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ABSTRACT: 

Automatic extraction of power lines has become a topic of great importance in airborne LiDAR data processing for transmission line 

management. In this paper, we present a new, fully automated and versatile framework that consists of four steps: (i) power line 

candidate point filtering, (ii) neighbourhood selection, (iii) feature extraction based on spatial topology, and (iv) SVM classification. 

In a detailed evaluation involving seven neighbourhood definitions, 26 geometric features and two datasets, we demonstrated that the 

use of multi-scale neighbourhoods for individual 3D points significantly improved the power line classification. Additionally, we 

showed that the spatial topological features may even further improve the results while reducing data processing time. 

* Corresponding author

1. INTRODUCTION

Inspecting transmission lines to detect and eliminate hidden 

risks is an important task for urban and rural power supply 

management and scientific planning (Ahmad et al., 2013; 

Matikainen et al., 2016). However, the traditional field-based 

inspection is labor-intensive and difficult, especially over 

complex terrain. In contrast, airborne lidar (light detection and 

ranging) can directly collect high-precision 3D point cloud data 

of the power line corridor (McManamon, 2012; Glennie et al., 

2013). Nevertheless, power lines are usually close to vegetation 

and buildings and airborne lidar data volume is large, making it 

difficult to extract the power line points accurately and quickly 

from lidar point cloud. Therefore, the research and development 

of a highly efficient, rapid and automated method for extracting 

power lines from airborne lidar point cloud data is a critical 

topic. 

2. RELATED WORK

The conventional technologies for power line extraction include: 

(i) statistical analysis of point clouds based on height, density or

number of pulses, etc (Cheng et al., 2014; Zhu and Hyyppä 

2014; Guan et al., 2016); (ii) Hough transform and clustering

based on 2D image processing (Liu et al., 2009; Sohn et al.,

2012; Zhu and Hyyppä, 2014; Grigillo et al., 2015); (iii)

supervised classification based on metrical and distribution

features between points (Kim and Sohn, 2013; Weinmann et al.,

2015a; Guo et al., 2016; Matikainen et al., 2016).

Melzer and Briese (2004) proposed the use of 2-D Hough 

transform to detect segmented power line primitives. The 

overall reconstruction of power lines was accomplished by 

using the random sampling consistency algorithm to select the 

power line primitives for estimating the vertical parameters. 

Because the method did not make full use of all the power line 

data, the accuracy of point-based classification was 91.04 and 

89%, respectively. Clode and Rottensteiner (2005) introduced a 

tree and power line classification method using the local point 

density and intensity of the pulse returns, the accuracy test of 

the result was not high. They used a knowledge-based 

supervised classification method to separate the power lines 

from the background in two steps by fitting in the XOZ or YOZ 

plane, respectively. Liu et al. (2009) proposed a power line 

corridor classification method based on ground filtering 

algorithm and Hough transform, which focused on lidar 

intensity data more than elevation data. 

Jwa et al. (2009), Jwa and Sohn (2012), Sohn et al. (2012), Kim 

and Sohn (2013), Guo et al. (2015) used the Markov random 

field to extract the power line from the given linear corridor 

scene, then extracted the tower according to the semantic 

relation between the power line and the tower, and finally, 

reconstructed the 3D power lines by using the multi-level span 

analysis of the catenary curve model based on the position of 

the tower. These methods extracted power lines and towers 

according to the semantic relationship based on the position of 

towers. They were unsuitable for power line classification in 

complex urban scenes where small electric poles instead of tall 

towers are ubiquitous. Liang et al. (2011) used the spatial 

distribution of power lines to extract a single power line from 

the point cloud, and then directly used the polynomial-based 

least squares matching algorithm to estimate the power line 

model parameters for its three-dimensional reconstruction.  

Ritter and Benger (2012) proposed to detect power line 

candidate points by using the non-linear adjustment of the 

catenary line. This method is computationally complex, and the 

final fitting model is not continuous. Cheng et al. (2014) 

designed the urban power line extraction algorithm based on the 
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characteristics of vehicle-based lidar point cloud data. Zhu and 

Hyyppä (2014) designed the automatic extraction model of the 

power lines focused on statistical analysis based on a set of 

criteria (e. g., height, density) and 2D image-based processing 

technology considered geometric properties. The average 

accuracy of power line classification was 93.26%. However, in 

complex urban scenes where trees and buildings are close to 

power lines, the accuracy would decrease. 

 

In summary, airborne lidar point cloud data have the potential 

to overcome the shortcomings of traditional power inspection 

field work. However, it is necessary to design intelligent 

classification algorithm for extracting power lines from point 

cloud data. In this study, we proposed a power line 

classification method that works over complex scenes where 

vegetation, buildings and transmission lines are mingling in 

power line corridors. 

 

3. METHODOLOGY 

We designed our novel methodology for power line point cloud 

classification based on geometric multi-scale features and multi-

scale neighbourhood types. The main components of this 

methodology consist of (i) power line candidate point filtering, 

(ii) neighbourhood selection, (iii) feature extraction and (iv) 

SVM classification, which are explained in Figure 1 and the 

following subsections. 

The raw 

airborne lidar 

data
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Figure 1. The whole process framework of our methodology. 

 

3.1 Power line candidate point filtering 

The power line candidate point filtering from raw lidar point 

cloud is the first step for power line classification. We proposed 

a rough power line filtering from the original lidar point cloud 

by (i) first conducting ground points classification and DTM 

generation (Chen, 2007a; Chen et al., 2007b; Chen, 2009), (ii) 

then selecting all points that are 4 m above ground (Zhu and 

Hyyppä, 2014) as power line candidate points. 

 

3.2 Neighbourhood selection 

We used the local 3D spatial topological structure around a 

considered 3D point X for power line classification and initially 

considered two types of neighbourhood for 3D points: single-

scale neighbourhoods and multi-scale neighbourhoods 

(Blomley et al., 2016). At each scale, we considered different 

neighbourhood types such as spherical, cylindrical and k nearest 

neighbourhoods. Each neighbourhood is defined by a single 

scale parameter such as radius, nearest k number, or optimal 

neighbourhood based eigenvalues (Weinmann et al., 2015b). 

After many trials, we chose the multi-scale spherical 

neighbourhoods to capture the anisotropy and details of power 

line topology structure. 

 

3.3 Feature extraction 

The successful identification of power line points depends on 

the extractions of useful features that can distinguish power 

lines and other objects. For characterizing power lines, the 

metrical features and distribution features have been widely 

used for a variety of applications (Blomley et al., 2016). We 

extracted features based on contextual information to enhance 

power line classification accuracy (Weinmann et al., 2015a; 

Weinmann et al., 2015b, Weinmann et al., 2015c). 

 

3.4 SVM classification 

We used support vector machine (SVM) for classifying power 

line points (Zhang et al., 2013). The extracted features based on 

the local individual points’ neighbourhood are the feature 

vectors for the SVM classifier. SVM is a supervised 

classification method that requires training dataset to calibrate 

the classifier. To calibrate and validate the classifier, we 

manually identified true power line points from our dataset and 

used five-fold cross validation to assess the classifier’s accuracy. 

 

4. EXPERIMENTAL RESULTS 

In this section, we provide details on the dataset (Section 4.1), 

experiments (Section 4.2), and the results (Section 4.3). 

 

4.1 Dataset 

The datasets we used are from Honolulu, Hawaii. The datasets 

were acquired in 2014 and consist of upper left area (which is 

referred to as UL Dataset, 180 x 180 m2) and lower part area 

(which is referred to as LP Dataset, 800 x 100 m2) from a large 

lidar scene (Figure 2). The point density in the datasets is about 

3.42 points/m2. For both UL Dataset and LP Dataset, ground 

truth is available in the form of a point-wise labelling with 

respect to power line class. An overview of the number of 

labelled 3D points for power lines is given in Table 1. 

 

Class UL Dataset LP Dataset 

Ground 48070 136891 

Building 24348 48574 

High vegetation 19532 73523 

Power line 1519 6858 

Unassigned 4475 2516 

Total 97944 268362 

Table 1. Number of labelled 3D points in the two datasets. 

 

 

Figure 2. Visualisation of the experiments for UL Dataset (top) 

and LP Dataset (bottom) with the true power line. 
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4.2 Experiments 

For our experiments, we use the single-scale and multi-scale 

neighbourhood definitions as the basis for geospatial 

topological feature extraction: (i) six spherical single-scale 

neighbourhoods denoted as mN 1 , mN 3 , mN 5 , mN 7 , mN 9  and 

mN 11 , (ii) a multi-scale neighbourhood denoted as allN  

resulting from the combination of the spherical neighbourhoods 

mN 1 , mN 3 , mN 5 , mN 7 , mN 9  and mN 11 . The resulting features 

are concatenated to a feature vector and provided as input for 

SVM classifier. 

 

In order to compare the classification results obtained with the 

different approaches on point-level, we consider a variety of 

measures for evaluation on the power line classification: (i) 

precision rate (PREC), (ii) recall rate (REC) and (iii) kappa (k). 

The PREC, REC and k are computed as follows: 

 

FPTP

TP
PREC


   (1) 

FNTP

TP
REC


    (2) 

)(*)(*

)(*)(*

FPTPTPFNNN

FPTPTPFNTPN
k

umum
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


  (3) 

 

where  TP = the sum of true positives for power lines 

 FP = the sum of false positives for power lines 

 FN = the sum of false negatives for power lines 

 umN  = the sum of power line candidate point 

 

4.3 Results 

Due to the use of seven types of neighbourhoods and two 

datasets, a total number of 14 experiments were conducted. The 

value of precision rate (PREC), recall rate (REC) and kappa (k) 

for each experiments are shown in Table 2. Exemplary 

classification results are shown in Figure 3 and Figure 4. In 

these figures, the blue points represent the power line 

candidates, the green points represent the true power line points, 

and the red points represent the power line classification result. 

 

N  
UL Dataset LP Dataset 

PREC REC k PREC REC k 

mN 1  74.68 38.25 73.62 76.66 55.76 75.13 

mN 3  81.41 67.48 80.65 88.07 83.11 87.23 

mN 5  94.86 86.24 94.65 91.66 86.82 91.07 

mN 7  95.64 90.92 95.46 92.44 89.69 91.94 

mN 9  95.03 91.90 94.83 92.64 89.94 92.12 

mN 11  94.56 90.39 94.33 93.83 89.09 93.39 

allN  98.44 83.08 98.38 98.04 82.40 97.91 

Table 2. PREC, REC and k (in %) for different neighbourhood 

definitions and two datasets. 

 

 

 

Figure 3. Visualisation of the experiments results for power line 

classification of UL Dataset (top) and the local magnification of 

the yellow ellipse area (bottom) 

 

 

 

Figure 4. Visualisation of the experiments results for power line 

classification of LP Dataset (top) and the local magnification of 

the yellow ellipse area (bottom) 

 

The results showed that mN 7  had the better performance 

among the six single scale neighbourhoods in UL dataset, while 

mN 11  had the better performance in LP dataset. The main 

reason is that power lines of UL dataset are much closer to trees 

and building and more complex than in LP dataset. But the 

accuracy in LP dataset increased gradually from neighbourhood 

mN 7  to mN 11 . The multi-scale neighbourhood allN  had 

higher kappa statistic than any single scale neighbourhood 

because it incorporates all the single scale topological structure 

characteristics, but the recall rate of the classification result is 

not as high as the precision rate. 
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5. DISCUSSION 

The novelty of this study is to use multi-scale neighbourhoods 

to characterize the spatial topology of power lines for 

classification. 

 

Different from previous studies (Cheng et al., 2014; Zhu and 

Hyyppä 2014; Sohn et al., 2012) that rasterized lidar points and 

used image-based processing or statistical analysis technology 

for power line extraction, our approach focused on topological 

characterisation of 3D points via feature extraction from local 

neighbourhood of different scales and performed point-wise 

individual classification. Our datasets are from an urban area 

where power lines are in close proximity to vegetation or 

building. Despite of the complexity of area, our method can still 

achieve high classification accuracy. 

 

Among the three types of neighbourhood (spherical, cylindrical, 

k nearest neighbourhood), we found that the cylindrical and k 

nearest neighbourhood based on the eigenvalue did not perform 

as well as the spherical neighbourhood. In our experiment, the 

power lines are ~4 m above the ground with ~2 m spacing and 5 

m total width. We found that the better radius of single-scale 

neighbourhoods is 5 m or 7 m in UL dataset and LP dataset. 

These optimal scales approximate the horizontal or vertical span 

of the power lines. Multi-scale neighbourhoods performed 

better because of the spatial heterogeneity of the environment. 

 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a novel power line classification 

methodology based on airborne laser scanning data. The 

method consists of power line candidate filtering, multi-scale 

neighbourhood selection, geospatial topological feature 

extraction, and SVM classification. In a detailed experiment for 

an urban area, we found that feature extraction based on the 

multiple scales spherical neighbourhood leads to improved 

classification results in comparison to single-scale 

neighbourhood. 

 

In future work, we plan to improve the methodology by 

considering more contextual feature inherent in the data. 

Furthermore, the presented methodology needs to be 

experimented for different types of points cloud data (e.g. 

mobile or vehicle-borne laser scanning data) or to use the 

classification results for 3D reconstruction of power lines in 

complex urban environments.  
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