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ABSTRACT: 

The semi-global optimization algorithm, which approximates a global 2D smoothness constraint by combining several 1D 

constraints, has been widely used in the field of image dense matching for digital surface model (DSM) generation. However, due to 

occlusion, shadow and textureless area of the matching images, some inconsistency may exist in the overlapping areas of different 

DSMs. To address this problem, based on the DSMs generated by semi-global matching from multiple stereopairs, a novel semi-

global merging algorithm is proposed to generate a reliable and consistent DSM in this paper. Two datasets, each covering 1km2, are 

used to validate the proposed method. Experimental results show that the optimal DSM after merging can effectively eliminate the 

inconsistency and reduce redundancy in the overlapping areas. 

* Corresponding author

1. INTRODUCTION

Digital surface model (DSM) plays an important role in many 

applications, for example, object extraction and change 

detection. Thanks to the outstanding performance of semi-

global matching (SGM) (Hirschmüller, 2005; Hirschmüller, 

2008), many researchers (Yastikli, et al., 2014; Ghuffar, 2016) 

tended to achieve the generation of DSMs with the SGM 

algorithm. However, considering that DSMs (also referred to as 

point cloud data) generated by SGM are single stereopair-based, 

as shown in Figure 1, certain inconsistencies may exist in the 

overlapping areas of different stereopairs. Furthermore, DSMs 

generated by SGM are of high density and redundancy, 

especially for the aerial images with multiple overlap. Thus, 

merging of these DSMs to obtain a consistent and accurate 

DSM is very necessary. 

Figure 1. Inconsistencies in the point cloud data from different 

stereopairs, and different colors represent from different 

stereopairs; (a) Cross section of point cloud data in the yellow 

rectangle of (b); (b) Top view of point cloud data. 

In the DSM merging, many scholars (Fratarcangeli, et al., 2016; 

Jaud, et al., 2016) tend to achieve it by using commercial 

software (e.g., INPHO, PhotoScan, MicMac and SURE). 

Meanwhile, some researchers cast the DSM merging as surface 

reconstruction problem, and screened poisson (Kazhdan and 

Hoppe, 2013), floating scale (Fuhrmann and Goesele, 2014), 

voronoi filtering (Amenta and Bern, 1999) and some 

probabilistic methods (Agrawal and Davis, 2001) were used to 

achieve a good surface reconstruction. In addition, Sadeq, et al. 

(2016) proposed a Bayesian approach to merge different DSMs 

from different sources. Furthermore, some researchers try to 

first divide the point cloud data into grids with regular intervals, 

then select an optimal point at each grid with the “winner takes 

all” strategy. For the images with good quality, the generated 

DSM is good. However, for the images with poor quality, 

considering that there is no consideration of spatial correlation, 

the generated DSM may still contain some outliers. And as 

Gong and Fritsch (2016) point out that merging of DSMs from 

multiple stereopairs can effectively remove outliers and further 

improve the quality of DSM generated by the SGM algorithm. 

Thus, based on the DSMs from multiple stereopairs generated 

by SGM, an automatic semi-global merging algorithm is 

proposed to obtain a more consistent and accurate DSM in this 

paper. This merging algorithm can not only remove the outliers 

in the point cloud data to obtain a reliable and consistent DSM, 

but also effectively reduce the redundancy in the overlapping 

areas of multiple DSMs. 
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The rest of this paper is organized as follows. Section 2 first 

describes the basic idea of semi-global optimization. Section 3 

presents the proposed merging algorithm with semi-global 

optimization for point cloud data from multi-stereopairs. Then, 

Section 4 displays the experimental results. Finally, conclusions 

are drawn in Section 5. 

 

2. SEMI – GLOBAL OPTIMIZATION 

Semi-global optimization is inspired by the SGM algorithm 

(Hirschmüller, 2008). Its basic idea is to approximate a global 

2D smoothness constraint by combining several 1D constraints. 

It mainly consists of three parts: establishment of 3D cost 

matrix, multi-directional aggregation of costs, and acquisition of 

optimal surface, as shown in Figure 2. In the 3D cost matrix, the 

first two dimensions represent X and Y on the two - dimensional 

plane, and the third dimension represents the label. The values 

in each grid (x, y, l) of the 3D cost matrix represent the cost of 

selecting the label l on the 2D plane (x, y). In general, the 

smaller the value, the greater the probability or possibility of 

selecting the label l. Then 8 or 16 directions of the dynamic 

programming algorithm are used for multi-directional 

aggregation of costs. During the dynamic programming process, 

it only needs to record the minimum cost of selecting each label 

in consideration of the cost of the label and the cost of the 

smooth constraint, but not need to record the optimal path. 

After the dynamic programming, the minimum cost of each grid 

will be accumulated to the accumulated cost matrix. And an 

optimal surface is calculated based on this accumulated cost 

matrix after all directions of the dynamic planning is completed. 

The optimal surface can be determined by the “winner takes all” 

strategy, that is, label of each grid on the 2D plane with the 

smallest value in the accumulated cost matrix is selected as the 

optimal label. Finally, a median filter is used to reduce the noise 

in the optimal surface.  

 

Figure 2. Flowchart of semi-global optimization 

 

3. SEMI – GLOBAL OPTIMIZATION FOR MERGING 

OF MULTIPLE DSMS  

Point cloud data obtained by SGM are single stereopair-based, 

and certain inconsistencies may exist in the overlap of different 

stereopairs. To obtain a consistent large range of DSM, a semi-

global optimization-based method is proposed to merge the 

point cloud data from multiple stereopairs in this paper, and 

details are as follows: 

 

Step 1: Divided the point cloud data into different blocks 

 

Considering that the amount of point cloud data may be too 

large to process at one time, the whole point cloud data is first 

divided into several DSMs with 1 km2 area each. The division 

could also facilitate the subsequent processing (e.g., object 

extraction and change detection). 

 

Step 2: Clustering of point cloud data 

 

The point cloud data in each kilometer is first assigned a grid 

index, and the grid size is set to a specific distance (e.g., 1 m). 

Then, the points in each grid cell are clustered into several 

clusters by a certain height distance (e.g., 0.9 m). The center 

and weight of each cluster are calculated. The center is 

represented by the mean of points in the cluster, and the weight 

is determined by the number of points in the cluster. The greater 

the number of points of the cluster, the greater the weight of 

each cluster. The process of clustering the points is shown in 

Figure 3. 

 

Figure 3. Process of clustering the points 

The benefits of the clustering mainly have two aspects. On the 

one hand, it can reduce the number of candidate labels in the 

subsequent semi-global optimization and increase the speed. On 

the other hand, it can guide the optimization algorithm to select 

those labels composed of dense points by increasing the weight 

of the labels. 

 

Step 3: Optimal DSM acquisition with semi-global optimization  

 

Optimal DSM acquisition is achieved by semi-global 

optimization. The energy function which includes a data term 

and a smooth term, is expressed as  

 

      * arg min arg minl l data smoothl E l E l E l           (1) 

logdata lE V 
                                                                    

(2) 
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where  l = possible cluster centers for all grid cells, 

l* = optimal cluster centers, 

Vl = weight of the cluster obtained by step 2, 

dz = height difference between two neighbor 

centers, 

DZ1 = threshold of height difference, 

DZ2 = threshold of height difference. 

 

In general, natural surface and artificial object surface are 

mostly continuous and smooth. The aim of defining DZ1 is to 

make the generated DSM surface smooth. Meanwhile, for the 

discontinuities, e.g., breaklines, defining DZ2 is to set a larger 

constant penalty. In this paper, DZ1 and DZ2 are set to 1.0 m 

and 2.0 m, respectively. After semi-global optimization, a 

median filter is used to reduce the noise in the generated DSM. 
 

Step 4: Progressive TIN-based DSM densifying  

 

After achieving the grid DSM obtained by the above steps, the 

DSM can be densified by progressive TIN algorithm. In the 

densification process, a sparse TIN is first derived from the grid 

DSM, then the points are progressively added to the TIN if they 

are below the defined thresholds. More details about the 

progressive TIN algorithm can be seen in (Axelsson, 2000). 

 

4. EXPERIMENTAL RESULTS 

In this paper, two datasets with 1 km2 area each are used for the 

experiments. Each dataset is composed of point cloud data from 

multiple stereopairs generated by the SGM algorithm 

(Hirschmüller, 2008). The stereopairs are from traditional aerial 

images obtained by DMC camera. The image size is 7,680 pixel 

× 13,824 pixel, pixel size is 12 um, the focal length is 120 mm, 

and forward lap and side lap are 65% and 35%, respectively. 

corresponding orthophotos of the two datasets are shown in 

Figure 4.  

 

 
Figure 4. Corresponding orthophotos of the two datasets. (a) 

dataset 1, (b) dataset 2. 

From Figure 4, it can be seen that dataset 1 is a typical suburban 

area with sparse housing and dense farmland. Dataset 2 is a 

complex area; the right half of the dataset is a typical main 

urban area with very dense houses, and the left half is a 

mountain covered by dense trees.   

 

To visually represent the merging results of point cloud data 

from multiple stereopairs in this study, comparisons before and 

after merging were selected to be enlarged for dataset 1 and 

dataset 2. For dataset 1, cross section and triangulation of the 

results are shown in Figures 5 and 6. For dataset 2, cross section 

and triangulation of the results are shown in Figures 7 and 8. 

 
Figure 5. Cross section of dataset 1 before and after merging. (a) 

Overview of dataset 1, where Area A and Area B are two areas 

used to show the merging results; (b) Cross section of Area A 

before merging; (c) Cross section of Area A after merging; (d) 

Cross section of Area B before merging; (e) Cross section of 

Area B after merging. 

 

Figure 6. Triangulation of dataset 1 before and after merging. (a) 

Triangulation of dataset 1 before merging; (b) Enlarged subsets 

of dataset 1 before merging; (c) Triangulation of dataset 1 after 

merging; (d) Enlarged subsets of dataset 1 after merging. 
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Figure 7. Cross section of dataset 2 before and after merging. (a) 

Overview of dataset 2, where Area A and Area B are two areas 

used to show the merging results; (b) Cross section of Area A 

before merging; (c) Cross section of Area A after merging; (d) 

Cross section of Area B before merging; (e) Cross section of 

Area B after merging. 

 

Figure 8. Triangulation of dataset 2 before and after merging. (a) 

Triangulation of dataset 2 before merging; (b) Enlarged subsets 

of dataset 2 before merging; (c) Triangulation of dataset 2 after 

merging; (d) Enlarged subsets of dataset 2 after merging. 

 

Figure 5 and 7 show that multilayered phenomenon in those 

building boundaries is significantly reduced after merging, and 

the accuracy of point cloud data is improved. Furthermore, from 

Figure 6 and 8, it can be seen that many spikes are effectively 

removed after merging, and a smoothed surface is generated. 

 

To better show the results of the proposed method, median of 

each grid cell is used to compare with our semi-global merging 

results. Here, the size of grid cell is set to the same as the 

proposed method. Furthermore, considering that points 

composed of median of each grid cell are sparse, TIN algorithm 

is also used to add the points which are below the defined 

thresholds.  

 

Comparisons are shown in Figure 9, where Area 1 and Area 2 

are from dataset1, and Area 3 is from dataset 2. The first row is 

the triangulation of the raw data, the second row is the results 

from median and TIN algorithm, and the third row is the results 

of the proposed method. From Figure 9, it can be seen that the 

triangulation of the raw data includes many burr-like noises, 

and the results of the median and TIN algorithm are improved 

obviously, but there is still a small amount of burr-like noise. 

The results from the proposed method are smooth and most of 

the burr-like noises have been further eliminated. 

 

Figure 9. Comparison of median of grid cell and our method. 

(a), (b) and (c) are the raw data from dataset 1 and dataset 2; (d), 

(e) and (f) are the results of median of grid cell and TIN 

algorithm; (g), (h) and (i) are the results of the proposed method. 

 

5. CONCLUSION 

In this paper, a novel semi-global merging of DSMs from 

multiple stereopairs is proposed to remove the inconsistency in 

the point cloud data. And experimental results show that DSM 

after merging is more accurate and reliable, and its data 

redundancy is effectively reduced. However, considering the 

lack of reference datasets, e.g., corresponding LiDAR data, 

more quantitative evaluation is still unavailable, which is also 

our further research. 
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