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ABSTRACT: 

As the basis for photogrammetry, Bundle Adjustment (BA) can restore the pose of cameras accurately, reconstruct the 3D models of 

environment, and serve as the criterion of digital production. For the classical nonlinear optimization of BA model based on the 

Euclidean coordinate, it suffers the problem of being seriously dependent on the initial values, making it unable to converge fast or 

converge to a global minimum. This paper first introduces a new BA model based on parallax angle feature parametrization, and then 

analyses the applications and performance of the model used in photogrammetry field. To discuss the impact and the performance of 

the model (especially in aerial photogrammetry), experiments using two aerial datasets under different initial values were conducted. 

The experiment results are better than some well-known software packages of BA, and the simulation results illustrate the stability of 

the new model than the normal BA under the Euclidean coordinate. In all, the new BA model shows promising applications in faster 

and more efficient aerial photogrammetry with good convergence and fast convergence speed. 

1. INTRODUCTION

As entering the digital age, photogrammetry has been widely 

used in nearly all walks of life. The bundle adjustment (BA) 

model serves as one of the most effective methods for the modern 

high precision measurement positioning. In photogrammetry, the 

BA model is one of the most rigorous aerial triangulation 

methods, which can optimize the posture of the cameras and the 

three-dimensional coordinates of encrypted dots. This model is 

also important in generating the digital products and has been 

applied in many fields (Chaturvedi, 2000; Mikhail et al., 2001; 

Sauerbier, 2004). 

The classic method of the BA model expresses three-dimensional 

points under the Euclidean coordinate system, and takes the 

collinear equation as the optimized adjustment equation 

(Ackermann, 1984). However, a large number of experiments 

show that this representation method is only effective for close 

feature points. If the feature points in the environment are too far 

in distance to access large parallax from the image, great errors 

and uncertainties of these feature points may emerge in the depth 

direction, which will cause algorithm divergence. Actually, this 

situation is ubiquitous in the real world, because the three axes of 

the Euclidean coordinate system share the same data "dimension" 

(Yuan, 2009). When they have incremental values in the same 

order of magnitude, the relative increment value of Z-axis is far 

less than the lateral relative increment, which can cause the 

relative error of Z-axis parameters too tiny compared to the 

lateral ones. In other words, although the three-dimensional 

relative error matrix is full rank and irrelevant, it still has weak 

irrelevance due to the tiny value of Z-axis. If an effective 

operation is to be undertaken, the Z-axis parameters need to be 

amplified to adapt to the lateral parameters, which can cause the 

amplification of the error of the Z-axis at the same time. 

* Corresponding author 

Since BA is a high dimensional nonlinear optimization problem, 

in which the multiple iterations need to be solved through Taylor 

series expansion of linearization, an appropriate initial value is 

necessary. The more accurate, the initial value is, the greater, the 

chance of convergence to global optimum will be, and the faster, 

the convergence speed will be. On the contrary, an unreasonable 

initial value may lead to optimization problems such as falling 

into local optimum and divergence, which entails more iterative 

times. 

To solve the problem of slow convergence speed of the BA 

algorithm based on the Euclidean coordinate system, a large 

number of ground control points or more accurate orientation 

information are always used, which are not directly from cameras 

(Yuan et al., 2009). A differential GPS dynamic positioning 

technique has once been successfully used to measure the 

instantaneous spatial location of the camera station, and been 

used for aerial triangulation which leaded to a reformation in 

aerial photogrammetry. However, the technique still has not 

gotten rid of the bondage of ground control points (Moré, 1978). 

In addition, many scholars have begun to try different numerical 

optimization algorithms such as the Gauss-Newton (GN) 

algorithm, the Levenberg-Marquart (LM) algorithm and the 

conjugate gradient algorithm (Hartley and Zisserman, 2003; Wu 

et al., 2011). Some modern optimization methods have also been 

used in photogrammetry, with the development of artificial 

intelligence, to solve the problem. However, without changing 

the collinear equation in Euclidean space, the problem of slow 

convergence speed could still not be solved essentially. 

As for the hard numerical matching between the radius vector of 

the elevation and the lateral parameters caused by Euclidean 

coordinates, a new BA model based on parallax angle feature 

parametrization, ParallaxBA, has recently been proposed (Zhao 
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et al., 2015). This model can work without the consideration of 

the dimensional irrelevance between the elevation and the lateral 

parameters, and reduce the relative error of the radius vector. In 

many cases, normal BA based Euclidean XYZ feature 

Parametrization will lead to a result containing an ill-conditioned 

equation and an objective function with very small gradients 

under certain conditions, while the ParallaxBA can address these 

bottlenecks (Zhao et al., 2015). In this paper, the applications 

(especially in aerial photogrammetry) and the performance of the 

new BA model are discussed, and the convergence performance 

of the model is particularly analysed, since the divergence and 

the slow convergence speed is a problem studied for long in the 

aerial photogrammetry. Experiments and simulations are 

conducted as well to apply the new BA model and verify its 

performance. 

 

2. METHODOLOGY 

In fact, ParallaxBA was proposed first in the field of computer 

vision instead of aerial photogrammetry(Zhao et al., 2015). This 

new BA model is merely a free-net BA model that cannot achieve 

geo-location for the triangulated tie points, so it fails in 

supporting some applications for location and mapping in 

photogrammetry (Yan et al., 2017). To apply it in the aerial 

photogrammetry, Ground Control Points (GCPs) need to be 

added into the ParallaxBA model, where tie points and GCPs are 

represented in the form of angles and XYZ, respectively (Yan et 

al., 2017). After GCPs being added into the BA functions, the 

ParallaxBA model can then be used to acquire the spatial three-

dimensional points and be applied in aerial triangulation. This 

section simply introduces the method in the new BA model, 

including the creation of the observation function and the 

solution of the functions. 

 

2.1 Observation Function 

To conduct BA, the observation functions need to be constructed 

where different coordinates can be used to represent the feature 

points. Aiming at accurately expressing the different types of 

feature points which are close far and almost no depth 

information in the three-dimensional space, the parallax angle is 

used to express the different types of feature points such as the 

feature points that are observed for only one time. The basic idea 

of the hybrid feature parameterization in the new BA model is to 

express the location of spatial 3D feature points using the azimuth 

angle, the elevation angle and the parallax angle through 

combining two camera centres as anchor, whereas the GCPs are 

still expressed by XYZ. As the representation of the GCPs is 

normal like in the classic BA, it will not be repeatedly introduced 

here. The following is the process of the representation in the 

form of angles.  

 

Suppose that the feature point is observed only once, and the 

camera centre which first observes the feature point is defined as 

the main anchor denoted as tm therefore, the feature could be 

expressed as: 

 

 

T

j j jF                                     (1) 

 

where Fj = feature point 

j, j = azimuth angle, altitude angle 

[j, j ] = vector direction the main anchor tm to the 

feature point Fj in the P0 global coordinate (shown as 

Figure 1) 

 

 

Figure 1. The parameterization of 3D feature points based on 

the parallax angle. 

 

For the parameterization of the first observed feature point, there 

is no depth information. If the feature point Fj is observed for 

twice or more than twice, two camera centres of them are selected 

as the anchors, wherein one is the main anchor denoted as tm, and 

the other is secondary anchor denoted as ta. Therefore, the 

feature point Fj in 3D can be expressed by azimuth, elevation 

angle and parallax angle j: 
 

T

j j j jF                             (2) 

 

where j = parallax angle 

 

Compared with the feature point observed for once, the additional 

parallax angle j represents the angle from vector 𝑥𝑗
𝑚 to vector 

𝑥𝑗
𝑎

.  𝑥𝑗
𝑚

 and 𝑥𝑗
𝑎

 are  the  vector  from the main anchor tm to 

feature point Fj, and that from the secondary anchor ta to feature 

point Fj, respectively. 

 

Supposing that the main anchor and secondary anchor of the 

feature point in 3D are tm and ta, respectively, the coordinate of 

the image point of the feature point Fj under the camera Pi can be 

expressed as: 
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where u, v = image coordinate 

 

In this formula, 
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where x, y, t = homogeneous image point coordinate 

K = intrinsic parameter matrix 

 

( , , )i i i iR r   
                        (5) 

 

where Ri = rotation matrix of Pi, which represents the function of 

the Euler angle [ 𝛼𝑖  𝛽𝑖  𝛾𝑖  ]T 

 

The vector 𝑢𝑗
𝑚

 is the unit vector from the main anchor tm to the 

feature point Fj, which can be calculated by the following 

formula: 
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�̃�𝑗
𝑖(𝑖 ≠ 𝑚) represents the standardized vector from the camera Pi 

to the feature point Fj. which can be calculated by the following 

formula: 

 

sin( ) sin (t t )i m

j j j a m j j i mx t t       
    (7) 

 

where 𝜑𝑗  = angle from vector ta - tm to the vector 𝑢𝑗
𝑚

 

 

Therefore, 𝜑𝑗 can be calculated by the inner product of ta - tm 

and 𝑢𝑗
𝑚

: 
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                  (8) 

 

In conclusion, the eq. (4) to (8) are the observation equations of 

the least-square optimization of the new BA model.  

 

2.2 Solution of the Least-square Optimization 

The essence of the BA is just the least-square optimization, which 

can be in the function below: 

 

1

2 1( ( )) ( ( ))
z

T

zQ
z f X Q z f X 

  
         (9) 

 

where  𝑓(𝑋) = observation function (formula (4)) 

[ , , , , , , , , ]S S SX X Y Z     
 , which contains all 

variables that need to be optimized 

[ , ]z u v
, which is the observation variable to be 

optimized 

𝑄𝑧
−1 = weight of the feature point 

 

When given the initial values of all the variables 𝑋0, the solution 

of the optimization can be finally transformed to the solution of 

the following formula (Zhao et al., 2015): 

 
1 1

0( ( ))T T

z zJ Q J J Q z f X   
       (10) 

 

Where 𝐽 = first derivative of the observation values with respect 

to all the unknown variables 

 

To solve the nonlinear equation (Formula (10)), the Gauss-

Newton method and the Levenberg-Marquart method are widely 

used in photogrammetry (Hartley and Zisserman, 2003). In this 

paper, these two solutions are also applied to verify the 

convergence performance of the new BA model. Since the 

applications and the performance of the BA model are focused 

and payed more attention here, the details and some other parts 

of the method are not introduced, and more can be referred from 

Zhao and Yan’s work (Yan et al., 2017; Zhao et al., 2015). 

 

3. EXPERIMENT AND RESULT 

To discuss the applications (especially in aerial photogrammetry) 

and analyse the performance of the new BA model, two datasets 

are processed in the experiment. The first dataset is a group of 

aerial images -- the Toronto dataset -- released by the 

International Society for Photogrammetry and Remote Sensing 

(ISPRS) and the other one is a UAV dataset obtained at a flying 

altitude of 138.632 meters, covering an area of 26245.5 square 

meters. 

 

3.1 The Result of Toronto Dataset 

The Toronto dataset contains 13 images captured by the UCD 

cameras, 139648 three-dimensional feature points and 297097 

projected points. To better analyse the performance of the 

ParallaxBA model based on the parallax angle with GN and LM, 

the performance of G2O (Grisetti et al., 2011) and sSBA 

(Konolige and Garage, 2010), which are known as two efficient 

BA software packages, are compared. Since sSBA only offers the 

LM module, so only the LM process of it is compared. Note that 

the LM algorithm is realized in different methods in these three 

software packages, and the one in ParallaxBA is the same as the 

sSBA. In addition, the performance of the same software 

packages differs when running in Windows and Linux, therefore 

the result in two systems are compared. Since the G2O and sSBA 

show very low efficiency in Windows, their result in that system 

are not presented. 

 

The MSE, the iterations, the number of functions and the run time 

are shown in Table 1, which are produced in the processing of 

the data with different software packages given the same initial 

values. Figure 2 shows the MSE curve of each iteration. The BA 

in G2O with GN cannot converge because of the singularity of 

the normal equation, while the MSE reaches 153.13 after 200 

iterations in G2O with LM. In sSBA and ParallaxBA, the MSEs 

all reach 0.048656, but it needs 64 iterations in the former when 

only 8 and 20 iterations in the other. The ParallaxBA packages 

are more efficient as well, because their run time are far less than 

the others. Figure 3 shows the result of ParallaxBA -- the 

reconstructed 3D features (blue points) and the camera centres 

(triangular cones). 
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 G2O GN G2O LM sSBA ParallaxBA GN ParallaxBA LM 

Initial MSE 2991803.22 2991803.22 2991803.22 2991803.27 2991803.27 

Convergence MSE N/A 153.13 0.048656 0.048656 0.048656 

iterations N/A 200 64 8 20 

Total time 

(second) 

Win N/A N/A N/A 2.64 5.90 

Linux N/A 66.9 17.6 3.36 8.4 

Table 1. The convergence of the Toronto dataset in G2O, sSBA and ParallaxBA 

 

 
Figure 2. The MSE curve of each iteration 

 

 

 
Figure 3. The reconstructed 3D features (blue points) and the 

camera centres (triangular cones) 

 

3.2 The Result of UAV Dataset 

The UAV dataset contains 40 images captured by the DMC-GH4 

cameras, whose focal length is 3926.65 pixels. The image 

resolution is 4608 x 2592 and the ground resolution is 0.0241902 

m/pixel. In the processing, 14891 tie points and 71907 

projections are acquired by feature extraction and matching 

methods. After bundle adjustment for these parameters, the final 

RMSE of the reprojection image points converges to 0.561714 

pixels from the initial 9.57711 pixels within only 0.426 seconds.  

 

The ortho-rectification and mosaic of the UAV images based on 

the BA results -- the optimized camera parameters and the feature 

points -- is shown in Figure 4. Most structures in the stitched 

image show good shapes in accordance with the real conditions, 

such as the straight road edge and the building edges, though few 

distortions exist, especially around the boundary of the stitched 

image.  
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Figure 4. The ortho-rectification and mosaic result of the UAV 

dataset 

 

All the above results have validated the effectiveness and the fast 

processing speed of the ParallaxBA model. For the good 

performance of the new BA model, it shows promising future in 

applications in aerial photogrammetry. 

 

4. DISCUSSION 

The divergence and the convergence speed problem has been 

studied for long in aerial triangulation, thus the convergence 

performance of the ParallaxBA  model is particularly discussed 

in this section. The convergence of BA greatly depends on the 

initial value (Mikhail et al., 2001). To analyse the convergence 

of the ParallaxBA  model in a more comprehensive way, 

simulations are used here to conduct BA under different initial 

values. The normal BA (BA based on the Euclidean coordinate 

system) is also conducted for comparison. 

 

The simulated data is obtained under aerial photography 

condition, which contains 4 flight strips and 90 images (7680 x 

13824 in size, without any geometric distortion) in total. The 

simulated movement trajectory is shown in Figure 5. The camera 

angle elements and line elements can be calculated through 

relative orientation, which are assumed as the optimal values. 

The Gauss noise under different levels is then added to the 

optimal values to simulate different initial values. 

 

 
Figure 5. The simulated Movement trajectory 

 

4.1 Convergence under Different Initial Values of Camera 

Angle Elements  

When given the same initial MSE, add the Gauss noise of 0.03, 

0.05, 0.08, 0.10, 0.13 and 0.15 degrees to the initial values of 

camera angle elements and convergence performance is shown 

in Table 2 and Figure 6. Obviously, the two kinds of BA converge 

to the same value when the error level (noise) is 0.03 degrees. 

However, as the error level keeps on increasing, the ParallaxBA  

model converges to a smaller MES than the normal BA when 

reaching the largest iteration. 

 

The 

error 

level 

BA model 
Initial 

MSE 

Convergence 

MSE 

Itera-

tion 

0.03 
Normal BA 116325.924 0.083715487 41 

ParallaxBA 116323.691 0.08371552 7 

0.05 
Normal BA 288298.4 20.3781 300 

ParallaxBA 288298.9 0.083716 7 

0.08 
Normal BA 885426.4 144.9745 300 

ParallaxBA 885427.9 0.083716 7 

0.10 
Normal BA 1585482 323.7692 300 

ParallaxBA 1585484 0.083716 7 

0.13 
Normal BA 3319862 238.5598 300 

ParallaxBA 3319862 0.083716 7 

0.15 
Normal BA 5966617 206.4639 300 

ParallaxBA 5966583 0.083716 11 

Table 2. The convergence of the ParallaxBA model and the 

normal BA model given different initial values of camera angle 

elements 

 

 
Figure 6. The converging MSE of the ParallaxBA model and 

the normal BA model (XYZ) given different initial values of 

camera angle elements 

 

4.2 Convergence under Different Initial Values of Camera 

Line Elements  

Assume that the distance between the cameras is unit one, then 

add the Gauss noise of 0.1, 0.2, 0.3, 0.4 and 0.15 to the initial 

values of camera line elements. The convergence performance is 

shown in Table 3 and Figure 7 when given the same initial MSE. 

Obviously, the two kinds of BA converge to the same value when 

the error level (noise) is 0.3. However, as the error level keeps on 

increasing, the ParallaxBA model converges to a smaller MES 

than the normal BA when reaching the largest iteration. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W4, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W4-273-2017 | © Authors 2017. CC BY 4.0 License.

 
277



 

The 

error 

level 

BA model 
Initial 

MSE 

Convergence 

MSE 

Itera-

tion 

0.1 
Normal BA 49018.209 0.08371549 29 

ParallaxBA 49018.426 0.0837155 7 

0.2 
Normal BA 113900.8 0.083715 31 

ParallaxBA 113900.9 0.083716 7 

0.3 
Normal BA 225860.4 0.083715 44 

ParallaxBA 225859.6 0.083716 9 

0.4 
Normal BA 391300 15.66996 300 

ParallaxBA 391298.9 0.083716 9 

0.5 
Normal BA 613232.2 42.72522 300 

ParallaxBA 613229.9 0.083716 10 

Table 3. The convergence of the ParallaxBA model and the 

normal BA model given different initial values of camera line 

elements 

 

 
Figure 7. The converging MSE of the ParallaxBA model and 

the normal BA model (XYZ) given different initial values of 

camera line elements 

 

5. CONSLUSION 

Traditional least-square bundle adjustment methods of aerial 

triangulation are established based on the Euclidean coordinate 

system. A large number of experiments and studies have shown 

that there exist strong correlations between the unknowns in 

traditional models, which can lead to poor convergence and slow 

convergence speed. However, the new BA model introduced in 

this paper show promising results in photogrammetry especially 

in the aerial triangulation. The experiment results have illustrated 

the good performance of the BA model, whose MSE reaches 

0.048656 after just 8 (using GN) and 20 (using LM) iterations. 

The simulation results under different initial values have also 

proved the stable convergence performance of the introduced BA 

model, in which its MSEs after iterations keep the same small, 

whereas the normal BA ones become larger as the initial error 

increases. Therefore, the performance of the new BA model is 

better than the normal one, and the new BA model can be applied 

more in the aerial photogrammetry and be further studied. 
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