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ABSTRACT:

This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments
based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict
scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and
incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse
observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations
with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model
derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model
parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations
are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for
the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.

1 MOTIVATION AND CONTEXT

Indoor models are of great interest in a wide range of applica-
tions. They are of high relevance for indoor navigation, evacua-
tion planning, facility management or guide for the blind. While
models of the exterior such as models in level of detail 3 (LoD3)
according to CityGML (Gröger and Plümer, 2012) are by now
state of the art, modelling of indoor environments is not yet widely
available and the acquisition of the corresponding data remains
expensive. While most approaches require measurements of high
density such as 3D point clouds or images, we propose an ap-
proach which gets along with few observations in order to predict
floorplans of high accuracy.

The challenge is to estimate an indoor model based on few ob-
servations. More precisely, the task that we consider in this paper
is to place a set of n rectangular rooms within a polygonal foot-
print, locating the doors and estimating the height of the rooms.
The resulting model is characterized by discrete and continuous
model parameters that are related by both linear and non-linear
constraints. Our approach is characterized by sparse observa-
tions such as room areas, functional use, window locations and,
possibly, room numbers that can be acquired from building man-
agement services. Indoor images or laser scans are not required.
A maximum a-posteriori (MAP) estimation uses further statisti-
cal knowledge such as probability density functions and Gaussian
mixtures for model parameters.

In this paper, we assume that the topological model is provided
by a preceding step using Constraint Logic Programming as pre-
sented by Loch-Dehbi et al. (2017). The topological model con-
sists of the room neighbourhood information and the correspon-
dence between rooms and windows. This article focuses on the
optimal estimation of model parameters. Therefore, we use a
Gauss-Markov model with Bayesian background knowledge. We
represent and exploit symmetries and repetitive structures. This
contributed to improving the existing approach and thus the esti-
mation of model parameters. We asses the quality of the model by
a maximum likelihood estimation and compare different models

by the information criteria Bayesian information criterion (BIC)
and Akaike information criterion (AIC). This allows for the com-
parison of model hypotheses based on their likelihood.

The main contribution of this paper is the improved estimation of
model parameters based on a-priori derived topological models
performed by Loch-Dehbi et al. (2017). This includes:

• the use of prior knowledge in the form of probability density
functions for model parameters,

• an MAP-estimation considering observations such as the area
of rooms, the location of windows and the building foot-
print,

• the representation and exploitation of symmetries, especially
translational ones,

• detection and correction of errors in the topological model,

• calculation of normalized likelihoods for each model hy-
pothesis and comparison of models with a derived ranking.

All in all, for the prediction and estimation of a floorplan and its
parameters with high accuracy, the areas of the rooms, the foot-
print and the location of windows together with a prior knowledge
in form of probability density functions are sufficient.

The remainder of this article is structured as follows. The next
section discusses related work. Section 3 introduces the nec-
essary theoretical background of the used stochastic approach.
Section 4 gives insight into the derivation of topological models
using constraint satisfaction. Section 5 explains our stochastic
estimation reasoning in detail, while Section 6 discusses the ex-
perimental results. The article is summarized and concluded in
Section 7.
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2 RELATED WORK

Indoor models are gaining more and more attention for many
tasks such as rescue management. Turner and Zakhor (2014)
generated building floorplans from laser range data based on a
triangulation of a 2D sampling of wall positions. Becker et al.
(2015) proposed a grammar-based approach for the reconstruc-
tion of 3D indoor models from 3D point clouds. Yue et al. (2012)
used shape grammars describing a building style together with
a footprint and a set of exterior features to determine the inte-
rior layout of a building. Khoshelham and Dı́az-Vilariño (2014)
applied also shape grammars for 3D indoor modelling by itera-
tively placing, connecting and merging cuboid shapes. However,
a pre-design of the grammar rules is required. Ochmann et al.
(2016) segment a point cloud into rooms and outside area for re-
constructing a scene using an energy minimization in a labelling
problem. In contrast to our approach, all mentioned approaches
require dense observations such as 3D point clouds from laser-
scans or range cameras using mobile mapping systems that are
both cost and time expensive. Measurements are expensive be-
cause each single room has to be accessed.

Various works tried to overcome the measurement overhead by
using low cost sensors. To this end, Rosser et al. (2015) presented
a method for constructing as-built plans of residential building in-
teriors. The prediction is based on mobile phone sensor data and
improved by incorporating hard and soft constraints. Pintore et
al. (2016) generate 2.5D indoor maps based on images acquired
by mobile devices. Diakité and Zlatanova (2016) used the low
cost Android tablet from Google’s Tango project for the acquisi-
tion of indoor building environments. However, it is not possible
to derive detailed indoor models due to artefacts and anomalies in
the sensor data. Furthermore, the derivation of models from mea-
surements is difficult due to the masking of walls by furniture.
As a consequence, our main contribution is the parameter estima-
tion and model selection for unknown substructures in buildings
such as floorplans based on only few observations like the area of
rooms and footprints. We make use of strong model assumption
supported by a profound background knowledge.

In our context, Rosser et al. (2017) demonstrated a two-staged
semi automatic data-driven estimation of 2D building interior floor-
plans based on limited prior knowledge. However, their approach
requires beforehand topology of rooms and the orientation of
one room. Compared to Rosser et al. (2017), in our approach
the topology is automatically provided using Constraint Logic
Programming. Apart from stochastic reasoning, our approach
draws upon ideas of constraint satisfaction. A constraint-based
approach which generates possible floorplans respecting a set of
geometric constraints is presented by Charman (1994). This ap-
proach does not address as-built models and, however, does not
consider probable configurations. An overview of works in in-
door modelling and mapping is given by Gunduz et al. (2016).

3 GAUSS-MARKOV MODELLING OF FLOORPLANS

The estimation of the location and shape parameters of floor-
plans has been addressed as a reasoning process which combines
constraint propagation and a maximum a-posteriori estimation
based on special graphical models (Loch-Dehbi et al., 2017). The
performed MAP-estimation is based mainly on the background
knowledge about room location and shape parameters. In order
to acquire more accurate estimations, observations such as win-
dow locations have to be integrated in the model selection as well.
Furthermore, regularities characterizing man-made objects such
as buildings are beneficial and have to be exploited. This paper

focuses on the integration, modelling and assessing of the impact
of these aspects on the estimation process. Hence, we provide a
method improving the mentioned MAP-estimation.

To this aim, based on a predetermined topological floorplan model
consisting of the neighbourhood of rooms and their window cor-
respondence, the task we solve can be addressed as a stochas-
tic parameter estimation defined in the form of a Gauss-Markov
model as follows:

l̃ = l + ṽ = Ax̃+ a, ṽ ∼M(0,Σll) (1)

where l refers to an observation vector which can deviate from
the true values l̃ of the observations with residuals ṽ. x̃ denotes
the true values of the unknowns, i.e model parameters, while A
stands for the design matrix mapping the model parameters onto
the observations. By uncertain observations, a distribution M
is introduced. Our task lies in finding estimates x̂ of the true
model parameters x̃ from the observations l. In our context, the
parameters as well as the residuals are a-priori unknown which
leads to an underconstrained problem. This can be overcome by
requiring that the weighted sum of the squared residuals

Ω(x) = vT (x)Σ−1
ll v(x), (2)

of the residuals v(x) = Ax+a− l has to be minimal as follows:

x̂ = argminx Ω(x) = (AT Σ−1
ll A)−1AT Σ−1

ll (l − a). (3)

In the case of a normal distribution M , this is equivalent to deter-
mining the maximum likelihood estimation of the parameters:

p(l | x) =
1

(2π)N |Σll|1/2
exp

(
−1

2
v(x)T Σ−1

ll v(x)

)
. (4)

N is the rank of the covariance matrix Σll. Since our problem
is also characterised by bi-linear dependencies such as it is the
case between the room areas as multiplication of room shape pa-
rameters, the modelling of non-linear constraints has to be taken
into account. In this context, the linear problem is expanded by a
non-linear part modelled by non-linear Gauss-Markov model as
follows:

l ∼M(f(x̃),Σll), (5)

where the parameters are related by a twice differentiable func-
tion f . In this case, the goal is to find an estimation:

x̂ = argminx (l − f(x))T Σ−1
ll (l − f(x)), (6)

which can be solved by Taylorization in the usual way (Niemeier,
2008) starting from approximate values of the unknown model
parameters. For more details, the interested reader is referred to
Förstner and Wrobel (2016).

Given the mathematical model, we are now interested in choosing
one model among several alternatives taking some observations l
into account. In our context, the observations consist of the loca-
tions of windows, room areas and the footprint geometry. To this
aim, a Bayesian approach is used in order to select a model M
having the largest posterior probability P (M | l) out of several
models Mm:

M̂ = argmaxm p(l |Mm)P (Mm).

The model is then defined following the Akaike information cri-
terion (AIC) (Akaike, 1974) according to equation (7).

MAIC = argmaxm − log p(l |Mm) + Um. (7)
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Um denotes the number of the parameters xm of the model Mm

characterizing the model complexity. By normally distributed
data the first term in equation 7 can be written as:

− log p(l |Mm) =
1

2
v̂T Σ−1

ll v̂. (8)

The model Mm can be likewise determined using the Bayesian
information criterion (BIC) (Schwarz et al., 1978) augmenting
the term Um by the number N of the observations as following:

MBIC = argmaxm − log p(l |Mm) +
1

2
Um logN. (9)

4 CONSTRAINT PROPAGATION FOR TOPOLOGICAL

FLOORPLAN DERIVATION

This section gives an overview about the method for deriving
topological floorplan models as prerequisite for the subsequent
stochastic reasoning. To solve the presented non-linear problem
with discrete and continuous parameters, we have principally to
cope with an a-priori infinite continuous search space. However,
we proposed a method in which the search space is narrowed
using architectural constraints and browsed by intelligent search
strategies using domain knowledge.

We start with solving a discrete combinatorial problem that yields
a good initialization for the stochastic reasoning. The correspon-
dence of a-priori known windows to their rooms is unknown.
The bilateral relations between rooms have to be determined as
well. This consists in the knowledge about vertical and horizon-
tal neighbourhood of rooms leading to a topological model. In or-
der to make the combinatorial problem of locating rooms within
the footprint feasible, we build upon background knowledge con-
sisting in probability density functions (PDFs) of shape and lo-
cation parameters learned from extensive training data. We ap-
plied Gaussian mixtures as a good approximation to model skew
symmetric or multi-modal distributions, e.g. PDFs. Using Ex-
pectation Maximization (McLachlan and Peel, 2000), a Gaussian
mixture ofm components each weighted by its probability ωi for
each continuous parameter is estimated for the reasoning process:

m∑
i=1

ωiN(µi, σ
2
i ). (10)

This allows for using well established stochastic reasoning after-
wards.

We exploit architectural regularities and design corresponding
constraints on model parameters to restrict the search space. For
instance, it is not allowed that walls cross windows. Besides, a
lower window for example is part of an ith room if the y-coor-
dinate of the room’s lower left corner yi equals the width of the
outer wall and the following constraint is satisfied:

((xi ≤ wiLoclj,1) ∧ (wiLoclj,2 ≤ (xi + widthi))), (11)

where wiLoclj,1 and wiLoclj,2 are the location parameters of a
lower window placed in the jth room as shown in Figure 2. The
constraint 11 implies in this case j = i. The single components
of the Gaussian mixture define upper and lower bounds for the
according continuous parameter. For example, the model param-
eters of the room, that is its lower left corner (xi, yi) and its width

Figure 1: Topological floorplan model derived using constraint
propagation

and depth, are restricted by upper and lower bounds in addition
to shape parameters of the corresponding footprint.

Since the floorplan model can be described by constraints on dis-
crete as well as continuous variables with associated domains, it
can be addressed as a constraint satisfaction problem. By incor-
porating consistency-enforcing algorithms and constraint propa-
gation, existing constraints are tightened or new constraints are
derived to narrow the search space (Dechter, 2003).

Figure 1 shows one topological model as a result of our constraint
propagation using Constraint Logic Programming (Frühwirth and
Abdennadher, 2003). It yields the bilateral relations between
rooms, the correspondence of windows to rooms and the selec-
tion of single components of the Gaussian mixtures for the model
parameters. We ignored temporarily the walls and relaxed the
search problem in order to provide buffers for constraint propa-
gation with discrete domains. Consequently, the predicted pre-
liminary rooms do not fill the entire footprint space. Particularly,
the alignment of rooms along a corridor is not guaranteed. The
acquired topological model serves as input for the parameter esti-
mation and model selection as presented in the following section.
For more details on this combinatorial step the reader is referred
to Loch-Dehbi et al. (2017).

5 PARAMETER ESTIMATION AND MODEL

SELECTION OF FLOORPLANS

This section describes our approach for parameter estimation and
model selection for indoor models based on sparse observations.
Based on preliminary topological models acquired from a rea-
soning process following the method described in Section 4, an
optimal parameter estimation using a Gauss-Markov model and
Bayesian model selection is performed. The detailed method is
described by Loch-Dehbi et al. (2017). We exploit the symme-
tries, especially translational ones, characterising buildings in or-
der to improve the estimation of model parameters. In this sense,
the distances between windows and walls as well as distances
between windows themselves are considered. These kinds of
symmetries are modelled in an explicit way. Models including
symmetries and those without symmetries are taken into consid-
eration and compared as alternative models.

Our approach starts with defining the complete Gauss-Markov
model which consists of the functional and stochastic model in-
cluding the design matrix A according to Equation 1. In our sce-
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Figure 2: Illustration of the used model parameters and observa-
tions.

nario, the additive term a is equal to zero. The model components
are elaborated in the following.

Functional model:
We assume that the adjacencies between the rooms and the re-
spective windows as well as the ordering among the rooms are
given by the topological model as described above in Section 4.
The exact location and shape parameters are not required. In this
case, the functional model is uniquely specified by the following
model parameters:

• the widths and the depths of the lower (widthl
i, depth

l
i) and

upper (widthu
i , depthu

i ) rooms. The index i refers to the
ith room. As we assume that the rooms are aligned along
corridors, we have two single parameters (depthl, depthu)
both for the depth of the lower and the upper rooms, but
distinct parameters for the width of each room.

• two parameters for the width and the depth of the corridor
(widthcorr , depthcorr).

• two parameters for the width of the walls. Thereby we as-
sume that the widths of all outer walls (waOut) are the
same, as are the inner walls (waIn).

• two parameters for the width and the depth of the floorplan
which is assumed to be rectangular and, above, having its
lower left corner in the origin of the local coordinate system.
Thus they are named xmax and ymax.

• The area areai for each ith room and for the corridor.

Although it is not necessary to identify a model in a unique way,
we introduce the following parameters in order to relate the model
to the given observations:

• the location of the lower (wiLocli,1, wiLocli,2) and upper
(wiLocui,1, wiLocui,2) embrasures of the windows in the ith
room. We need only those embrasures which are directly
adjacent to a wall.

Figure 2 gives an overview of the domain model and its param-
eters. Following a Bayesian approach, we explicitly incorporate
prior knowledge and represent it by pseudo-observations follow-
ing the ideas of Förstner and Wrobel (2016) and Bishop (2007).
Note that prior knowledge on model parameters is represented by
Gaussian mixture distributions and that we have already selected

the according component of each parameter from these distribu-
tions in a preceding step. Thus, in this paragraph we can as-
sume that model parameters are normally distributed with known
means µ and variances σ. We will use pseudo-observations for
the following model parameters:

• room widths widthi and depths depthi,

• corridor width widthcorr and depth depthcorr ,

• outer and inner wall widths waOut and waIn.

Design matrix:
We apply the Gauss-Markov model where each observation is a
linear function of the model parameters. Since the Gauss-Markov
model is generic and the relation between model (parameters) and
observations is explicit, it can be used both for simulations and
parameter estimation. Thus, it is appropriate for the purpose of
this article.

For the design matrix we have linear and bi-linear constraints.
We start with the linear constraints. For a left embrasure in an ith
lower room, we have constraints which relate this observation to
the left adjacent wall:

waOut+ (i− 1)waIn+

i−1∑
j=1

widthl
j + wiDistli,1 = wiLocli,1

(12)
Likewise, we have for the right embrasures constraints which re-
late them to the right adjacent wall:

waOut+ (i− 1)waIn+

i∑
j=1

widthl
j − wiDistli,2 = wiLocli,2

(13)
The constraints for the embrasures in the upper rooms are formu-
lated in an analogous way. The depth of the floorplan ymax is
related to the depth of the upper and lower rooms including the
corridor as well as the width of the respective walls. Since we
assume that rooms are aligned, we have a single depth parameter
for the upper and the lower row of rooms respectively:

2waOut+ 2waIn+ depthl + depthu + depthcorr = ymax

(14)
For the sequences of upper and lower rooms, we have two con-
straints which adds up their widths together with the widths of
the adjacent walls. For instance, the constraint for lower rooms is
formulated as follows:

2waOut+ (r − 1)waIn+

r∑
i=1

widthl
i = xmax, (15)

where r refers to the room number in a room sequence. A similar
constraint holds for the corridor and its adjacent walls:

2waOut+ widthcorr = xmax (16)

Note that there seems to be an incoherence between the last three
constraints and the Gauss-Markov model which assumes that there
is a dependency between model parameters and each single ob-
servation. Here, the width xmax of the floor is used as observation
twice. We can, however, argue that in fact we have two observa-
tions, which have the same value only under the assumption that
the shape of the floorplan is rectangular. Since we will assume a
very low variance for xmax, duplicating this value will be of no
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harm for the parameter estimation. Table 1 summarizes the used
model parameters, observations and pseudo-observations as well
as the used abbreviations accordingly.

Each pseudo-observation gives one linear constraint which di-
rectly relates the model parameter to the mean µk of the kth
selected component of the Gaussian mixture for the respective
parameter. For room width for example we get:

widthu = µwidth
k . (17)

The constraints for the room areas are defined as follows:

widthi × depthi = areai, (18)

these constraints have a bi-linear form. Non-linearity is handled
by Taylorization using partial derivatives. This leads to the linear
constraints of the form:

depthiwidthi + widthidepthi = ∆areai. (19)

Note that in this equation the underlined terms are coefficients
in the design matrix while the other terms refer to the respective
model parameters. The coefficients stem from a starting vector
x0. The selection of a good start vector is important. To de-
rive this vector there are several options. As a first choice prior
knowledge, i.e. pseudo-observations could be used. An alter-
native would be the parameter values of the topological model.
We found that a better choice is the estimation of these param-
eters using a relaxed Gauss-Markov model with a design matrix
where the non-linear constraints are omitted. This approach de-
rives good estimations for model parameters up to the width of
the upper and lower rooms and the floor widths. Note that – be-
side the bi-linear constraints for the areas – these parameters are
related by one single constraint (cf. Equation 14). For this rea-
son, the observed room area of the ith room and the estimated
width widthi is used to derive the two medians of the widths of
the aligned lower and upper rooms:

depthi = median(

{
i | areai

widthi

}
). (20)

Stochastic model:
Observations are assumed to be uncorrelated random variables
with normal distributions. The following standard deviations σ
are assumed:

• embrasures: 0.1 m

• room areas: 0.1 m2

• xmax and ymax: 0.01 m

• interior and exterior walls: 0.03 m

For the pseudo-observations of room depths and widths, standard
deviations of 1 m are assumed. It was noted that the difference
between pseudo-observations and assumed model parameters ex-
ceed the standard deviations.

Parameter estimation:
In comparison to the models derived by Loch-Dehbi et al. (2017),
the MAP-estimation includes both prior knowledge in the form of
probability density functions of model parameters and observa-
tions such as window locations and room areas. Furthermore, the
representation and exploitation of symmetries enabling a more

model
parameters

widthl
i lower room width

widthu
i upper room width

depthl
i lower room depth

depthu
i upper room depth

widthcorr corridor width
depthcorr corridor depth
waOut outer wall width
waIn inner wall width
depthl lower depth of rooms
depthu upper depth of rooms

wiDistli,1 lower dist(left embrasure,wall)
wiDistli,2 lower dist(right embrasure,wall)
wiDistui,1 upper dist(left embrasure,wall)
wiDistui,2 upper dist(right embrasure,wall)

observations

wiLocli,1 left lower embrasure
wiLocli,2 right lower embrasure
wiLocui,1 left upper embrasure
wiLocui,2 right upper embrasure
areai room area
areacorr corridor area
xmax floor width
ymax floor depth

pseudo-
observations

µwidth
k

mean of the kth Gaussian
mixture component of a
parameter

µwidthcorr

k

µdepth
k

µdepthcorr

k

µwaIn
k

µwaOut
k

Table 1: Overview of the domain parameters, observations and
pseudo-observations for floorplan model selection. The index i
refers to the ith room.

accurate estimation is taken into account. The influence of the
occurrence of repetitive patterns and structures such as the same
window distances to the next wall or recurrent room width has
been investigated in a case study. We performed a simulation us-
ing Gauss-Markov modelling and taking these aspects into con-
sideration and were able to compare the impact of such patterns
on the resulting estimations.

All in all, the mentioned approach contributed to the improve-
ment of the accuracy of the estimated model parameters. Ta-
ble 2 summarizes the achieved accuracies under different simu-
lated conditions. For the estimation of room widths, for instance,
an average accuracy of about 1.32 cm is achieved using a bi-linear
model and assuming that the distances between the window em-
brasures and the next left or right wall are fix. In this case, the
estimated and the ground truth model are almost identical as de-
picted on the right of Figure 3. In contrast, we can state worse ac-
curacies without taking repetitive structures such as room widths
into account using a linear model. So far we have assumed that
adjacent rooms are aligned along the corridor (i.e. they have the
same width) and inner and outer walls respectively have the same
widths. In reality in many cases indoor models reveal much more
symmetries. In this paper, we focus on two translational symme-
tries:

• distances between walls and neighbouring window embra-
sures are equal

• the widths of rooms are either equal or equal up to a small
integer factor (two or three).

Interestingly, parameter estimation derived so far provides a good
basis for the identification of such symmetries. The covariance
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room width room depth inner wall outer wall corridor width corridor depth
linear model 68.2 62.73 2.33 2.43 4.9 63.46
bilinear variable window distances 5.75 1.2 1.66 1.83 3.73 0.96
bilinear fixed window distances 1.32 1.14 1.36 1.51 3.14 0.86
bilinear room symmetries 0.41 1.1 1.65 1.82 3.72 0.96

Table 2: Average deviations between the estimated shape parameters of rooms, walls and corridors and the true parameters in [cm].

Figure 3: Floorplan estimation using our approach. Model selection is performed based on linear (top) and bi-linear (bottom) con-
straints. Symmetries and repetitive patterns (fixed room widths, fixed window distances) are considered. The zoomed part on the right
shows that the estimated (orange) and the ground truth model (black) are almost identical

matrix of the estimated model is given by:

Σx̂x̂ = (AT Σ−1
ll A)−1. (21)

Its diagonal gives an estimation of the accuracy of the parameter
estimation. Comparison of these accuracies with the differences
of related model parameters such as room widths or distances be-
tween walls and embrasures provides hints on symmetries. One
could now use a classical hypothesis test to check for identity. In-
stead, we have represented symmetries in our models explicitly
and made model comparisons with AIC or BIC as mentioned in
Section 3 (cf. Equations 7 and 9).

Let n be the number of rooms. If symmetries w.r.t distances be-
tween walls and embrasures are explicitly represented, the 2n
parameters for distances are replaced by one single model pa-
rameter, and the number of columns of the design matrix is re-
duced accordingly. Please note that the number of observations
and thus the number of rows of the design matrix is not changed.
Thus, in principle the respective likelihoods (cf. Equation 4) can
be compared and used for model selection. The complexities of
the respective models are however different, reflected by a differ-
ent number of model parameters. That is the reason why penalty
terms as in the Akaike information criterion (Equation 7) or the
Bayesian information criterion (Equation 9) have been applied.
In our case both criteria led to the same results. To assess to what
extent one model outperforms the other normalized likelihoods
(pseudo-probabilities) were used:

LHn(i) =
LH(i)∑n

j=1 LH(j)
. (22)

In order to represent identity of room widths (up to a factor k) in
the model and the corresponding design matrix explicitly, again
the n parameters for room widths are replaced by one single
model parameter. In the equations the term widthi is replaced

by ki × width where ki is integer depending of the specific ith
room. Again the number of columns of the design matrix is re-
duced considerably. But since the prior knowledge of this model
parameter is represented by pseudo-observations, the number of
rows is reduced as well. Thus, the likelihoods given by Equation
4 are not comparable immediately. To make them comparable
the covariance matrix Σll is projected to a sub-matrix Σ′ll where
the rows for the pseudo-observations for room widths are omit-
ted. Differences in model complexities are again reflected in the
penalty terms of AIC and BIC, and normalized likelihoods are
derived.

Figure 3 shows the results of the floorplan estimation using our
approach. As mentioned, the model estimation and selection
is performed based on linear (first row) and bi-linear (second
row) constraints. The impact of symmetries such as recurrent
room widths or repetitive window distances is investigated. The
zoomed part on the right reveals that the estimated (orange colour)
and the ground truth model (black colour) are almost identical.

We have also studied how deficiencies of the topological model
can be identified and corrected by the stochastic parameter es-
timation. Figure 4 illustrates a situation of the floorplan of our
institute in a Wilhelminian style building where a small room (in
orange) of 1.8 m2 is contained in another room. This violates
the assumption that rooms are rectangular – the outer one is not.
Let us assume that the combinatorial reasoning deliberately ex-
cludes rooms with an area under a given threshold (e.g. 2 m2)
and leaves the problem to the stochastic reasoner. The stochas-
tic reasoner as described above starts with an observational error
for the area of that specific room. Having in mind that one small
room of a known size has been omitted, the task is now to identify
the room which is affected and to correct the observed area by the
sum of the areas of the enclosed room and the enclosing room. If
this leads to a model with a considerably larger likelihood, it can
be inferred that the smaller room is enclosed in or adjacent to the
other (although still unclear exactly how). We have studied such

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W4, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W4-303-2017 | © Authors 2017. CC BY 4.0 License.

 
308



scenarios and used the covariance matrix of the fitted observa-
tions:

Σl̂l̂ = (AΣx̂x̂A)T , (23)

which has often been used for the identification of outliers in the
observations. Surprisingly this did not lead to satisfactory results.
Instead, we applied the same procedure as given above and used
respective likelihood for model comparison in order to identify
the affected room and to correct the area observation accordingly.

6 EXPERIMENTAL RESULTS

Our approach starts with defining the functional model and a start
vector x̃ of true model parameters according to Figure 2 and the
stochastic model as described above. The stochastic model to-
gether with the assumption of normal distributions was used to
generate observational errors ṽ in order to generate noisy obser-
vations l̃ = l + ṽ. We performed this for 1000 test cases and
derived estimated model parameters x̂ for the different scenarios
described above. We compared the estimated values x̂ with the
true values x̃. The average deviations are listed in Table 2. Obvi-
ously, the transition from the linear in the first row to the bi-linear
model in the second row leads to a considerable improvement of
the estimation of room width and room depth. That, however,
is not really surprising since room area is not considered in the
linear model. However, the improvement of model accuracy by
the introduction of further model assumptions is surprising. If we
leave aside corridor width for a moment, both the inclusion of
symmetries of window distances and of room width symmetries
leads to accuracies in the range of 1 cm. This should be compared
to observational accuracy of window locations of 10 cm which il-
lustrates the important role of symmetries for model parameter
estimation.

To get a different impression of this fact, one can look at the re-
dundancies of the model. Let us again assume n rooms and – to
simplify discussion – the same number of windows. If we omit
the window locations for the moment and restrict to the essen-
tial model parameters, we have n+ 6 model parameters (n room
widths, 2 depths, 1 corridor width and 1 corridor depth and 2
walls) and n + 5 observations (n room areas, 1 corridor area,
3× xmax and 1× ymax). This means that we have an undercon-
strained system. If we introduce window locations we get 2n ad-
ditional observation and 2n additional model parameters, which
leads again to an underconstrained system. To achieve an over-
constrained system with a certain amount of redundancy, pseudo-
observations have been used. Whereas the number of model pa-
rameters remains the same, we now get 2n + 8 observations.
This means, however, that prior knowledge on the distribution
of model parameters plays a dominant role. This role is consider-
ably reduced by the explicit representation of symmetries. Win-
dow distances lead to a reduction of 2n−1, while room widths
contribute to a reduction of n − 1. Interestingly, both cases lead
to similar results with regard to accuracies.

We also studied how sure we can be with regard to the assumption
of symmetries. As described above, we used AIC and BIC and
derived normalized likelihoods. In all cases, we found that with
0.99 versus 0.01 or better the true symmetric model outperformed
the model without this assumption considerably.

In the current setting, we assume that except for corridors each
room is associated to at least one window. More general set-
tings allow for having rooms without windows. As yet, our ap-
proach described how to derive floorplans from sparse observa-
tions. The 2D models can be extended following the ideas pre-
sented by Loch-Dehbi et al. (2017). Especially door shapes and

Figure 4: Detection and correction of potential errors in the topo-
logical model. The small room omitted from the topological
models is estimated using stochastic reasoning.

positions are predicted based on probability density functions ap-
proximated by Gaussian mixtures. Prior knowledge about win-
dows is exploited to localize the floor within the considered build-
ing. As described by Dehbi et al. (2016), the height of each storey
is derived by kernel density estimations based on 3D point clouds
of façades stemming from an unmanned aerial vehicle. These
conditional predictions depend on a given building style, other-
wise the latter can be inferred following the ideas of Henn et al.
(2012).

7 CONCLUSION

This paper presented an approach for predicting and reconstruct-
ing a-priori unknown structures in building interiors. In con-
trast to common approaches, the presented work does not rely on
dense observations such as 3D point clouds. For the prediction of
a floorplan, the areas of the rooms, the footprint and the location
of windows together with a prior knowledge in form of proba-
bility density functions is sufficient to estimate model parameters
with high accuracy.

Symmetries and other regularities in man-made objects allow for
a top-down process considering an indoor model with strong con-
straints and regularities. The latter is however characterized by
linear and bi-linear relations with discrete and continuous param-
eters. An extensive analysis of a ground truth database yielded a
profound prior knowledge that supported the estimation of floor-
plans. This includes distributions of model parameters that are
characterized by probability density functions and approximated
by Gaussian mixtures.

In this paper, we focused on the improvement of model param-
eters in an a-priori estimated topological model that was gener-
ated by the use of Constraint Logic Programming. Our approach
uses a Gauss-Markov model and incorporates not only probabil-
ity density functions, but also observations such as window loca-
tions or room areas. It further benefits from the representation of
symmetries in the known exterior model. Bayesian model selec-
tion is based on the information criteria AIC and BIC and incor-
porates observations in order to choose the hypotheses that best
fit the scenario. Errors in the preliminary topological model are
detected and corrected. Thus, accuracies in the range of 1 cm are
possible. The presented approach provides a ranked set of model
hypotheses with corresponding normalized likelihoods.

In this paper, we assume that rooms as well as the corresponding
footprint have a rectangular shape following a Manhattan world
assumption. More general room layouts such as L, T or even
U shaped rooms will be subject of future work. The considered
floorplans characterize office buildings. Model selection for other
building types like housing, where room numbers are not given,
will have to use slightly different models. The derivation of the
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functional model from the topological model will be addressed in
a subsequent article. Our approach does not rely on dense obser-
vations such as 3D point clouds from laserscans or range cameras.
However, additional observations of model parameters stemming
from such sensors can be integrated easily. They will improve the
accuracy of the estimated hypothesis.

ACKNOWLEDGEMENTS

We thank Jan-Henrik Haunert for his valuable discussion. The
authors are grateful to Stefan Teutsch for his assistance in prepar-
ing the illustrations.

REFERENCES

Akaike, H., 1974. A new look at the statistical model identifi-
cation. IEEE Transactions on automatic control 19(6), pp. 716–
723.

Becker, S., Peter, M. and Fritsch, D., 2015. Grammar-supported
3d indoor reconstruction from point clouds for ”as-built” BIM.
ISPRS Annals of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences 2(3), pp. 17.

Bishop, C., 2007. Pattern recognition and machine learning (in-
formation science and statistics). Springer, New York.

Charman, P., 1994. A constraint-based approach for the genera-
tion of floor plans. In: ICTAI, pp. 555–561.

Dechter, R., 2003. Constraint processing. Elsevier Morgan Kauf-
mann.

Dehbi, Y., Staat, C., Mandtler, L. and Plümer, L., 2016. Incre-
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