intersection lines of them also intersect with each 
other at a points in the scene of the scan area. The more triplets 
present in the least square model, the stronger the least square 
model becomes. Moreover, the quality of the extracted planar 
surfaces that are used in the plane fitting model also plays a 
crucial part for the accuracy of the model’s outputs. 
 

 
                (a)                   (b) 

 
(c) 

Figure 1: (a) three groups of points; (b) and (c) two possible 
positions of points when fitting onto plane P1, P2 and P3  
 
2.2 Plane detection algorithms 

2.2.1 RANSAC 
 
RANSAC proposed by (Fischler & Bolles, 1981) is possibly 
the most popular method used to detect and extract planes in 
laser scanning data due to its simplicity and robustness. It 
starts by randomly select three points, and then estimating the 
plane parameters based on these points. Next the orthogonal 
distances between points and the estimated plane are 
calculated. Points with distances smaller than a pre-defined 
threshold (od) will be labelled as “inlier” and form the 
consensus set. The process is iteratively repeated for a number 
of times. If the number of the largest consensus set is larger 
than a pre-defined threshold, this group will be considered as a 
planar feature. The outputs of RANSAC are heavily depended 
on the value of od. Furthermore, the spatial proximity between 
points is not taken into account leading to over and under-
segmentation problems. According to Deschaud and Goulette 
(2010), RANSAC is not efficient in detecting small planar 
features. Further research has proposed a number of methods 
to improve the performance of RANSAC. In this research, the 
modified RANSAC method proposed by Previtali et al. (2014) 
was adapted to detect and extract planar features for the 
registration process. This method utilizes the normal vectors of 
points as well as the spatial proximity between points in 
detecting planar features. 
 
2.2.2 Robust segmentation method based on robust 
diagnostic PCA (RDPCA) 
 
RDPCA segmentation method has been proven to be the best 
method in the region/surface growing approaches. It starts by 
estimating the local saliency features of each point by using 
RDPCA proposed by Nurunnabi et al. (2015). A seed point 
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with the lowest curvature value is chosen. Afterwards 
neighbouring points with similar normal vectors with that of 
the seed point and have orthogonal distances and Euclidian 
distances smaller than pre-defined thresholds are assigned to 
the current growing region. While the normal vectors 
difference threshold is defined by the user, the threshold for 
orthogonal and Euclidian distances are automatically estimated 
by the algorithm itself. Next each added point is used as the 
new seed point. The process is repeated until all of the points 
in the current region are used. Nurunnabi et al. (2015)  proved 
that the performance of RDPCA is better than the region 
growing based on PCA (Rabbani et al., 2007) and RANSAC. 
 
2.2.3 Plane detection based on line arrangement (Cabo) 
 
Cabo et al. (2015) prosed a method for detecting planar 
features in MLS point cloud based on scan profiles. First of all, 
different scan profiles are formed based on the scanlines 
information and the 3D version of the Douglas Peucker 
algorithm (Douglas & Peucker, 2011; Ebisch, 2002).  Then a 
region growing based on these scan profiles is performed in 
order to detect and segment different planar surfaces. The 
longest scan profile is chosen as the seed point. There are three 
criteria for the region growing process of this method:  
neighbouring scan profiles (1) must be belong to the closest 
scanline of the seed scan profiles; (2) be parallel with each 
other; (3) the distance between them is smaller than a pre-
defined threshold. 
 
2.2.4 Region growing based on the planarity of the scan 
profiles (RGPL) 
 
The plane detection and segmentation method proposed by 
Nguyen et al. (2016) utilizes the planarity of different groups 
of parallel scan profiles. It begins with splitting different scan 
lines into different scan profiles based on the direction vectors 
of points and distances between them. Then the planarity 
values of different groups of neighbouring parallel scan 
profiles are checked to form different planar features. 
 

3. RESULTS AND DISCUSSIONS 

Two datasets for the experiments were captured near the 
Curtin University Bentley campus in Australia using the 
Dynascan MDL S250 system (Renishaw, 2015). A part of the 
captured MLS point clouds (Figure 1) was used to investigate 
the accuracies of the matching processes using different 
segmentation approaches. Due to the specification of this MLS 
system, captured point clouds are sparse. The planar features 
with different sizes and orientations in this scanned area 
include vertical planes, horizontal planes and oblique planes 
(Figure 2). 

In order to investigate the influence of different plane 
extraction approaches’ outputs, fifteen planar features were 
firstly manually extracted from the both captured datasets. The 
extracted planes from dataset 1 were used as the model, then, 
the transformation parameters were estimated by fitting the 
points on the corresponding planes extracted from dataset 2 to 
their correspondences in dataset 1. Then, the root mean square 
(RMS) errors of the planar features were also calculated. As 
the outputs from this process can be considered to be the most 
accurate, these calculated values were used as the benchmarks 
for comparisons. 
 
 

 
(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(g) 

 
Figure 2 Captured point clouds: (a) and (b) dataset 1; (c) and 
(d) dataset 2; (e) and (g) misalignment between data set 1 and 
2. 
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Next, the experiments were separated into two parts. In the 
first part, the master were manually extracted from the dataset 
1, the planar features in dataset 2 were extracted by using the 
discussed methods in section 2. In the second part, both of the 
master and slave were automatically obtained by using the 
mentioned segmentation approaches. The experiments were 
implemented in C++. 
 
3.1 Analysis of Scan area and plane fitting least square 
adjustment 

Originally, most of the planar surfaces in this area are 
vertically orientated and are parallel with the vehicle’s 
trajectory directions (i.e. Y axis direction) and a group of 
planar surfaces is horizontal or near horizontal planes. They 
can be used to fix the translation along X direction and the 
translation along Z direction. However, they are insufficient to 
meet the requirements for the plane fitting least square 
adjustment discussed above (i.e. there are no triplet of plane 
that intersect at a point). Therefore, a target that has three 
planar surfaces was placed in the scan area (i.e. planes 1, 2 and 
3 in Figure 3). As a result, detection of at least one of the two 
planar surfaces of the target (i.e. planes 1 and/or 3) is a must 
for the success of the registration of these two datasets. As 
plane 1 and 3 are quite small in term of the size and number of 
points. This will lead to more challenges for detection. 
 
3.2 Benchmarks 

Fifteen corresponding pairs of planar features were manually 
extracted from dataset 1 and 2 as shown in Figure 2. In this 
research, we assumed that those extracted planes are the best 
outputs from the captured datasets. Then, a least squares 
adjustment process that fit points on dataset 2 onto 
corresponding planar surfaces in dataset 1 was performed. In 
other words, dataset 1 is considered as the master and dataset 2 
is considered as the slave. The estimated transformation 
parameters from this process are shown in Table 1. They were 
considered as the reference / benchmarking parameters. 
 

 
(a) 

 

 
(b) 

Figure 3 Visualization of fifteen planar surfaces manually 
extracted from dataset 1 
 

Rotations (°) Translations (m) 
Ω Π Κ Tx Ty Tz 

-0.190 -0.449 -0.004 -0.087 -0.256 -0.263 
Table 1 Estimated transformation parameters of the 
benchmarks 

Besides comparing differences between the calculated 
transformation parameters of different approach with the 
benchmarks, the RMS values of the points of the data fitted to 
the corresponding surfaces residuals in the master for both 
before and after registration were calculated. In theory, the 
RMS of the residuals of points fitted on a plane will not be 
changed when the point clouds translate along any of the 
direction vectors of this plane. Therefore, in this experiment, 
benchmarking planar features were assigned into five groups 
based on their orientations. Group 5 consists of all the vertical 
planar features (i.e. 1, 4 and 6 to 14). Group 1, 2, 3 and 4 has 
only one planar feature namely 2, 3, 5 and 15 respectively. As 
can be seen from Figure 2, there are numbers of triplets of 
planes intersect to each other (e.g. plane 1, 15 and 4 or 3, 6 
and 9, etc.) The requirement for plane fitting least square 
adjustment is met. As a result, the RMSregistration was reduced 
significantly from 82 mm to 3 mm after the least square 
plane fitting adjustment was performed.  The RMS values of 
each group were calculated and evaluated (Table 2). 
 

     RMSregistration  
before fitting (m) 

RMSregistration  
after fitting (m) 

Group 1 0.155 0.000 
Group 2 0.054 0.001 
Group 3 0.105 0.001 
Group 4 0.030 0.009 
Group 5 0.065 0.004 
Mean 0.082 0.003 

 
Table 2 RMSs of the points fitted onto their models before and 
after least square adjustment process 
 
3.3 Iterative closest point 

Beside comparing the result of the least square plane fitting 
adjustment process using different input, this paper also 
compares the results of plane based fitting with point to plane 
approaches (Grant et al., 2012; Takai et al., 2013). According 
to Nguyen et al. (2016) the three nearest points point of the 
points are normally on the same scan line. Consequently, the 
point to plane approaches proposed by Grant et al. (2012) is 
not suitable for MLS point clouds. Hence, our paper adapts the 
point to plane approach proposed by Takai et al. (2013) for the 
experiment. The results show that the least square plane fitting 
adjustments provide the more accurate results (e.g. 0.003 m) 
for the registration process than the point to plane approaches 
(e.g. 0.022 m).  
 

Rotations (°) Translations (m) 
Ω Π Κ Tx Ty Tz 

-0.122 -0.545 0.119 -0.086 -0.262 -0.020 
 
Table 3 Estimated transformation parameters of point to plane 
 

     RMSregistration  
before fitting (m) 

ICP RMSregistration  
after fitting (m) 

Group 1 0.155 0.033 
Group 2 0.054 0.003 
Group 3 0.105 0.051 
Group 4 0.030 0.016 
Group 5 0.065 0.005 
Mean 0.082 0.022 

 
Table 4 RMSs of the points fitted onto their models before and 
after least square adjustment process by using point to plane 
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3.4 Registration between captured point cloud with the 
model (case 1) 

In this part of our experiments, the benchmark was used as the 
master for matching. Then, the four different segmentation 
approaches were applied in order to extract the corresponding 
surfaces in the dataset 2in which contains 15 planes Figure 4.  
 
In the case of the plane extraction performed by using Cabo 
method, the numbers of detected corresponding features were 
twelve as: (1) surfaces 4 and 6 were assigned to the same 
features; (2) surfaces 13 and 14 were assigned to the same 
feature; and (3) the surfaces 2 and 3 were also detected as one 
feature. Meanwhile RANSAC, RDPCA and RGPL detected all 
of fifteen planar features. While the parameters for Cabo and 
RGPL were set similar to the suggested values in Cabo et al. 
(2014) and Nguyen et al. (2016) respectively, with RANSAC 
and RDPCA different parameters values were used to obtained 
the best outputs. The outputs of each segmentation method are 
showed in Figure 4. Based on these detected features, the 
corresponding plane pairs were specified based on distances 
and angles between features in two captured datasets. Finally, 
least square plane fitting adjustment processes were 
performed.  
 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 

 
(f) 
 

 
(g) 

 

 
(h) 

 

 
(i) 

Figure 4 Outputs from different segmentation methods: (a) and 
(b) RANSAC; (c) and (d) RDPCA; (e) and (g) Cabo; (f) Cabo 
added; and (h) and (i) RGPL. 
 
As can be seen from Figure 4, Cabo method failed in detecting 
plane 1 and 2 leading to the minimum requirement for the 
success of least square plane fitting adjustment process (see 
section 3) not being met. Consequently, there was a huge gap 
between the value of the estimated translation parameter along 
the Y direction and the benchmarking value. Figure 5 shows 
the point clouds of the target of after registration, significant 
horizontal differences are visible. 
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          (a)                                  (b) 
Figure 5 (a) Top-back view of the target after registration; (b) 
front view of the target after registration 

 
With the extracted planar features from RANSAC, RDPCA 
and RGPL, the requirement for the success of least square 
plane fitting adjustment was fulfilled. Consequently, it is not 
reasonable to compare Cabo with other methods in this case. 
Therefore, planar features 1 and 2 were added to the outputs of 
Cabo in order to perform a more reasonable comparison. Then, 
least square plane fitting adjustment processes with different 
inputs were performed.  
 
The estimated transformation parameters of each method are 
shown in Table 3. Table 4 shows the differences between the 
estimated transformation parameters and the benchmark 
values. 
 

 Ω (°) Π (°) Κ (°) Tx 
(m) 

Ty 
(m) 

Tz 
(m) 

RANSAC -
0.713 

-
0.449 

-
0.008 

-
0.088 

-
0.277 

-
0.375 

RDPCA -
0.704 

-
0.462 

-
0.013 

-
0.087 

-
0.284 

-
0.382 

CABO - 
0.095 

-
0.445 

-
0.020 

-
0.083 

-
0.248 

-
0.243 

RGPL - 
0.171 

-
0.451 

-
0.021 

-
0.085 

-
0.253 

-
0.263 

 
Table 5 Estimated parameters from different segmentations 
methods 
 

 Ω (°) Π (°) Κ (°) Tx 
(m) 

Ty 
(m) 

Tz 
(m) 

RANSAC -
0.523 

 
0 

-
0.004 

-
0.001 

-
0.021 

-
0.112 

RDPCA -
0.514 

-
0.013 

-
0.009 

 
0 

-
0.028 

-
0.119 

CABO  
0.095 

 
0.004 

-
0.016 

 
0.004 

 
0.008 

 
0.020 

RGPL  
0.019 

-
0.002 

-
0.017 

 
0.002 

 
0.003 

 
0 

 
Table 6 Differences between the estimated values with the 
benchmark values 
 
As shown in Table 4, the estimated transformation parameters 
using inputs from Cabo and RGPL were relatively close to the 
benchmark values. While there is a big gap between the 
estimated transformation parameters using RANSAC and 
RDPCA and the benchmarks. Different transformation 
parameters lead to differences in the accuracy of the 
registration processes. In order to evaluate the accuracy of the 
registration processes, the RMS values of the planes fitting 
residuals were calculated and shown in Table 5.   
 
Theoretically, the objective of the least square adjustment 
method is to minimize the sum of the square of the residual of 
each equation in the model. Therefore, mean error values of 
each group of planes are computed (Table 6) to explain the 

discrepancies of the transformation parameters and the RMS 
values of different methods,. Mean error value of each plane 
(ME) is calculated by using the following equation: 
 

ME =  xi * a + yi * b + zi * c – d 
 
Where    xi, yi and zi are the coordinates of point assigned to       

belong to plane 
a, b, c and d are the plane parameters of the 
benchmarks 

 
Planar features extracted by RDPCA and RANSAC have 
bigger mean errors than Cabo and RGPL (Table 6). 
Consequently, the registration outputs resulted from RDPCA 
and RANSAC have the worst RMS value among the four (e.g. 
0.004 metre). Meanwhile, using inputs from RGPL and Cabo, 
the RMS values were improved by 25%. As a result, they are 
considered as the most accurate inputs for the least square 
plane fitting process in this case. Furthermore, the RMS values 
of these two methods approximate the benchmarking values. It 
is easy to see from Figure 8, the mean errors of the extracted 
planar surface used in the least square plane fitting adjustment 
are highly correlated with the RMS values of the final results 
(Figure 6) with the correlation coefficient value is 0.945. The 
lower the mean error is, the more accurate the final result is. 
 

 RANSAC 
(m) 

RDPCA 
(m) 

Cabo 
added (m) 

RGPL 
(m) 

Group 1 0.004 0.001 0.000 0.000 
Group 2 0.001 0.002 0.001 0.001 
Group 3 0.001 0.003 0.001 0.001 
Group 4 0.011 0.012 0.009 0.009 
Group 5 0.004 0.004 0.004 0.004 

Mean 0.004 0.004 0.003 0.003 
 

Table 7 RMSs after registration of four different approaches 
 

 RANSAC 
(m) 

RDPCA 
(m) 

Cabo 
added (m) 

RGPL 
(m) 

Group 1 0.003 0.002 0.000 0.000 
Group 2 0.001 0.005 0.000 0.001 
Group 3 0.007 0.005 0.002 0.001 
Group 4 0.012 0.001 0.000 0.001 
Group 5 0.010 0.008 0.003 0.003 

Mean 0.006 0.004 0.001 0.001 
 
Table 8 Mean error values of each group from three discussed 
segmentation methods 
 

 
 

Figure 6 Mean errors and RMS value from different inputs 
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3.5 Registration between two captured point clouds (case 
2) 

In many projects, the references that can be treated as the 
master for matching are not always available. Therefore, one of 
the captured point cloud is used as the master for registration. 
Hence, in this section, planar features in both of the master and 
slave were automatically extracted by using the four mentioned 
segmentation methods. As can be seen from the least square 
plane fitting adjustment equation (equation 3), each inaccurate 
planar feature parameter contributes np number of inaccurate 
equation, where np is the number of points of the 
corresponding slave feature. Therefore, the accuracy of n and 
d values of each feature plays a very crucial part in the 
success of the least square adjustment model. Thus, the 
extraction of planar features for the master is more important 
than for the slave. 
 
In order to evaluate the quality of the extracted features in the 
master, different descriptive measures of the bias angles (in 
degree) and distance to the origin (in metre) between 
benchmarks and the automatic extracted surfaces were 
calculated and are shown in Table 7 and Table 8. After 
segmentation, RGPL detects planar surfaces with the lowest 
differences compared with the benchmarks. On the other hand, 
RANSAC has the biggest differences in angles and distance to 
the origin, with mean values approximates 1.088 degree and 
0.240 metre respectively. As the least square adjustment aims 
to minimize the sum of the square of the residual of each 
observation equation and the equations in the least square 
model are correlated to each other, in some case, a wrong 
equation can improve the residuals of other equations. Indeed, 
after registration, the mean RMS values of each process were 
similar like RMS values in case 1. For instance, the mean 
RMS value of RANSAC was approximate 0.004 metre in both 
cases. However, the RMS values of each group were changed. 
For instance, with RANSAC, the group 1 RMS value changed 
from 0.004 to 0.001.  
 

 RANSAC 
(°)  

RDPCA 
(°) 

Cabo 
added (°) 

RGPL 
(°) 

Group 1 0.798 0.135  0  0.218  
Group 2 0.159  0.235  0  0.429  
Group 3 0.979 0.215  0.253  0.355 
Group 4 1.624 0.380 0.633  0.282 
Group 5 1.879  1.079  1.294  0.130 

Mean 1.088 1.024 0.436  0.283 
 
Table 9 the differences between angles of the surfaces 
extracted by the selected methods and the benchmarks 
 

 RANSAC 
(m) 

RDPCA 
(m) 

Cabo 
added (m) 

RGPL 
(m) 

Group 1 0.056 0.015 0  0.029 
Group 2 0.035 0.047 0 0.089 
Group 3 0.791 0.054 0.204 0.281 
Group 4 0.212 0.247 0.056 0.022 
Group 5 0.106 0.022 0.013 0.004 

Mean 0.240 0.216 0.054 0.049 
 
Table 10 the differences between distances to the origin of the 
surfaces extracted by the selected methods and the benchmarks 
 
In order to further investigate about the correlation between 
planes parameters and the RMS values of the registration 
process, another experiment was performed. In this 

experiment, all of the model plane parameters were kept equal 
to the benchmark values except the parameters of plane in 
group 4 (plane 5 in Figure 3). The plane parameters for plane 5 
were automatically extracted by using the discussed methods 
with the bias angle were 1624, 0.380, 0.633 and 0.282 degree 
by using RANSAC, RDPCA, Cabo and RGPL respectively. In 
this case, the result shows that there is also a very high 
correlation (e.g. 0.974) between the plane parameters and the 
final RMS values. Furthermore, if the difference is small (e.g. 
less than 1 degree in bias angle), the changes in final results is 
not significant. 
 
 

 RANSAC 
(m) 

RDPCA 
(m) 

Cabo 
added (m) 

RGPL 
(m) 

Group 1 0.001 0.003 0.001 0.001 
Group 2 0.002 0.002 0.001 0.001 
Group 3 0.003 0.002 0.002 0.002 
Group 4 0.011 0.010 0.007 0.008 
Group 5 0.005 0.005 0.005 0.005 

Mean 0.004 0.004 0.003 0.003 
 
Table 11 RMSs after registration of four different approaches 
with all automatically extracted features 
 

 RANSAC 
(m) 

RDPCA 
(m) 

Cabo 
added (m) 

RGPL 
(m) 

Group 1 0.007 0.001 0.001 0.001 
Group 2 0.002 0.003 0.001 0.001 
Group 3 0.001 0.003 0.001 0.001 
Group 4 0.015 0.012 0.009 0.009 
Group 5 0.004 0.004 0.004 0.004 

Mean 0.006 0.004 0.003 0.003 
 
Table 12 RMSs after registration of four different approaches 
in the case of group 4, feature was automatically extracted 
 

4. CONCLUSION  
Registration is one of the most important tasks in processing 
MLS point clouds. In this paper, we firstly discussed about the 
minimum requirement for the success of the least square plane 
fitting adjustment model for the MLS point clouds registration 
process.  Then, three experiments were conducted on the 
outputs from four different state of the art planar segmentation 
methods: (1) RANSAC, (2) RDPCA, (3) Cabo and (4) RGPL. 
These four methods have different criteria to detect and extract 
planar features lead to differences in their outputs. The results 
of the registration process of MLS point clouds using least 
square plane fitting adjustment with planar features extracted 
by using these four methods are compared and presented. The 
results show that the accuracy of the registration process is 
highly correlated with the mean errors of the extracted planar 
features and the plane parameters. Among the discussed 
methods, RGPL and Cabo provide the highest accurate inputs 
for the registration process. However, Cabo cannot detect 
planar surfaces in the case they have similar orientation and 
are next to each other. RANSAC seems to be the worth among 
these 4 methods as its segmentation outputs have the biggest 
mean errors and differences in plane parameters.  Furthermore, 
the least square plane fitting adjustment approaches seem to be 
better in registration of MLS sparse point clouds than the point 
to plane approach. 
 
Future work will test with other datasets with higher point 
density as well as with datasets captured in an area which have 
more complex objects. 
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