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ABSTRACT:

Lidar technology has been widely used in both robotics and geomatics for environment perception and mapping. Moving object
detection is important in both fields as it is a fundamental step for collision avoidance, static background extraction, moving pattern
analysis, etc. A simple method involves checking directly the distance between nearest points from the compared datasets. However,
large distances may be obtained when two datasets have different coverages. The use of occupancy grids is a popular approach to
overcome this problem. There are two common theories employed to model occupancy and to interpret the measurements, Dempster-
Shafer theory and probability. This paper presents a comparative study of these two theories for occupancy modelling with the aim of
moving object detection from lidar point clouds. Occupancy is modelled using both approaches and their implementations are explained
and compared in details. Two lidar datasets are tested to illustrate the moving object detection results.

1. INTRODUCTION

Laser scanning, also referred to as lidar (light detection and rang-
ing), has been used in both robotics and geomatics for slightly
different purposes. In robotics, it is initially used for environ-
ment perception to avoid collision. Nowadays, it is widely used
for autonomous navigation and SLAM (simultaneous localization
and mapping) (Wolf and Sukhatme, 2004; Moosmann and Stiller,
2013), so that a robot will know exactly where it is, even in a
new environment. In geomatics, mapping is usually the primary
goal, and laser scanning can provide a precise way of mapping
the environment (Aijazi et al., 2013; Zhou and Vosselman, 2012).
There are specific laser scanners for precise and dense mapping,
for both indoor and outdoor, that can be operated from different
platforms such as aircraft, mobile vehicles, and terrestrial tripods.
One type of laser scanner that has been adopted in both robotics
and geomatics studies is the Velodyne HDL-64E, which consists
of 64 laser rays rotating rapidly around the vertical axis so that
the surroundings are continuously scanned. Continuous scanning
is essential in robotics as a robot needs to see the environment
all the time. This type of real-time laser scanner has been widely
used for autonomous driving and environment mapping (Moos-
mann and Stiller, 2011; Hornung et al., 2013).

Moving object detection and tracking is an important research
topic for both robotics and geomatics (Lindström and Eklundh,
2001; Kaestner et al., 2012; Xiao et al., 2016). For the former, a
robot, such as an autonomous vehicle needs to not only see its sur-
roundings, but also make sure its trajectory will not coincide with
other moving objects in a dynamic environment. Therefore, it is
necessary to track and even predict other moving objects to avoid
any potential collision. As for the latter, the static environment is
of primary interest for mapping purposes. So moving object de-
tection and removal will help clean the environment and reduce
the data storage (Vallet et al., 2015). There are often movable
∗Corresponding author

objects that remain static in the data during the process of data
acquisition, such as parked cars along the street. In such cases,
detected moving objects can serve as training samples for com-
prehensive and fully automatic mobile object removal. Moreover,
object moving patterns, such as pedestrian trajectories in a pub-
lic space or vehicle movement in a congregated crossroads, are
potentially valuable geoinformation for further studies.

There are various methods for moving object detection from both
robotics and geomatics. For example, a straightforward method is
calculating the point to point distance between two different point
clouds (Girardeau-Montaut et al., 2005; Xu et al., 2013; Linden-
bergh and Pietrzyk, 2015), which can be two different scans. As
for a real-time laser scanner, a scan refers to a full 360◦ rotation
of the scanner. Apart from simple point to point distance, there
exist improved variants such as computing the distance between
a point and a local surface, either a plane or a triangle gener-
ated from local neighbour points. This method is simple and fast
and still used in many applications. However, it is not able to
distinguish points on moving objects from points that have no
correspondence, which happens when two scans do not cover the
same space, such as in occlusions. In both cases, these point will
have large distances indicating movements. Another method, oc-
cupancy grids, has been used initially in robotics for environment
perception (Collins, 2011; Vu et al., 2011; Thrun, 2002), and re-
cently in geomatics for change detection (Hebel et al., 2013; Xiao
et al., 2015). It models the occupancy information of the space,
i.e. whether a specific location (often a grid cell in 2D) is occu-
pied by an object or not. This information is derived from the
measured environment data. The occupancy states will vary by
time in a dynamic environment. One of the advantages is that it
is able to capture cells that have no correspondence, as all cells
will be initiated but those will not be compared or updated.

To detect the changes of occupancy states so as to detect moving
objects, the occupancy need to be defined or modelled first. One
approach is using probability to represent the occupancy of space.
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Then Bayes’ rule is used to interpret measurements and update
the probability (Thrun, 2002; Collins, 2011; Vu et al., 2011; Hor-
nung et al., 2013). Another common approach is the Demspter-
Shafer theory (DST) (Shafer, 1992), an evidence theory that com-
bines evidence from different sources and reaches a certain de-
gree of belief (Murphy, 1998; Grabe et al., 2009; Delafosse et al.,
2007; Moras et al., 2015; Dezert et al., 2015). There are other oc-
cupancy modelling methods such as fuzzy logic (Payeur, 2003),
but the former two are mostly widely used for occupancy mod-
elling and moving object detection or change detection. This pa-
per will investigate in detail the two methods in terms of both
theory and implementation. This comparison will help the users
to select the appropriate approach for their specific applications.

2. METHOD

In this section the occupancy of a laser scan is modelled using
both Dempster-Shafer theory (DST) and probabilistic model ap-
proaches. The occupancy definition is introduced first, then their
occupancy information is fused, followed by the identification of
the occupancy consistency between multiple scans.

2.1 Occupancy Definition

2.1.1 Occupancy by Dempster-Shafer theory Theoreti-
cally, the space can be either occupied or free, which are the two
occupancy states. Based on DST, the occupancy is defined by the
universal set X = {free, occupied}. And the power set of X ,
2X = {∅, {free}, {occupied}, {free, occupied}}, which con-
tains all the subsets of X . In practise, if an area is not measured,
there is zero knowledge about the occupancy state, meaning the
occupancy is unknown. Then the space can be either free or occu-
pied, so the subset {free, occupied} in the power set represents
the unknown situation. The DST is defined as follows:

M : 2X → [0, 1],M(∅) = 0,
∑
A∈2X

M(A) = 1 (1)

in whichM(A) is the occupancy function, including the three oc-
cupancy states, namely freeM(f), occupiedM(o) and unknown
M(u). They are in the range of [0, 1], and their sum equals to 1.

The occupancy needs to be modelled in 3D for the 3D laser scan-
ning measurements. Along the direction of a laser ray r, the oc-
cupancy is modelled in the following way. The laser ray travels
through the space and is then reflected back from an object where
a point is defined. So it is known to be free between the laser
scanner center and the point, fr = 1; or = 0. At the location of
the point, an object is supposed to be present, thus it is certainly
occupied, fr = 0; or = 1. Behind the point, or ahead of the point
along the ray, the space is not measured so its occupancy state is
unknown ur = 1. As an object will definitely be larger than a
single point, the space behind the point can be assumed to be oc-
cupied within a certain range. Beyond that range, the occupancy
will become completely unknown. The occupancy modelling is
illustrated in Figure 1.

Xiao et al. (2015) modelled the maximum occupancy slightly be-
hind the point as it was argued that the point is on the surface of
an object, then considering uncertainties, it can be on either side
of the surface. Thus the occupancy is actually half free and half
occupied at this very location. By convolving with an uncertainty
Gaussian function, the maximum of occupied is slightly behind
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Figure 1. Occupancy in ray direction

the point, which is true since the space is more certain to be oc-
cupied behind the surface. In this way, the occupancy along the
ray is accurately modelled. However, the occupancy consistency
assessment is then complicated as this will end up with half con-
sistent and half conflicting for two points at the same location
(see Section 2.3.1). So the maximum occupancy at the location
of the point is modelled as shown in Figure 2.
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Figure 2. Occupancy in ray direction considering uncertainties

Now, the occupancy has been defined only in the ray direction.
In 3D, the occupancy around a laser ray can be extrapolated to a
certain extent based on the distance to the ray itself. To facilitate
the extrapolation, the distance to a laser ray can be computed
in the laser scanner’s own local coordinate system. Here, it is
composed of the vertical angular direction θ, trajectory direction
t, and the ray direction r. The occupancy is at a maximum along
the ray, and it decreases along the other two directions. The 3D
occupancy modelling is depicted in Figure 3.
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Figure 3. Occupancy in 3D considering uncertainties

The occupancy in rotation θ and trajectory t directions is extrapo-
lated using Gaussian functions gθ and gt. The standard deviations
are determined by the gaps between rays in respective directions.
In practise, sampling densities are not the same in these two di-
rections. To overcome this anisotropic sampling issue, the oc-
cupancy in these two directions are interpolated separately. The
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overall occupancy of a point is a function of the three variables,
r, t, θ:

M(A) = M


f
o
u

 =


gθ · gt · fr
gθ · gt · or
1− f − o

 (2)

in which gθ, gt ∈ [0, 1] are interpolation coefficients.

2.1.2 Probabilistic Occupancy The principle of probabilis-
tic occupancy is similar to DST, where space is free along the
laser beam and occupied at the location of the laser point. The
probability P ∈ [0, 1] represents the status of occupancy, i.e.
P = 1 when the space is occupied, P = 0 when it is free. Fig-
ure 4 shows the definition of probabilistic occupancy.

0
r

Probability

1
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Figure 4. Probabilistic occupancy in ray direction

From the laser scanner center to the point, the laser beam has
travelled through the space that is free, hence the probability is 0.
At the location of the point, the space is occupied. Due to laser
range measurement errors and positioning errors from the map-
ping system, the point position has certain degree of uncertainty,
which can be accounted for by coupling a random error distribu-
tion to the probability both behind and ahead of the point along
the ray direction. Further ahead of the point along the ray, the
space is not scanned hence can be either free or occupied. Then
the probability of occupancy is defined as 0.5. Different from
DST, the probabilistic occupancy only has one value to represent
the space’s occupancy status.

2.2 Occupancy Fusion

The space will be scanned multiple times by the laser scanner,
meaning there will be multiple measurements at the same loca-
tion. The probabilities of different scans need to be fused for
final inference. This section will discuss and compare the two
occupancy fusion methods.

2.2.1 Dempster’s Rule of Combination After defining the
occupancy function M(A) based on DST, the occupancy of dif-
ferent rays can be fused by the Dempster’s rule of combination
which is as follows:

(M1 ⊕M2)(A) =
1

1−K
∑

B∩C=A6=∅

(M1(B) ·M2(C)) (3)

in which B ∈ (f, o, u) , C ∈ (f, o, u) and K is the conflict
between these two sets K =

∑
B∩C=∅(M1(B) ·M2(C)).

Note that {f} and {o} are the subsets of {u}. So the combined
occupancy of two rays M1 ⊕M2 is:


f1
o1
u1

⊕


f2
o2
u2

 =
1

1−K


f1 · f2 + f1 · u2 + u1 · f2
o1 · o2 + o1 · u2 + u1 · o2
u1 · u2


(4)

in which K = o1 · f2 + f1 · o2.

One important character of Dempster’s combination rule is that
it is commutative and associative, meaning the occupancy from
different rays can be combined in any order. For this reason other
combination rules are not chosen, such as Yager’s rule which is
not associative (Yager and Liu, 2008). Given I number of neigh-
bouring rays Ri, the overall occupancy is:

M(A) = ⊕
i∈I
M(A,Ri) (5)

2.2.2 Probability Interpretation and Log-odd Simplification
Similarly, a location in the space can be scanned multiple times,
then the probability of this location has to be updated. So the
objective is to estimate the posterior probability of occupancy
P (m|z1:t) of each location m given the measurements z1:t =
{z1, ..., zt} (Hornung et al., 2013).

P (m|z1:t) =
P (zt|m)P (m|z1:t−1)

P (zt|z1:t)

=
P (m|zt)P (zt)P (m|z1:t−1)

P (m)P (zt|z1:t)

(6)

This gives the probability of being occupied, then the probability
of being free P (m̄) = 1− P (m). Then,

P (m̄|z1:t) =
P (m̄|zt)P (zt)P (m̄|z1:t−1)

P (m̄)P (zt|z1:t)
(7)

By dividing Equations 6 and 7, some terms are eliminated (Thrun,
2002).

P (m|z1:t)
P (m̄|z1:t)

=
P (m|zt)
P (m̄|zt)

P (m̄)

P (m)

P (m|z1:t−1)

P (m̄|z1:t−1)
(8)

Given a probability P (m), the odds is defined as odds(m) =
P (m)/(1 − P (m)), and the logarithm log-odds is L(m) =

log(
P (m)

1− P (m)
). Then Equation 8 can be rewritten as:

L(m|z1:t) = L(m|zt)− L(m) + L(m|z1:t−1) (9)

Here, P (m) is the prior occupancy probability which is set to 0.5
representing an unknown state, then L(m) = 0, so

L(m|z1:t) = L(m|zt) + L(m|z1:t−1) (10)

The probability updating is transformed to a simple addition of
the previous log-odds and the log-odds of the current measure-
ment. The logit function of probability is illustrated in Figure 5.
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Probability P ∈ [0, 1] and log-odds ∈ [−∞,+∞]. Note that
the occupancy probability can easily be transferred to a log-odds
value, and vice versa. Due to uncertainty, P will hardly reach
1, and hence its log-odds will not be ∞. In practice, log-odds
values, locc and lfree are defined to represents the occupied and
free states of a single measurement. So Figure 4 is transformed
to log-odds domain as shown in Figure 6.
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Figure 5. Log-odds of probability in the domain of -6 to 6

Given a laser beam, the occupancy is lfree from the laser scanner
center and increases to locc at the location of the point. To sim-
plify the log-odds function for a laser beam, the transition from
free to occupied is set to be linear, as also the case for the transi-
tion to unknown, where locc is decreased to 0 (Figure 6).

0 r
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Laser Center
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Figure 6. Log-odds in ray direction

For multiple measurements at the same location, their log-odds
values are simply summed. Based on the definition, it can be ob-
served that to change an occupancy state, it needs at least the
same number of observations that define its current state. It
means that if a location is consolidated n times by laser beams
as free, another n times of occupied measurement will be needed
before identifying the location as being occupied. In a dynamic
environment, an object will move into a free space and leave im-
mediately after, depending on its speed of movement. To capture
this kind of rapid change, a clamping threshold is defined to up-
date the occupancy states (Yguel et al., 2007). Once the log-odds
value reaches a threshold, either lower bound lmin or lmax, the
space occupancy state will no longer be updated. So lmin or lmax
are thresholds where the space is inferred as free or occupied (red
in Figure 5).

2.2.3 Comparison between Dempster’s Rule of Combina-
tion and Bayes’ Rule Defined by DST, space occupancy
M(A) can have three states, free M(f), occupied M(o), and
unknown M(u), and the sum

∑
M(A) = 1. By the proba-

bilistic model, the space only has two occupancy states, either
free P (f) or occupied P (o), and their sum also equals 1, mean-
ing P (f) = P (¬o) = 1 − P (o). For where the occupancy
is unknown, the space is defined as half-free and half-occupied,
P (f) = P (o) = 0.5.

To fuse multiple measurements, Dempster’s rule of combination

is as given in Equation 3. Bayes’ rule for an event of combined
probability is as follows:

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|¬A)P (¬A)
(11)

In the case of probabilistic occupancy, the combined probability
of two rays will be

P (o12) =
P (o1)P (o2)

P (o1)P (o2) + P (e1)P (e2)
(12)

For DST, according to Equation 3, the mass of occupied is

M(o12) =
M(o1)M(o2) +M(o1)M(u2) +M(u1)M(o2)

1−M(o1)M(e2)−M(e1)M(o2)
(13)

In case of M(u) = 0, the equation will become

M(o12) =
M(o1)M(o2)

M(o1)M(o2) +M(e1)M(e2)
(14)

which is essentially the same as Equation 12. So, for locations
where M(u) = 0, meaning whenever there is information of oc-
cupancy, the two theories, DST and Bayes’ rule, give the same
result. The space between the laser scanner center and the point,
in other words, the space scanned by the laser should have sim-
ilar occupancy results from these two theories. However, due
to uncertainties, M(u) will hardly be exactly 0. Therefore, in
reality, some differences are expected. Behind the point when
M(o) = M(u) = 0.5, given two similar laser rays, the com-
bined occupancy M(o12) = 0.75, whereas P (o12) = 0.5. So
the occupancy evidence can still be accumulated behind the point.
The DST is able to distinguish half free half occupied and half
occupied half unknown, whereas the Bayes’s rule cannot.

2.3 Consistency Assessment

After combining occupancy from different rays within one scan,
occupancies from different scans can be compared. This section
assesses the consistency between scans to find out points on mov-
ing objects.

As occupancy is often modelled in 3D voxels (Hebel et al., 2013),
the consistency can be easily assessed on each voxel. However,
the voxelization of the 3D space can be computationally expen-
sive. A better approach is to perform the assessment directly on
each individual points without voxelization. Point-level consis-
tency assessment is performed for each of the occupancy mod-
elling method.

2.3.1 Dempster-based Consistency The occupancy consis-
tency is defined as conflicting when one scan is empty and the
other scan is occupied or vice versa, consistent when they have
the same occupancy state, and uncertain if one dataset is unknown
whereas the other one is known. The consistency relations be-
tween two scans, (F1, O1, U1) and (F2, O2, U2), are defined as:

Conflict
Consist
Uncertain

=
=
=

F1 ·O2 +O1 · F2

F1 · F2 +O1 ·O2 + U1 · U2

U1 · (F2 +O2) + U2 · (F1 +O1)
(15)
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The occupancy of a point is known M(A) = (f1 , o1 , u1) '
(0, 1, 0) (Figure 2). Then to find out whether this point is on an
moving object, one only needs to compute the occupancy of the
compared scans at the location of this point. Then the consistency
equations will be simplified as:

Conflict
Consist
Uncertain

= f1 ·O2 + o1 · F2 ' F2

= f1 · F2 + o1 ·O2 + u1 · U2 ' O2

= u1 · (F2 +O2) + U2 · (f1 + o1) ' U2

(16)

So, if the occupancy at the location of a point is free, it is conflict-
ing with the point, and the point should have moved in the space,
meaning it is on a moving object. If the occupancy is occupied,
the point has not moved. And if it is unkown, the point lies behind
or out of the scope of the compared rays, such as in the shadow,
then it is uncertain whether the point is moving or not.

2.3.2 Probability-based Consistency During laser scanning,
each scan and each beam is considered as independent. Also,
neighbouring beams are assumed to be independent. Moving ob-
ject detection amounts to checking whether the occupancy of a lo-
cation is consistent in which case the environment is static. Simi-
lar to the DST consistency assessment, only the points themselves
have to be identified as moving or not, which means we only need
to check the consistency of each point instead of the entire space.
The space can be free or occupied, so consistency means two
scans both report the space as either free or occupied. Similarly,
inconsistency means two scans give contrary evidence.

P ((o1 ∪ o2) ∩ (e1 ∪ e2)) = P (o1)P (o2) + P (e1)P (e2)

P ((o1 ∪ e2) ∩ (e1 ∪ o2)) = P (o1)P (e2) + P (e1)P (o2)

(17)

A point’s occupancy probability P (o) = 1, and P (e) = 0. Then
the consistency will simply be

P ((o1 ∪ o2) ∩ (e1 ∪ e2)) = P (o2)

P ((o1 ∪ e2) ∩ (e1 ∪ o2)) = P (e2)
(18)

Therefore, to find out whether a point is on a moving object, we
only need to check the occupancy of the validating rays that have
influence at the location of the point. If the occupancy state is
occupied, meaning the space is consistent and the point is static.
Otherwise, the point is on a moving object.

3. MOVING OBJECT DETECTION

Two datasets acquired by a mobile laser scanning system are se-
lected for moving object detection. In the first data, the scanning
system is static, aiming at constantly scanning a public space for
moving object detection and tracking. In the second, the sys-
tem is moving whilst scanning the street for the purpose of urban
mapping and modelling. The experimental data were acquired in
Paris using the Stereopolis mobile mapping system, which is geo-
referenced by the combination of GNSS and IMU, with a HDL-
64E Velodyne laser scanner at a frequency of 10 Hz (Paparoditis
et al., 2012). The detection results are quantitatively evaluated
against manually labelled ground truth, which may have a few
mislabelled points. But all detections are compared with the same
ground truth, so the results are conclusive. Since the method de-
tects points on moving objects, the results are evaluated at point
level. Recall (R), precision (P) and F1 score are assessed.

3.1 Static Laser Scanning

As discussed in Section 2.2.2, the algorithm needs to be sensitive
to contradictory measurements to capture quick moving objects.
Especially for static laser scanning, the laser will constantly scan
the same locations, hence the evidence will quickly become sat-
urated and it will take at least the same amount of opposite evi-
dence to change the occupancy states. For some penetrable ob-
jects, e.g. pole-like barriers or trees, laser rays can pass through
them and reach the space behind. There will also be some points
reflected from such objects, in which case the points on the ob-
jects will be conflicting with points behind. This kind of self con-
flicting will cause false detections on such objects. For real mov-
ing objects, there will be little consistent evidence and most of
the measurements will give conflicting evidence. So a favour can
be given to consistent measurements to reduce false detections. A
high weight will be given to consistent evidence if contradictory
measurements occur.

In the case of using log-odds for moving object detection, to keep
the sensitivity of state changes, especially the sensitivity to con-
sistent evidence, a higher value of locc is needed. Same as Hor-
nung et al. (2013), the clamping thresholds lmin and lmax are set
to -2 and 3.5 respectively, corresponding to probabilities of 0.12
and 0.97. If the log-odds summing up value is lower than lmin or
higher than lmax, the space is determined as free or occupied re-
spectively. The occupancy values lfree and locc are set to be -0.4
and 3.0 respectively based on our experiments. Clearly a higher
value is assigned to locc to reduce false detections. Moving ob-
ject detection results using both DST and probability theory from
a static laser scanner are illustrated in Figure 7.

For moving object detection from static laser scanning, the two
occupancy-based methods in this paper are compared to other
methods proposed by Xiao et al. (2016), Max-Distance and
Nearest-point. The basic principle of the Max-Distance method
is straightforward. The static environment is assumed to be im-
penetrable and only the furthest points of each laser beam are
considered to be on static background. Points on moving ob-
jects are supposed to be between the laser center and the far end
points. The other method, Nearest-point, involves counting the
number of nearest points. In the case of static laser scanning,
the environment will be continuously scanned. As for static ob-
jects, points will be accumulated over time. So these points are
assumed to have large number of neighbour points. Whereas for
moving objects, they will be scanned at various locations along
their trajectories. Due to the high scanning frequency, the moving
objects instances are normally overlapped, but still the number of
neighbour points will be significantly lower than points on static
objects. A temporal window can be defined assuming certain
moving speed and a proper object size. The object is supposed
to have moved out of its original space within this temporal win-
dow, meaning no nearest points are supposed to be found. Note
that these two methods are based on simple assumptions and only
suitable for static laser scanning scenarios.

Results of the four methods are shown in Table 1. Max-Distance
gives the highest recall, as all the points between the laser center
and the furthest points are considered as moving points. This is
also the reason why the precision is really low. Nearest-point re-
sults in the highest precision thanks to the strict thresholding of
minimum number of neighbouring points. The two occupancy-
based methods have better F1 scores, meaning their overall per-
formances are better. The probability approach shows a better
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(a)

(b)

(c)

Figure 7. Moving object detection from a static laser scanner. (a)
DST approach (R:moving, G:static, B:uncertain); (b) Probability
approach (R:moving, G:uncertain, B:static); (c) ground truth of

moving object (R:moving)

balance between recall and precision, and has the highest F1

score.

3.2 Mobile Laser Scanning

As aforementioned, mobile laser scanning has been widely used
for both environment mapping and autonomous navigation. Mov-

Method R% P% F1%
DST 83.0 57.3 67.8
Probability 74.1 66.4 70.1
Max-Distance 96.2 20.9 34.3
Nearest-point 60.1 70.1 64.7

Table 1. Accuracy assessment of moving object detection at
point level from a static laser scanner.

ing object detection from mobile laser scanning data is a funda-
mental step in both fields. Occupancy-based methods will mani-
fest their advantages as the laser scanner will cover different areas
while moving forward, in which case the method needs to differ-
entiate the real moving points from those that are out of the scan-
ning scope. So the simple methods from the static laser scanning
case, Max-Distance and Nearest-point, are no longer applicable.
Only the two occupancy-based methods are evaluated. To keep
the sensitivity to dynamics in the environment, the same settings
as static laser scanning are used. Moving object detection results
from a mobile laser scanner are demonstrated in Figure 8.

(a)

(b)

Figure 8. Moving object detection from a mobile laser scanner.
(a) DST approach (R:moving, G:static, B:uncertain); (b)
Probability approach (R:moving, G:uncertain, B:static)

False alarms are observed on the ground when the points are far
from the laser center, in which case the laser beam’s incidence
angle is large. Given a point on the ground, the laser ray behind
will provide a conflicting evidence as the ray is close enough to
have an impact as if it passes through the point. Hence the point
will be detected as moving. One solution is to incorporate the
point normal. The occupancy is then modelled around the local
surface defined by the point’s normal. For details please refer to
Hebel et al. (2013) and Xiao et al. (2015).
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Moving point detection assessment without and with point nor-
mals are listed in Table 2. DST approach shows a higher recall
and F1 in both cases, whereas probability approach gives a bet-
ter precision. The detection with point normals shows significant
improvements for both approaches. The results with normals are
illustrated in Figure 9.

Method No normal With normal
R% P% F1% R% P% F1%

DST 81.9 53.9 65.0 80.1 84.2 82.5
Probability 71.1 57.4 63.6 66.0 92.1 76.9

Table 2. Accuracy assessment of moving object detection at
point level from a mobile laser scanner.

(a)

(b)

(c)

Figure 9. Moving object detection with point normals using a
mobile laser scanner. (a) DST approach (R:moving, G:static,

B:uncertain); (b) Probability approach (R:moving, G:uncertain,
B:static); (c) ground truth of moving objects (R:moving)

4. DISCUSSION

Both DST and probability approaches define the occupancy of
space first and fuse the occupancy information from multiple
measurements, then efficiently assess the consistency between
different scans. The probabilistic occupancy uses only one vari-
able, the probability of being occupied, to model the space.
Whereas the DST uses three variables to represent the three dif-
ferent occupancy states, free, occupied and unknown. The advan-
tage is that it is able to distinguish the state of being half free half
occupied (f = o = 0.5) and the state of being half occupied
half unknown (o = u = 0.5). The former happens at the inter-
face between free and occupied slightly before a point. The latter
occurs behind the point when occupied o starts to decrease and
unknown u to increase. However, for the probability approach,
the occupied P (o) = 0.5 in both cases, meaning there is no dif-
ferentiation between the case of half free half occupied and the
case of unknown. According to Section 2.2.3, the probability
approach is actually the same as DST when u = 0, meaning be-
tween the laser center and the point the two methods will have
the same results. When u ∈ (0, 1), the unknown evidence will
contribute to the occupied value according the definition (Equa-
tion 13). In practise, the implementation details may cause dif-
ference in terms of uncertainty modelling, occupancy interpola-
tion and simplification, such as log-odds transformation from the
probabilistic occupancy.

The logit function is a simplification of the probability where
multiplication is transferred to addition. Also to keep the sen-
sitivity to the dynamic scene, the probability is truncated by the
clamping thresholds. The the occupancy log-odds values lfree
and locc have to be carefully chosen. The advantage of proba-
bilistic occupancy is the simplicity and computational efficiency.
Note that in the static laser scanning case, the Nearest-point
method can be considered as a naive way of interpreting the log-
odds occupancy method. Each near point is counted as log-odds
value 1, and the clamping threshold is the total number of nearest
points. For the DST method, higher weight is given to the consis-
tency evidence to reduce false alarms. However, there is not any
mature simplification method such as logit function and clamp-
ing. It is anticipated that a similar clamping strategy will also
benefit in terms of simplicity and sensitivity to dynamics. Cur-
rently the probability approach is preferred for efficient moving
object detection.The DST is suitable for precise occupancy mod-
elling and accurate moving object detection. More experiments
are needed before drawing a decisive conclusion.

In both approaches, false detections are observed when the
ground points are far from the laser center where the incidence
angles are large. An effective solution is to model the occupancy
along the normal direction instead of the ray direction around
the point. Significant improvements are achieved after using the
point normals. However, the normals have to be calculated be-
forehand which may hinder real time or online moving object
detection. Majority of these false detections are static ground
points, they can either be filtered out first during environment
mapping or simply be neglected during moving object tracking
as these points will remain still over time. It is a question of the
balance between accuracy and efficiency.

5. CONCLUSION

Moving object detection is an interesting topic in both robotics
and geomatics. This paper has investigated the moving object de-
tection at point level from both static and moving laser scanning
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data using a real-time laser scanner. Two occupancy modelling
approaches, DST and Probability, are introduced and compared
theoretically. Detailed implementations are explained, from oc-
cupancy definition, to evidence fusion, to the final consistency
assessment. Similarities and differences are discussed. Both ap-
proaches are applied to the two types of laser scanning data. Ex-
perimental results are analysed and compared to other moving
object detection methods where possible. Further improvement
by involving the point normal is also proposed. DST provides a
precise framework for occupancy modelling, whereas probability
enables proper simplification and sensitivity improvement. Op-
timised programming will be investigated in the future to further
evaluate the computational efficiency of these two approaches.
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