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ABSTRACT:

Classification of wood and leaf components of trees is an essential prerequisite for deriving vital tree attributes, such as wood mass,
leaf area index (LAI) and woody-to-total area. Laser scanning emerges to be a promising solution for such a request. Intensity
based approaches are widely proposed, as different components of a tree can feature discriminatory optical properties at the operating
wavelengths of a sensor system. For geometry based methods, machine learning algorithms are often used to separate wood and leaf
points, by providing proper training samples. However, it remains unclear how the chosen machine learning classifier and features used
would influence classification results. To this purpose, we compare four popular machine learning classifiers, namely Support Vector
Machine (SVM), Naı̈ve Bayes (NB), Random Forest (RF), and Gaussian Mixture Model (GMM), for separating wood and leaf points
from terrestrial laser scanning (TLS) data. Two trees, an Erytrophleum fordii and a Betula pendula (silver birch) are used to test the
impacts from classifier, feature set, and training samples. Our results showed that RF is the best model in terms of accuracy, and local
density related features are important. Experimental results confirmed the feasibility of machine learning algorithms for the reliable
classification of wood and leaf points. It is also noted that our studies are based on isolated trees. Further tests should be performed on
more tree species and data from more complex environments.

1. INTRODUCTION

Quantifying forest structure is of broad importance. For example,
understanding forest foliage profile can be of particular interest
for biodiversity conservation and climate adaptation, as it affects
the photosynthesis and evapotranspiration processes (Ma et al.,
2016). Monitoring carbon stocks in forested ecosystems requires
accurate quantification of the spatial distribution of wood volume
(Levick et al., 2016). Moreover, description of 3D structure helps
to investigate species competition, wood production, and ecosys-
tem and agro-ecosystem dynamics (Béland et al., 2014). For
mapping forest structure, laser scanning is widely used in past
decades. Laser scanning technique, also known as light detec-
tion and ranging (lidar), acquires 3D coordinates of objects over
a large scale. In addition, full-waveform laser scanners are able
to measure the scattering properties of vegetation in a quantitative
way (Wagner et al., 2008). Therefore, laser scanning generates a
high potential for forest related studies.

Assessment of canopy structure at tree or branch scale can be
difficult with laser scanning data acquired from satellite and air-
borne platforms (Tao et al., 2015). Terrestrial Laser Scanning
(TLS), on the other hand, has been established as an efficient tool
for acquiring 3D data used for a range of fine-scale forest studies
(Liang et al., 2016), including stem mapping (Liang et al., 2012),
tree height measurement (Olofsson et al., 2014), diameter estima-
tion (Wang et al., 2017), stem curve retrieval (Wang et al., 2016),
biomass calculation (Kankare et al., 2013), and leaf area index
(LAI) estimation (Zheng et al., 2013). To better retrieve forest
ecological attributes, it is often necessary to separate wood and
leaf components of trees (Tao et al., 2015). For example, esti-
mation of LAI requires to screen out wood points, otherwise the
wood returns will artificially increase the apparent foliage content
(Béland et al., 2014).

Wood-leaf point separation for TLS data is challenging. In gen-
eral, existing methods can be categorized into two groups; inten-
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sity based and geometry based. Intensity based methods (Pfen-
nigbauer and Ullrich, 2010; Béland et al., 2014) use radiomet-
ric information of objects captured by a laser scanner. The as-
sumption is that wood and leaf components have different op-
tical properties at the operating wavelength of the laser scanner
(Tao et al., 2015). By determining a proper intensity threshold,
wood and leaf points can be separated. However, intensity cap-
tured by a laser scanner needs an instrument specific radiometri-
cal calibration before including it in further processing (Calders
et al., 2017). Recently developed multi-wavelength (e.g., hyper-
spectal) scanners can help to better solve such a task (Li et al.,
2013; Hakala et al., 2012; Vauhkonen et al., 2013). However,
these scanners are still in an early development stage, and not yet
widely available. Geometry based methods only use 3D coor-
dinates of objects captured by a laser scanner. Local structure-
related saliency information are derived from 3D points and su-
pervised machine learning methods such as Support Vector Ma-
chine (SVM) (Yun et al., 2016) and Gaussian Mixture Model
(GMM) (Ma et al., 2016) are often employed to classify wood
and leaf points. Some direct geometric methods were also re-
ported (Tao et al., 2015). Nevertheless, geometry based machine
learning methods are rarely systematically examined for wood-
leaf classification, although it is a well-known and widely adapted
technique for other classification tasks (Weinmann et al., 2013,
2017; Brodu and Lague, 2012). There is a vast need to exploit 3D
geometry based approaches for separating wood and leaf points,
as 3D coordinates are the most fundamental information acquired
by any laser scanners. For machine learning methods, various
classifiers were used in previous studies (Yun et al., 2016; Ma
et al., 2016). The lack of comparable studies calls for a specific
examination on how the chosen machine learning classifier and
features used would influence classification results.

This study aims to examine four machine learning algorithms,
Support Vector Machine (SVM), Naı̈ve Bayes (NB), Random
Forest (RF), and Gaussian Mixture Model (GMM), in geometry-
based wood and leaf points separation using TLS data. In the fol-
lowing section 2 the used data are described, in section 3 the ma-
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chine learning models used for separating wood and leaf points
are presented. Finally, in section 4 the results are presented and
discussed in section 5. Conclusion is given in section 6.

2. MATERIALS

2.1 Erytrophleum fordii

TLS data of an evergreen sub tropical tree, Erytrophleum fordii,
were provided by Hackenberg et al. (2015). The data were ac-
quired in October 2013 from eight scan positions. The acquired
point cloud was further manually cleaned, as the tree crown in-
teracts with other trees. Therefore, points from adjacent trees’
foliage need to be removed. The cleaned point cloud for the Ery-
trophleum fordii tree contains ∼3.9 million points. The average
distance between two adjacent points is ∼5 mm (Figure 1).

Figure 1. Point cloud of the Erytrophleum fordii.

2.2 Betula pendula

Hyperspectral TLS data of another silver birch tree (Betula pen-
dula, Figure 2) were provided by Puttonen et al. (2016). The
single-scan data feature radiometrical information of the scanned
tree, in addition to the 3D XYZ coordinates. The average dis-
tance between two adjacent points is∼1 cm. Measurements were
carried out using a Hyperspectral Laser Scanner (HSL) from the
Finnish Geospatial Research Institute (FGI) (Hakala et al., 2012).
Laser radiometry was calibrated by setting up an external refer-
ence plate. For more information about the HSL data, readers are
referred to Puttonen et al. (2016).

3. METHODS

3.1 Feature Calculation

Twenty-six 2D and 3D geometry-based point cloud features ex-
tracted for each data set were described in Table 1. The features
were originally proposed and used in Weinmann et al. (2015) for
urban area scene analysis. Local 3D features are inferred from
the distribution of neighboring points of every point. Structure
saliency such as planar, linear, and scattering can be inferred from
the eigenvalues of the decomposed covariance matrix (Equation
1).

Covp =

∑K

i=1
(pi − p)(pi − p)T

K
, (1)

where pi = {xi, yi, zi}T is a 3D point and p is the barycenter of
theK nearest neighboring points. 2D feature calculation involves

Figure 2. Point cloud of the Betula pendula, silver birch.

a projection of points onto the horizontal plane. For details of fea-
ture extraction procedures, the readers are referred to Weinmann
et al. (2015).

3.2 Feature Selection

The high dimensionality of the input data may exhibit redundancy
and can be potentially reduced by various feature selection algo-
rithms. Moreover, feature selection may attenuate the over-fitting
problem in multivariate classification methods (Geiß et al., 2015).
Feature selection methods can be grouped into three categories;
wrappers, embedded, and filters (Guyon et al., 2008). Wrappers
methods evaluate a subset of features by accuracy estimates and
require trained classifiers. Embedded methods embed the selec-
tion process into the classifier learning. On the other hand, filter
methods explore the intrinsic properties of the data , and thus op-
erate independently with respect to classifiers. In this study, we
employ the filter method for feature selection for its simplicity
and efficiency, although more robust and concrete methods are
used in previous studies (Weinmann et al., 2013).

A fast and effective filter method is the Fisher method (Gu et
al., 2012). This method computes a score (Fisher score) accord-
ing to a ratio of interclass separation and intraclass variance for
each feature and ranks them. The scores reflect the discriminative
power of each feature. In this study, we apply the Fisher method
for both Erytrophleum fordii and silver birch datasets. The resul-
tant rankings are given in Table 1. Consequently, the classifier
learning was performed for 5, 10, 15, 20, and 26 features accord-
ingly, based on the rankings.

3.3 Machine Learning Classifiers

Wood-leaf separation is a binary classification problem. Givenm
training samples, (yi,xi) i = 1, . . .m with labels yi ∈ {1,−1}
and n dimensional feature vectors, xi ∈ Rn, the objective is to
find a function f( ;α) : x 7→ y that represents the classifier
y = f(x;α), where α are all the parameters of the classifier.

In this study, we examine the feasibility of four machine learn-
ing algorithms, SVM, NB, RF, GMM, for wood-leaf separation.
In this section, the fundamentals and principles of the four used
machine learning algorithms are briefly summarized.

3.3.1 Support Vector Machine SVM was proposed by Vap-
nik (1995). For a binary classification problem, it finds a hyper-
plane w ·x + b = 0, which maximizes the distance of the closest
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Table 1. Features extracted from the point cloud. EV denotes the eigenvalue andNV is the normal vector. EV s are sorted in a descend
manner. ”R-” is the abbreviation of ”Ranking” form feature selection. ”R-Combined” means that the feature set is a combination of
data from both trees. Top 5 ranked features are underlined.

No. Feature Description R-E. fordii R-Birch R-Combined

1 linearity Lλ 3D linear saliency (EV1 − EV2)/EV1. 23 19 22

2 planarity Pλ 3D planar saliency (EV2 − EV3)/EV1. 17 26 17

3 scattering Sλ 3D volumetric saliency EV3/EV1. 14 14 15

4 omnivariance Oλ 3D variance of the neighborhoods 3
√
EV1 ∗ EV2 ∗ EV3. 16 20 16

5 anisotropy Aλ 3D (EV1 − EV3)/EV1. 15 15 14

6 eigenentropy Eλ 3D −
∑3

n=1
EVn ∗ log(Evn) 18 22 19

7 sum EV3D

∑3

n=1
EVn. 20 10 20

8 surface variation3D change of curvature EVmin/(
∑

EV ). 12 17 12

9 Z value Zλ 3D the height of the point. 1 2 1
10 radius knn Rknn 3D radius of local neighborhood. 9 4 8

11 density3D local point density. 3 1 3
12 verticality Vλ 3D 1−NV sz . 24 13 24

13 ∆Zknn 3D height difference of local neighborhood. 10 8 10

14 σZknn 3D standard deviation of heights of local neighborhood. 11 7 11

15 radius knn Rknn 2D radius of local neighborhood. 8 5 7

16 density2D local point density. 2 9 2
17 sum EV2D

∑2

n=1
EVn. 21 11 21

18 EV ratio2D EV2/EV1. 7 25 9

19 cell density2D density of projected 2D cells. 4 6 4
20 ∆cell2D height difference of points in each cell. 25 3 25

21 σcell2D standard deviation of heights of points in each cell. 22 12 23

22 EV 13D first eigenvalue of 3D covariance matrix. 26 16 26

23 EV 23D second eigenvalue of 3D covariance matrix. 19 21 18

24 EV 33D third eigenvalue of 3D covariance matrix. 13 18 13

25 EV 12D first eigenvalue of 2D covariance matrix. 6 24 5
26 EV 22D second eigenvalue of 2D covariance matrix. 5 23 6

vectors (i.e., margin) in both classes. w is the n-dimensional vec-
tor perpendicular to the hyper-plane, and b is the distance of the
closest point on the hyper-plane to the origin. The classifier is
then

f(x) = sgn

(
m∑
i=1

λiyiK(xi,xj) + b

)
, (2)

where λ is the weight andK(xi,xj) is a kernel functionK(xi,xj) =
Φ(xi) ·Φ(xj), subjects to yi(< w,xi > +b)− 1 ≥ 0.

3.3.2 Naı̈ve Bayes NB is a statistical approach based on Bayes’s
theorem (Marcot et al., 2006). It assumes that the features are
conditionally independent given the class,

p (x|y) =

m∏
i=1

p (xi|y) . (3)

Therefore, from the Bayes’s theorem, the posterior probability of
a feature vector to be part of a certain class is

p (y|x) =
p (y)

∏m

i=1
p (xi|y)

p (x)
, (4)

where p (y) is the prior probability of the class. A point will be
labeled as the class with the highest probability.

Figure 3. Evaluation of number of classification trees to be
grown.

3.3.3 Random Forest RF is a decision tree based ensemble
learning method that was proposed by Breiman (2001). The learned
model is a collection of weak models. Multiple decision trees are
grown on random subsets of training data. The class determina-
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Table 2. Statistical evaluation of machine learning classifiers for wood-leaf separation.

E. fordii birch
Features Classifier Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

5

SVM 0.94 1.00 0.97 0.88 0.93 0.93
NB 0.91 0.99 0.95 0.90 0.90 0.90
RF 0.96 1.00 0.98 0.93 0.94 0.94
GMM 0.90 0.99 0.95 0.88 0.94 0.94

10

SVM 0.93 1.00 0.97 0.92 0.98 0.97
NB 0.91 0.98 0.95 0.92 0.89 0.89
RF 0.96 1.00 0.98 0.96 0.98 0.98
GMM 0.91 0.99 0.95 0.87 0.97 0.97

15

SVM 0.93 1.00 0.97 0.94 0.97 0.97
NB 0.91 0.97 0.94 0.93 0.86 0.86
RF 0.95 1.00 0.98 0.96 0.98 0.98
GMM 0.91 0.99 0.95 0.87 0.97 0.97

20

SVM 0.94 1.00 0.97 0.94 0.97 0.97
NB 0.92 0.96 0.94 0.93 0.86 0.87
RF 0.95 1.00 0.98 0.96 0.98 0.98
GMM 0.91 0.99 0.95 0.87 0.97 0.97

26

SVM 0.94 1.00 0.97 0.94 0.97 0.97
NB 0.93 0.95 0.94 0.93 0.86 0.87
RF 0.97 1.00 0.98 0.95 0.98 0.98
GMM 0.91 0.99 0.95 0.87 0.97 0.97

NDVI threshold 0.78 0.97 0.96

tion is based on a majority votes fashion. RF has proven to be an
accurate and robust classification and regression approach, even
on noisy data (Geiß et al., 2015).

When employing RF, two necessary parameters need to be spec-
ified; the number of classification tree ntrees and the number of
input featuresmft used at each node (Geiß et al., 2015). A higher
number of ntrees increases model accuracy until convergence.
We used our data with all features to train models. We observe
that in our study, the model performance converges at the point
of approximate 60 trees (Figure 3). However, since our data set
is not large enough for us to consider a trade off for computa-
tion time, we keep the number as 100. We set another parameter,
mft =

√
p, where p denotes the number of input feature, as sug-

gested by Breiman (2001).

3.3.4 Gaussian Mixture Model GMM is a modeling tech-
nique that uses a probability distribution to estimate the likeli-
hood of a given feature vector. The assumption is that classes
obey a normally distributed density function. For a binary classi-
fication problem, the continuous probability density function can
be approximated as a linear combination of two probability den-
sity functions (Ma et al., 2016),

p(x) =

m∑
k=1

wkp(x|k) (5)

where wk is the weight for each probability density function.
p(x|k) is the conditional probability of a point x belonging to the
kth density function.The probability that a point xi lies within the
a distribution with parameters µ and Σ is given by

N(µk,Σk) =
e−

1
2

(xi−µk)T Σ−1(xi−µk)√
|2πΣ|

. (6)

In this study, manually delineated training points are used to train
the GMM model. The Expectation-Maximization algorithm (EM)
is used to estimate the µ and Σ of each class. Consequently, a
point will be labeled as the class with the highest probability.

3.4 Evaluation

The performance of each classifier is evaluated based on three
statistical indexes; sensitivity, specificity, and accuracy. Sensitiv-
ity measures the correctly classified positive samples (true posi-
tive rate, TP ). In this study, it represents that the correct rate for
wood points. Specificity gives the true negative rate (TN ), thus it
measures the correct rate for leaf points. Accuracy (ACC) gives
the overall correctness by

ACC =
TP + TN

P +N
, (7)

where P and N are the number of real positive (wood) and neg-
ative (leaf) samples.

4. EXPERIMENTS AND RESULTS

We manually selected approximate 10% points from each tree as
the training data for the machine learning classifiers. These train-
ing points are evenly distributed from the bottom to the top of
each tree. Consequently, four machine learning classifiers were
trained accordingly with different feature sets. The statistical per-
formance indices are summarized in Table 2.

For both trees, RF model resulted in best performance invariably,
while NB model gave least accuracy. The accuracy of four clas-
sifiers with various feature sets are demonstrated in Figures 4 and
5. Feature sets are selected based on the ranking lists resulted
from the Fisher filter method (section 3.2). For the Erytrophleum
fordii tree, all classifiers’ performances remained similar, indicat-
ing little effects from the number of feature used. All four clas-
sifiers showed promising results with more than 94% accuracy,
which are comparable to e.g., Ma et al. (2016). Although, it is
noted that Ma et al. (2016) worked on a more complex and littery
scene. For the silver birch tree, the accuracy of the SVM, RF,
and GMM model became stable when number of features used
reached 10. The NB model performed less well in this study, and
its performance reduced with increased feature sets. A similar
trend also can be observed from the study of the Erytrophleum
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fordii tree, although in this case the trend was weak. The reason
may be that the assumption in NB that a particular feature is inde-
pendent of the value of any other feature was violated when more
features were involved. In such a case, the Bayesian Network
model (Friedman et al., 1997) will be more suitable. In addition,
NB is known to have difficulties when dealing with unbalanced
data.

We observed that the high classification accuracy of the Ery-
trophleum fordii might be caused by the fact that the distributions
of its stem and crown are essentially very well distinct. To assess
the performances of machine learning classifiers in regions where
leaf and wood components are heavily interacted, we selected a
subset point cloud between 16 and 20 m above ground of the
Erytrophleum fordii (Figure 6), and ran the experiments on this
subset. The results are given in Table 3. The accuracy remained
almost identical compared to those from the whole point cloud,
indicating that machine learning algorithms can commendably
separate leaf and wood components by providing proper training
samples.

For the silver birch, calibrated spectral attributes exist. Therefore,
leaf and wood can be separated from the spectral information of
each point as well. This is based on the fact that different com-
ponents of a tree feature discriminatory optical properties at the
operating wavelengths of the laser scanning system (Tao et al.,
2015). In this study, the birch leaf and wood were separated with
a hard normalized difference vegetation index (NDVI) threshold
value of 0.2. All points that have NDVI value less than 0.2 were
labeled as wood components, and vice versa. The accuracy of
the spectral method is included in Table 2. The sensitivity (i.e.,
accuracy for wood identification) is lower than those from ma-
chine learning algorithms, mainly because some higher parts of
the stem were misclassified as leaves.

Figure 4. Performance of four classifiers for the Erytrophleum
fordii as a function of the different feature sets. Feature sets were
determined based on the Fisher filter method described in section
3.2.

5. DISCUSSION

5.1 Classifier Performance

As summarized in the Tables 2 and 3, the performances of se-
lected machine learning classifiers are comparable to and surpass-
ing published studies (Ma et al., 2016; Tao et al., 2015). In our
tests, RF model produced best results, proving that RF might be
very well suitable for wood-leaf classification. This can also be

Figure 5. Performance of four classifiers for the silver birch as
a function of the different feature sets. Feature sets were deter-
mined based on the Fisher filter method described in section 3.2.

Figure 6. A crown subset (i.e., 16 - 20 m) of the Erytrophleum
fordii. Branches and leaves heavily interact.

Figure 7. Classification results of RF model for Erytrophleum
fordii. Left part shows the wood components and right part shows
the leaf points.

justified by visualizations of the classification results in this study
(Figure 7 and 8). The popular SVM model also gave promising
results, however, its model training time were much longer than
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Table 3. Statistical evaluation of machine learning classifiers for
the crown subset of the Erytrophleum fordii with 5, 10, 15, 20,
and 26 features.

Features Classifier Sensitivity Specificity Accuracy

5

SVM 0.93 0.97 0.95
NB 0.95 0.95 0.95
RF 0.95 0.98 0.96
GMM 0.92 0.95 0.94

10

SVM 0.93 0.97 0.95
NB 0.95 0.92 0.94
RF 0.96 0.98 0.97
GMM 0.91 0.96 0.94

15

SVM 0.94 0.98 0.96
NB 0.96 0.90 0.93
RF 0.96 0.98 0.97
GMM 0.91 0.96 0.94

20

SVM 0.94 0.98 0.96
NB 0.96 0.90 0.93
RF 0.96 0.98 0.97
GMM 0.91 0.96 0.94

26

SVM 0.94 0.98 0.96
NB 0.96 0.90 0.93
RF 0.96 0.98 0.97
GMM 0.91 0.96 0.94

Figure 8. Classification results of RF model for silver birch. Left
part shows the wood components and right part shows the leaf
points.

others’. NB model performed worse in this study and might not
be suitable for leaf-wood separation, unlike its high efficiency
in text classification (Kim et al., 2006). GMM model is typi-
cally used in unsupervised classification problems (Koo et al.,
2014), although it was previously used in separating leaf, wood,
and ground points (Ma et al., 2016). We briefly tested the per-
formance of the GMM classifier without training data, so that the
data were clustered into two groups in the feature space. We ob-
tained an accuracy of 93% and 91% for the Erytrophleum fordii
and silver birch, respectively, which are lower than that of the
supervised GMM.

5.2 Feature Importance

In this study, features were ranked based the Fisher filter feature
selection method (Table 1). Furthermore, feature sets with differ-
ent sizes based on the rankings are tested. For both trees, point
height and local density seem to be the most vital features, as

they were both ranked as top 5. This indicates that local density
characteristics might play a vital role in leaf-wood separation.
However, both of them are bound to perform worse in a more
complex scene. Commonly used structure inferring features such
as linearity and planarity turned out to be less important as they
were ranked as non-significant (e.g., 50% in the case of the lat-
ter). This can also be justified from the performances of various
feature sets. For both trees, the first 10 best features according to
the ranking are enough to stabilize the model accuracy, meaning
that features such as linearity and planarity are not necessary to
be included in such a wood-leaf classification issue. However, we
note that feature selection should consider the local tree structure
characteristics, such as tree species. In addition, more feature se-
lection approaches should be tested, possibly in connected with
the chosen machine learning model. Such methods are known as
wrappers.

5.3 Training Sample Delineation

In this study, training samples were manually and evenly selected
from the bottom to the top of each tree. The selected training
data take up around 10% of the whole point cloud. In order to as-
sess the influences of training samples, we re-selected a different
training sample set with 1m height intervals for the crown subset
of the Erytrophleum fordii (Figure 6). The re-selected training
sample only occupies ∼1% of the whole data. The classifica-
tion results are compared in Table 4. It is noted that the accuracy
decreased when less and unevenly distributed training data were
used. In particular, model sensitivities reduced drastically, mean-
ing that some wood points were misclassified as leaf points. This
implies that the local geometry properties of branch points are
not well represented by a small set and vertically spaced training
data.

In addition, we trained all classifiers with training data from both
trees, meaning that half training data are from the Erytrophleum
fordii and left are from the silver birch. The results for the Ery-
trophleum fordii remain identical compared to those classifiers
trained with only Erytrophleum fordii data (Table 5 and Table 2).
However, the results for the silver birch are worse, especially in
terms of the sensitives, except the RF model. This indicates that
the wood parts of the silver birch are severely misclassified as leaf
points when using the classifiers trained with a combined train-
ing set. RF is immune from this situation, again indicating its
efficiency and capability for such as task.

Table 4. Comparison of performances with different training data
on the crown subset. Sample f denotes the manually selected
10% training set. Sample s refers to a training set with 1m height
intervals.

Classifier Sample Sensitivity Specificity Accuracy

SVM
f 0.94 0.98 0.96
s 0.76 0.96 0.91

NB
f 0.96 0.90 0.93
s 0.89 0.84 0.85

RF
f 0.96 0.98 0.99
s 0.84 0.96 0.93

GMM
f 0.91 0.96 0.94
s 0.68 0.97 0.89

6. CONCLUSION

In this study, we compared four machine learning algorithms,
namely Support Vector Machine, Naı̈ve Bayes, Random Forest,
and Gaussian Mixture Model, for separating wood and leaf points
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Table 5. Performances of all classifiers trained with a combined
training set from both trees.

Data set Classifier Sensitivity Specificity Accuracy

Birch

SVM 0.67 1.00 0.98
NB 0.48 1.00 0.97
RF 0.88 1.00 0.99
GMM 0.53 1.00 0.97

E. fordii

SVM 0.90 0.90 0.95
NB 0.94 0.90 0.92
RF 0.95 1.00 0.97
GMM 0.89 0.96 0.93

from TLS data. In general, there is a lack of comparative stud-
ies of machine learning algorithms for such problems. Our study
highlighted the feasibility of the methodology. Specifically, two
trees were tested, an Erytrophleum fordii and a silver birch. Twenty-
six geometry-based features were extracted and individually ranked
by a filter feature selection method. Various feature sets and train-
ing data were tested. Our results show that machine learning al-
gorithms can efficiently separate wood and leaf point from TLS
data with an accuracy of, in general, more than 95%. Evenly dis-
tributed training data are recommended, as sparse training data
can reduce the classification accuracy especially for branches in-
side the tree crown. It is noted that our studies were performed
on purer data sets. More tests on tree data from more complex
natural conditions should be carried out in the future. In addition,
more tree species should be tested.
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