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ABSTRACT: 

Bundle adjustment with additional parameters is identified as a critical step for precise orthoimage generation and 3D reconstruction 
of Dunhuang wall paintings. Due to the introduction of self-calibration parameters and quasi-planar constraints, the structure of 
coefficient matrix of the reduced normal equation is banded-bordered, making the solving process of bundle adjustment complex. In 
this paper, Conjugate Gradient Bundle Adjustment (CGBA) method is deduced by calculus of variations. A preconditioning method 
based on improved incomplete Cholesky factorization is adopt to reduce the condition number of coefficient matrix, as well as to 
accelerate the iteration rate of CGBA. Both theoretical analysis and experimental results comparison with conventional method 
indicate that, the proposed method can effectively conquer the ill-conditioned problem of normal equation and improve the 
calculation efficiency of bundle adjustment with additional parameters considerably, while maintaining the actual accuracy. 

1. INTRODUCTION

Bundle adjustment is the problem of refining a visual 
reconstruction to produce jointly optimal 3D structure and 
viewing parameter (camera pose and/or calibration) estimates 
(Triggs et al., 2000). In close-range photogrammetry, since the 
photographic structure is diverse and complicated, bundle 
adjustment is applied in case of redundancy due to the 
combination of different types of geometric constraints in object 
space, which include topology constraints (such as object point, 
line and plane constraints, etc.) and object constraints (such as 
parallelism, perpendicularity and symmetry, etc.) (van den 
Heuvel, 1998). In the “Digital Dunhuang” project, the paintings 
usually lie on a near-planar wall surface and the forward overlap 
between adjacent images is smaller than 60%. Near-planarity 
constraints are combined with bundle adjustment to control the 
model’s error propagation (Zhang et al., 2011; Zhang, Hu and 
Huang 2012). Hence, the coefficient matrix of reduced normal 
equation is no longer regular sparse-banded matrix. It’s difficult 
to design fast solution method of bundle adjustment with 
additional parameters. 

1.1 Review of Related Work 

Taking various kinds of geometric constraints into account, 
McGlone (1995) constructed a unified least square adjustment 
model with additional parameters and solved this model using 
generalized inverse method. Wang and Clarke (2001) proposed 
a separate adjustment model based on separate least squares 
estimation of the camera’s exterior orientation parameters and 
object point coordinates, which can reduce both the operation 
time and the memory consumption with guaranteed precision. 
Bartoli (2002) constructed a bundle adjustment model based on 
quasi-linear optimization which preserved the original cost 
function. Different projection models, a large number of views 
and points, as well as missing data are handled in a unified 

framework. Ni, Steedly and Dellaert (2007) presented an out-of-
core bundle adjustment model by partitioning the whole scene 
into several smaller scenes which possess their own local 
coordinate systems. This model is straightforward to parallelize 
and can take good advantage of the physical memory. All the 
methods mentioned above are focus on efficiency improvement 
of bundle adjustment. 

Conjugate gradient method is evolved on the basis of steepest 
descent algorithm and is characterized by its simplicity, easy 
realization and low computational cost (Hestenes and Stiefel, 
1952). Whereas, its application was limited seriously due to the 
sensitivity to rounding error. In recent years, this problem is 
solved effectively by combining conjugate gradient method with 
a variety of preconditioning methods. Thus, conjugate gradient 
method is widely used for solving large-scale sparse linear 
equations and it has been introduced into the field of bundle 
adjustment. Due to the property of invariance to orthogonal 
transformation, Byröd and Åström (2009) first combined its 
multi-scale representation with standard preconditioners to 
speed up the convergence rate of conjugate gradient bundle 
adjustment (CGBA). Then they further optimized CGBA by 
Levenberg-Marquardt method (Byröd and Åström, 2010). QR 
factorization based block preconditioner was presented in 
accordance with the sparse structure of normal equation. 
Agarwal et al. (2010) designed an inexact Newton type method 
for solving large-scale bundle adjustment, in which conjugate 
gradient method is used for calculating Newton step. Jian et al. 
(2011) adapt the idea of subgraph preconditioned conjugate 
gradient to solve large scale bundle adjustment problems, and 
proposed a generalized subgraph preconditioning technique to 
avoid the over-estimation of uncertainty. Jeong et al. (2012) 
used block-based preconditioned CGBA on the reduced camera 
system. Experimental results demonstrated that it is a more 
efficient way to perform the procedures of the bundler as well as 
a faster way to converge. 
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1.2 Contribution of This Paper 

In this paper, a novel method of conjugate gradient bundle 
adjustment with preconditioning based on improved incomplete 
Cholesky factorization (improved CGBA) is developed for 
precise orthoimage generation and 3D reconstruction of the 
Dunhuang wall paintings, which processes the following 
advantages: 
 

1. It is suitable for solving large-scale normal equation 
with additional parameters introduced by self-calibration 
and geometric constraints; 
2. It can effectively reduce the condition number of 
coefficient matrix and improve the structure of normal 
equation in bundle adjustment; 
3. It can accelerate the iteration rate and improve the 
calculation efficiency of bundle adjustment considerably, 
while maintaining the actual accuracy. 

 
This paper first illustrates the modelling and solving methods of 
the improved CGBA, then makes theoretical analysis and 
experimental comparison with conventional method. The 
remaining sections are organized as follows: In Section2, 
CGBA method is deduced based on calculus of variations. In 
Section 3, improved incomplete Cholesky factorization method 
is proposed for preconditioning, and the block diagonal matrix 
of the coefficient matrix is used as preconditioning matrix. The 
detailed solving process of improved CGBA method with 
preconditioning is put forward with five steps. In Section 4, the 
proposed method is compared with Gauss elimination method 
on space complexity and time complexity. Experiments are 
carried out by four datasets of Dunhuang wall painting images 
to validate the effectiveness and efficiency of the proposed 
method. Finally, conclusions are drawn in Section 5. 
 
2. CONJUGATE GRADIENT BUNDLE ADJUSTMENT 

2.1 Basic Principles of CGBA 

Conjugate gradient method is an iterative approximation 
method for solving large sparse systems with nonzero entries 
occurring in predictable patterns, which frequently arise in the 
solution of boundary-value problems. Good results are obtained 
when an effective preconditioning method is adopted for matrix 
computation (Burden and Faires 2000). 
 
In bundle adjustment, conjugate gradient method is combined 
with the steepest descend method to construct a sequence of 
conjugated directions by gradients at known points, and further 
to search the minimum value of objective function along these 
directions. The normal equation of bundle adjustment can be 
written as follows: 
 
 NX W  (1) 

 
where  X  = unknown matrix 
 N  = coefficient matrix, it is a n-order positive  
  definite symmetric matrix 
 W  = constant matrix 
 
In n-dimensional vector space, there certainly exists a linear 

independent vector group 1 2, , nR R R , which satisfies: 

 

 0 ( , [1, ])T
i jR NR i j i j n     (2) 

 

1 2, , nR R R  is called a conjugated vector group about N , i.e. iR  

and jR  are conjugated about N . They can be constructed by 

Gram-Schmidt process (Burden and Faires, 2000). 
 
2.2 CGBA Derivation by Calculus of Variations 

If the initial value of the unknown matrix X  in Equation (1) is 

set to 0X , the normal equation is transformed into: 

 

 0 0( )N X X W NX    (3) 

 

For convenience, 0X X  and 0W NX  are still expressed by X  

and W , respectively. Then the expression of the normal 
equation remains the same as Equation (1). The problem of 
solving Equation (1) can be transformed into searching the 
minimum value of the following function by calculus of 
variations (Burden and Faires 2000). 
 

 ( ) / 2T TS X X NX W X   (4) 

 

The solution to Equation (1) is * 1X N W , which is equivalent 

to X  when ( )S X  reaches the minimum value.  

 
Assuming that we have searched the solution of Equation (4) 

along the conjugated directions 1 2, , nR R R  in sequence for k  

steps. The minimum value of ( )S X  in step k  is ( )kS X , where 

1 1 2 2 ...k k kX R R R      . Then the search direction in step 

1k   is 1 1 1k k k kX X R    , which is conjugated with each of 

1 2, , nR R R . The minimum value of ( )S X  in step 1k   is: 

 

 

1 1 1

2
1 1 1 1 1

2
1 1 1 1 1

1

( ) ( )

/ 2 / 2

( ) / 2

( ) ( )

k k k k

T T T T
k k k k k k k k

T T
k k k k k k

k k

S X S X R

X NX R NR W X W R

S X R NR W R

S X T X



 

 

  

    

    



 

   

  

 

 (5) 

 
The problem is converted to solve the minimum value of 

1( )kT X  , which is influenced by 1k   and 1kR  . Since the value 

of 1kR   is not unique, one way of constructing 1kR   is divided 

into the following two steps: 
 

In Step 1, supposing there is a residual variable k kr W NX  . 

Let 1k k k kR r R   , where k  is a coefficient. Introduce 1kX   

into 1 0T
k kR NR  . Then, the expression of k  is simplified as: 

 

 / ( )T T
k k k k kr NR R NR    (6) 

 
In Step 2, as proved by mathematical induction (Burden and 

Faires 2000), 1kR   constructed by k  is conjugated with each of 

1 2, , nR R R , which meets 0T
i jr r   ( , [1, ])i j i j k   . Thus, 1kR   

is regarded as the search direction in step 1k  . 
 

Next, 1k   in 1( )kT X   can be determined by taking the derivative 

of  1( )kdT X  with respect to 1k  , i.e. 1 1( ) / ( ) 0k kdT X d    . The 

expression of 1k   can be simplified as: 
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Since 1 1 1 1 1( )T T T
k k k k k k k k kr R r r R r R        , 0T

k kr R   is got by 

analogy of 1 2 1, ,...k kR R R  . Hence, 1k   in Equation (7) can be 

further simplified as: 
 

 1 1 1/ ( )T T
k k k k kr r R NR     (8) 

 

Since 1k k k k kr W NR r NR    , the expression of k  in 

Equation (6) can be further simplified as: 
 

 
1

1 1

( ) / ( )

/ ( )

T T
k k k k k k k

T T
k k k k

r r r r NR

r r r r

 

 

  

 
 (9) 

 
There are n linearly independent vectors at most in n-

dimensional vector space. At least one of 0 1, ,... nr r r  is zero. 

Hence in theory, at most n times iterations are required in 
searching the solutions of normal equation by CGBA. 
 
2.3 Solution method of CGBA 

The orthogonality of residual vectors and the conjugacy of 
search directions cannot be guaranteed in solving large-scale 
sparse equations, because there exists some rounding error in 
floating-point numbers arithmetic operation. It is meaningful to 
solve the normal equation by CGBA with iteration. The solution 
method of CGBA is represented as the following steps: 
 

1. Initialize the unknown matrix 0X X ; 

2. Calculate 0 0r W NX  . Set 1 0R r  and 0k  ; 

3. Set a small value  . If kr  , then continue to do 

Step 4; Else, stop the iteration and output kX ; 

4. Set 1k k  . Calculate 1 1 / ( )T T
k k k k kr r R NR   , 

1k k k kX X R   and 1k k k kr r NR  ; 

5. Calculate 1 1/ ( )T T
k k k k kr r r r    and 1k k k kR r R   . 

Then return to Step 3 and judge again. 
 

3. IMPROVED CGBA WITH PRECONDITIONING 

3.1 Improved Incomplete Cholesky Factorization 

During the computation process of CGBA of large and complex 
image blocks, such as Dunhuang wall painting images, an 
effective preconditioning method is needed for improving the 
structure of normal equation and reducing the condition number 
of coefficient matrix.  
 
Based on the principle of numerical analysis (Burden, 2000), 
the model precision of CGBA in step k  can be estimated as: 
 

 
* *

02[( 1) / ( 1)]k
k N N

X X K K X X      (10) 

 

where  T

N
X X NX  and 2 ( )K cond N . 

 
As can be seen from Equation (10), the larger the condition 
number K  is, the more the iteration times are, and the lower the 
convergent rate is. 
 

As for the precise orthoimage generation and 3D reconstruction 
of Dunhuang wall paintings, the test paintings lies on a near-
planar wall surface. A pre-calibrated digital camera is fixed on 
an orbital platform that is near-parallel to the painting. The 
images are captured along regular strips, with the forward 
overlap and sidelap between adjacent images maintained at 50%. 
The principal optical axes of the images are parallel with each 
other and perpendicular to the painting; and the origin of the 
object space coordinate system is set at the lower left corner of 
the painting, with the X-axis parallel to the track, the Y-axis 
pointing to the zenith, and the Z-axis perpendicular to the 
painting (Zhang, Hu and Huang 2012). The photographic 
structure of the test paintings is shown in Figure 1. 
 

 

Figure 1. Photographic Structure of Dunhuang Wall Paintings 
(Zhang et al. 2011) 

 
The geometric connection is weak and the adjustment model is 
unstable owing to the small overlap between adjacent images. 
The correlation problem among orientation parameters is 
intensified because of the near-planar wall painting surface. 
Consequently, the condition number of coefficient matrix of the 
normal equation reaches up to 1026 (Zhang, Hu and Huang 
2012), and the precision and stability of bundle adjustment are 
decreased seriously.  
 
Since N  is a n-order positive definite symmetric matrix, it is 
meaningful to combine incomplete Cholesky factorization with 
CGBA to reduce the condition number of the normal equation. 
This preconditioning method is described as follows: 
 
First of all, assuming that there is a positive definite symmetric 

matrix ( )M M N , which can be decomposed by incomplete 

Cholesky factorization as follows: 
 
 TM LL  (11) 

 
Where L  is a lower triangular matrix. 
 
Then, the normal equation (1) is equivalent to Equation (12) as: 
 

 
1 1 1( )T TL N L L X L W       (12) 

 

Set 1 1( )TF L N L  , TY L X  and 1G L W . F  is also a positive 

definite symmetric matrix. Equation (11) can be simplified as: 
 
 FY G  (13) 

 
The original problem is transformed into solving Equation (13). 
Since the condition number of F  is much lower than that of 
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N , the convergence rate of Equation (13) can be accelerated 
obviously. Therefore, the normal equation (1) needs to optimize 
for solving Y  as follows: 
 

1. The initial value of Y  is replaced by 0 0
TY L X ; 

2. The matrices N  and W  are replaced by 1 1( )TF L N L   

and 1G L W , respectively; 

3. The parameters kR , kX , and kr  are replaced by kP , 

kY , and kU , respectively. 

 
In order to calculate unknowns X  in Equation (1) directly, set 

1( )T
k kX L Y , 1 1 1[ ( ) ]T T

k k k kr G FY L W N L L X L U       , 

and a variable 1 1 1( )T
k k kZ L L r M r    . By introducing them 

into iterative computation, the solving method of CGBA based 
on improved incomplete Cholesky factorization is determined. 

Next, kZ  can be calculated by solving k kMZ r . 

 
The derivation process of improved preconditioning method 
indicates that the preconditioning matrix M  is required as close 
as possible to N  while possessing simple structure. 
 
3.2 Algorithm Design of Preconditioning Matrix 

It’s reasonable for the block diagonal matrix of the coefficient 
matrix N  in Equation (1) to be used as the preconditioning 
matrix, because one simple way of solving bundle adjustment is 
by iterative computation between resection and intersection 
(Mikhail, Bethel and McGlone, 2001). To illustrate this, the 
structure of Equation (1) can be described as: 
 

 
11 12 13 1

21 22 23 2

31 32 33 3

t

N N N D W

N N N W

N N N E W

     
          
          

 (14) 

 
where  D = the corrections of object point coordinates 
 t = the corrections of exterior orientation parameters 
 E  = the corrections of additional parameters 
 
This iterative computation method is to solve three equations 

11 1N X W , 22N t W  and 33 3N Y W  in turn. Based on the 

properties of continuous function (Burden and Faires 2000), if 
the initial values of the parameters are given close to the truth 
values, the process in each iteration can be expressed by solving 
the following equation approximately. 
 

 
11 1

22 2

33 3

N D W

N t W

N E W

     
          
          

 (15) 

 
The coefficient matrix of Equation (15) is an approximation of 
N . It is also an n-order positive definite symmetric matrix 

while possesses simple structure. Hence, it can be treated as the 
preconditioning matrix of CGBA. 
 
3.3 Solution Method of Improved CGBA 

Above all, the solution method of CGBA with preconditioning 
based on improved incomplete Cholesky factorization can be 
summarized as the following steps: 
 

1. Initialize the unknown matrix 0X X ; 

2. Calculate 0 0r W NX  . Calculate the value of 0Z  by 

solving 0 0MZ r . Set 1 0R Z  and 0k  ; 

3. Set a small value  , If kr  , then continue to do 

Step 4; Else stop the iteration and output kX ; 

4. Set 1k k  . Calculate 1 1 / ( )T T
k k k k kr r R NR   , 

1k k k kX X R  , and 1k k k kr r NR  . Calculate the value 

of kZ  by solving k kMZ r ; 

5. Calculate 1 1/ ( )T T
k k k k kr r r r    and 1k k k kR r R   . 

Then return to Step 3 and judge again. 
 

4. ALGORITHM COMPARISON AND ANALYSIS 

4.1 Comparisons on Space and Time Complexity 

To evaluate the performance of improved CGBA of Dunhuang 
wall painting images, the commonly used Gaussian elimination 
bundle adjustment (GEBA) (Triggs et al. 2000) is used for 
algorithm comparison and analysis. 
 
Suppose that the corrections of exterior orientation parameters 

and additional parameters ( , )Tt E  in Equation (15) is represented 

by Q . Then, Equation (14) can be written as: 

 

 
'

1

'
2

TAD B Q W

BD CQ W

  


 
 (16) 

 
Since the number of unknowns of Q  are usually far less than 

those of object point coordinates D , Q  is usually solved first 

by eliminating D  from Equation (16). The reduced normal 
equation of bundle adjustment is: 
 

 1 ' 1 '
2 1( )TC BA B Q W BA W     (17) 

 

where 1 TH C BA B   is called a schur complement matrix. 

 
Due to the introduction of self-calibration parameters and quasi-
planar constraints in bundle adjustment of Dunhuang wall 
painting images, H  does not meet with regular banded 
structure. Therefore in GEBA, Equation (17) is solved by 
calculating the inverse matrix of H  in the following calculation. 
 
In the solving process of improved CGBA and GEBA, both 
coefficient matrix and constant matrix are required to store in 
memory. The space and time complexity of improved CGBA 
and GEBA are compared and analysed as follows: 
 
Suppose there are p  images and q  object points in bundle 
adjustment model, the number of unknowns of the exterior 
orientation parameters and the object point coordinates are 6 p  

and 3q , respectively. Besides, suppose that each object point is 

imaged on k  images, l  additional parameters are introduced 
into this model. The coefficient matrix of Equation (17) is a 

banded-bordered matrix with the border width l . The storage 

amount of improved CGBA is: 
 

 ( ) 36 9 18 (6 3 +1)MS CG p q kq p q l      (18) 

 
Compared with improved CGBA, GEBA requires additional 
storage for A  and B  in Equation (17) as well during the 
calculation. Because A  is formed by 3*3 matrix on the 
principal diagonal, we do not need to store the whole matrix A 
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and B. On assumption of sparse storage strategy, the storage 
amount of GEBA is: 
 

 2( ) (6 ) / 2 9 18 (6 3)MS NE p l k p l       (19) 

 
As can be seen from Equation (18) and Equation (19), the space 
complexity of improved CGBA, which represented by storage 
amount, is a little lower than that of GEBA. 
 
The time complexity of improved CGBA and GEBA are 
measured by calculation amount, which are mainly determined 
by multiplication times. The difference between them is mainly 
caused by solving the normal equation and the reduced normal 
equation. In solving the normal equation, the calculation 
amount of CGBA at each iteration includes one multiplication 
of Equation (16) and vectors of the unknowns, as well as the 
calculation of preconditioning equation, which in total is: 
 

 ( ) 36 9 18 (6 3 )oneCA CG p q kq p q l      (20) 

 
As illustrated in Section 3.2, n-time iterations at most are 
required in searching the solutions of normal equation by 
CGBA. The maximum iteration times is 6 3p q l  , and the 

maximum calculation amount of CGBA is: 
 

 max( ) (6 3 )[36 9 18 (6 3 ) ]CA CG p q l p q kq p q l        (21) 

 
In practice, the iteration times of improved CGBA with 
preconditioning based on incomplete Cholesky factorization are 
far less than n. The actual calculation amount of improved 
CGBA is about: 
 

 ( ) [36 9 18 (6 3 ) ]CA CG p q kq p q l       (22) 

 
By contrast, the calculation amount of GEBA include not only 
the construction and solution of Equation (17), but also the 
calculation of object point coordinates. Hence, the calculation 
amount of GEBA is: 
 

 3( ) (162 27 27) (18 3 9) [(6 ) ]CA GE k l q k l q p l         (23) 

 
By comparison between Equation (22) and Equation (23), the 
time complexity of improved CGBA, which is represented by 
calculation amount, is much lower than that of GEBA. 
 
4.2 Experimental Data and Result Analysis 

Four datasets of Dunhuang wall painting images are used for 
experiments of algorithm comparison between improved CGBA 
and GEBA. In Dataset I and Dataset II, eight self-calibration 
parameters of Brown model (Mikhail, Bethel and McGlone, 
2001) are introduced into bundle adjustment, which include the 
corrections of three interior orientation parameters, three radial 
distortion parameters and two tangential distortion parameters. 
In Dataset III and Dataset IV, four quasi-planar constraint 
parameters (Zhang, Hu and Huang, 2012) are introduced into 
bundle adjustment. 
 
To verify the average actual accuracy of bundle adjustment, 
high-precision control and check points are evenly distributed 
and measured by electronic total station. Specifications of the 
four datasets are illustrated in details in Table 1. 
 

Numbers 
Dataset 

I 
Dataset 

II 
Dataset 

III 
Dataset 

IV 
Images 30 129 556 743 
Object points 3092 1911 28937 20830 
Geometric constraints 8 8 4 4 
Control points  19 34 68 42 
Check points 10 62 15 20 

Table 1. Specifications of four Dunhuang wall painting datasets  

 
Both improved CGBA and GEBA are programmed in Visual 
C++. The basic runtime environment include:  
 

1. CPU: Inter (R) Core (TM) 2 Duo T5870 @2.00GHz;  
2. Memory: 1.18GHz, 2 GB.  

 
The four datasets are all solved by this two methods. Their 
bundle adjustment results, which include the operation time, 
iteration times, Root Mean Square (RMS) error, and average 
actual accuracy are illustrated in Table 2. 

Methods Items 
Dataset 

I 
Dataset 

II 
Dataset 

III 
Dataset 

IV 
CGBA Operation time (s) 2 1 18 112 
 Iteration times 5 4 4 5 
 RMS error (mm) 0.0062 0.0043 0.0147 0.0074 

 Accuracy_X (mm) 0.1066 0.1720 0.0786 0.0830 

 Accuracy_Y (mm) 0.2148 0.1464 0.1313 0.1030 

 Accuracy_XY (mm) 0.2398 0.2259 0.1530 0.1322 

 Accuracy_Z (mm) 0.0304 0.2602 0.1024 0.0485 

GEBA Operation time (s) 1 1 170 488 

 Iteration times 2 2 3 3 

 RMS error (mm) 0.0065 0.0050 0.0147 0.0075 

 Accuracy_X (mm) 0.1116 0.1736 0.0786 0.0830 

 Accuracy_Y (mm) 0.2175 0.1468 0.1313 0.1030 

 Accuracy_XY (mm) 0.2444 0.2274 0.1530 0.1322 

 Accuracy_Z (mm) 0.0321 0.2671 0.1025 0.0485 

Table 2. Experimental results of improved CGBA and GEBA  

Notes: aAccuracy_X represents the average actual accuracy in the 
horizon direction and pointing to the right side; 
           bAccuracy_Y represents the average actual accuracy in the 
direction pointing upwards; 
           cAccuracy_XY represents the average actual accuracy in the 
planar direction determined by X and Y directions; 
           dAccuracy_Z represents the average actual accuracy in the 
direction pointing outwards from the plane. 

 
Experimental results in Table 2 show that the RMS errors and 
average actual accuracy of the four datasets by improved CGBA 
and GEBA are relatively consistent. CGBA is proved to be 
correct and accurate.  
 
In terms of operational efficiency, when the data amount is 
relatively small, the iteration times of improved CGBA is more 
than those of GEBA, and their operation times are nearly the 
same. With the data amount increase greatly, particularly when 
there are plenty of object points, the operation time of improved 
CGBA is far less than that of GEBA, which illustrates that 
improved CGBA is more suitable for solving large-scale bundle 
adjustment equations. 
 
To verify the necessity of preconditioning method based on 
improved incomplete Cholesky factorization, the four datasets 
are solved respectively by improved CGBA and CGBA, i.e. 
CGBA with or without preconditioning. Their differences are 
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mainly described by the condition number of coefficient matrix 
of the normal equation and the average iteration times. 
Experimental results comparison between improved CGBA and 
CGBA are shown in Table 3.  
 
Since the order of normal equation is too large, it is difficult to 
calculate the condition number of normal equation directly. In 
this paper, the maximum and minimum eigenvalues of the 
coefficient matrix are firstly solved by the power method and 
the inverse power method, respectively. Then, the condition 
number is estimated by the two eigenvalues according to the 
positive definite symmetric property of coefficient matrix. 
 

Methods Items 
Dataset 

 I 
Dataset 

 II 
Dataset 

III 
Dataset 

IV 

Improve
d CGBA 

Condition 
number 

4.53e+06 4.57e+06 1.06e+07 2.68e+16 

Average 
iteration times 

76 4 4 5 

CGBA 

Condition 
number 

5.99e+22 6.01e+22 3.60e+23 3.50e+26 

Average 
iteration times 

-- -- -- -- 

Table 3. Experimental results of improved CGBA and CGBA 

Notes: aIn the solving process of CGBA, the normal equation needs to 
calculate at each iteration. Average iteration times refers to the average 
iterative steps during iterations. 
           bThe sign “--” represents the situations that the iteration of the 
normal equation is non-convergence or the solution to the normal 
equation fluctuates continually during iterations. 
 
As shown in Table 3, the condition numbers of coefficient 
matrices of the four datasets by CGBA reach up to 1022 at least, 
which is caused by the small overlap and quasi-planar imaging 
relationship of Dunhuang wall painting images. Under this 
condition, the rounding error of floating-point numbers 
arithmetic operation indicates higher sensitivity to the solution, 
the iteration convergence rate of bundle adjustment is slow, or 
even we cannot get a convergence solution. 
 
Table 3 also shows that the preconditioning method based on 
improved incomplete Cholesky factorization can significantly 
decrease the condition number and the numerical sensitivity of 
normal equation, thus improving not only the equation structure, 
but also the computing performance of improved CGBA. The 
iteration times of improved CGBA are proved far less than n as 
theoretically illustrated in Section 4.1. 
 

5. CONCLUSIONS 

In this work, a novel conjugate gradient bundle adjustment with 
preconditioning based on improved incomplete Cholesky 
factorization has been proposed and applied for precise 
orthoimage generation and 3D reconstruction of Dunhuang wall 
paintings. Both theoretical analysis and experimental 
comparison demonstrate that this method can dramatically 
improve the structure of the normal equation and accelerate the 
convergence of bundle adjustment. This method is proved 
significant in practice and can be further modified and applied 
for other different 3D reconstruction applications. 
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