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ABSTRACT: 

 

The use of Indoor Mobile Laser Scanners (IMLS) for data collection in indoor environments has been increasing in the recent years. 

These systems, unlike Terrestrial Laser Scanners (TLS), collect data along a trajectory instead of at discrete scanner positions. In this 

research, we propose several methods to exploit the trajectories of IMLS systems for the interpretation of point clouds. By means of 

occlusion reasoning and use of trajectory as a set of scanner positions, we are capable of detecting openings in cluttered indoor 

environments. In order to provide information about both the partitioning of the space and the navigable space, we use the voxel 

concept for point clouds. Furthermore, to reconstruct walls, floor and ceiling we exploit the indoor topology and plane primitives. The 

results show that the trajectory is a valuable source of data for feature detection and understanding of indoor MLS point clouds. 

 

 

1. INTRODUCTION 

 

Indoor 3D models are required for navigation, building 

maintenance, disaster management and many other applications. 

However, manual creation of indoor 3D models is an expensive 

and cumbersome process for large buildings such as airports, 

shopping malls and hospitals. Indoor mobile laser scanning 

(IMLS) is a popular choice for data acquisition and for the 

generation of 3D models. Terrestrial laser scanners (TLSs) suffer 

from limitations such as the need for many scanning stations, 

manual alignment of point clouds and occlusion; in contrast, 

mobile laser scanners (MLS), because of their mobility, offer 

more coverage of indoor environment with less occlusion. IMLS 

systems, in addition to the point clouds, provide a continuous 

trajectory of device locations instead of few discrete station 

points in TLS. Current methods for indoor reconstruction and 

semantic labelling use mainly TLSs (Becker et al., 2015; Mura et 

al., 2014a; Oesau et al., 2014) or RGB-Depth data (Armeni et al., 

2016; Khan et al., 2015). If MLS data is used as in (Xiao and 

Furukawa, 2014), the benefit of trajectory data is not exploited. 

In spite of the flexibility of MLS systems, the presence of 

occlusions caused by clutter (e.g. furniture) in the final point 

clouds is hindering indoor reconstruction. It is specifically 

challenging to distinguish automatically between occluded parts 

and genuine openings. We apply a method similar as Adan and 

Huber (2011) did in combination with the trajectory knowledge 

for detection of openings and labelling of gaps in the data. 

Another challenge of complex indoor environments is the 

presence of transparent and specular surfaces such as glass and 

mirrors that cause reflection and interference in point clouds. 

Such erroneous points - when they occur inside the permanent 

structure - cause the presence of “ghost walls” and surfaces which 

automatic methods are not capable to recognize. We offer a new 

method based on the trajectory and time stamps to detect and 

remove these reflections. For the detection of permanent 

structure such as walls, floor and ceiling, we use a method that 

exploits the topology of planar primitives. Current indoor 

*  Corresponding author 

 

reconstruction methods are often limited to Manhattan-World 

structure (Budroni and Boehm, 2010) or employ horizontal 

floor/ceiling and vertical wall assumption (Ochmann et al., 2016; 

Oesau et al., 2014; Xiao and Furukawa, 2014). Other methods 

generate 2.5D models (Oesau et al., 2014; Turner and Zakhor, 

2014) or do not consider the detection of openings and addition 

of  semantics (Mura et al., 2014a; Oesau et al., 2014; Xiao and 

Furukawa, 2014). Unlike the mentioned methods, our method is 

capable of dealing with highly cluttered environments, slanted 

walls and non-Manhattan-World structures. In order to partition 

the space into corridors, rooms and navigable space we introduce 

a new method that uses the concept of volumetric empty space 

by using voxel space. An analysis in voxel space allows space 

partitioning regardless the planar primitives and segmentation 

limitations. Additionally, we use a combination of voxels and 

trajectory to detect open and closed doors intersected by the 

trajectory. The result of this research is not a watertight 

reconstructed model but a representation of a coarse 3D model 

including permanent structure, openings and space partitions. 

The result is represented as a labelled point cloud, which will be 

used as input for further investigations. The main contribution of 

our work is in the exploitation of IMLS trajectories as a valuable 

source to interpret indoor scenes. 

 

2. RELATED WORK 

 

Indoor models have been investigated from two main 

perspectives: indoor model reconstruction and indoor model 

applications. While the former studies the methods for building 

3D models (façade and indoor) from the data such as RGBD, 

LiDAR and imagery, the latter tries to improve indoor model 

standards such as BIM (Building Information Modelling) and 

CityGML (LoD4, LoD3). Our work is under the umbrella of the 

first group and we mainly focus on related work in the domain of 

indoor reconstruction. Most of the recent research on indoor 

modelling uses TLS data, synthetic data or Kinect data (Mura et 

al., 2014a; Ochmann et al., 2016; Oesau et al., 2014; Xiong et al., 
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2013). There are few works that use IMLS data for indoor 

reconstruction (Sanchez and Zakhor, 2012; Xiao and Furukawa, 

2014) but they are not using trajectory knowledge for better 

understanding of the indoor space. Sanchez and Zakhor (2012) 

propose an automatic method for planar 3D modelling of range 

scanner point clouds. Their data is not cluttered and the result 

does not have semantic attributes and openings. Budroni and 

Boehm (2010) apply a plane sweeping method to detect vertical 

and horizontal segments in a Manhattan-World case. The plane 

sweeping algorithm is a discrete method characterized by steps 

determined according to the points density.  

Adan and Huber (2011), building on an approach by Okorn et al. 

(2010), try to reconstruct walls and openings under the presence 

of clutter and occlusion. Xiong et al. (2013) improve this 

approach by reconstructing a semantically rich 3D indoor model. 

The authors, by means of ray casting, propose a so-called 

occupancy map to label wall surfaces as empty (e.g. windows), 

occupied (e.g. wall surface) and occluded. However, their 

method is not capable of detecting closed doors or windows with 

high reflection. Mura et al. (2014b) developed a cell 

decomposition method of a cluttered point clouds from a non-

Manhattan-World environment. Their approach can be 

considered as a combination of planar and volumetric based 

methods. In their approach, they do not detect openings or focus 

on semantic labelling. Furthermore, slanted walls and non-

horizontal ceilings cannot be reconstructed.  

Becker et al. (2015) use an L-System combined with a shape 

grammar to reconstruct interiors from point clouds. The authors 

define interior structure as two main subdivisions: rooms and 

hallways. Per each structure, they apply a specific grammar to 

reconstruct interior environment. Another example of using 

grammar is Ikehata et al. (2015). They encode indoor space first 

into a structure graph and then transform it to a structure 

grammar. Their work is a practical representation of inverse 

procedural modelling for indoor environments but limited to 

Manhattan-World structures.  

In contrast to the mentioned methods that are mainly based on 

planar structures and are not capable of defining rooms and 

interior spaces as 3D volumes, volumetric based approaches 

represent a 3D semantic model of indoor environments. 

Volumetric based reconstruction generates a 3D model instead of 

2.5D models that provides more information about rooms and 

their topology. Xiao and Furukawa (2014) propose iterative 

Constructive Solid Geometry (CSG) to generate a 2D model and 

with stacking 2D models on top of each other, a 3D model will 

be generated. Since the authors use rectangles and cuboids as 

primitives, their approach has a lack of efficiency for non-

Manhattan-World cases. Ochmann et al. (2016) apply energy 

minimization for detection of wall with arbitrary orientation to 

reconstruct volumetric walls and rooms from point clouds. In 

their model, topological relations between spaces and rooms are 

reconstructed in a graph structure, which simplifies to update the 

model in the future.  

In a recent work by Mura et al. (2016), the authors encode the 

indoor components in an adjacency graph and - by finding the 

path from ceiling to floor - try to detect and reconstruct the main 

components. Armeni et al. (2016)  parse point clouds collected 

with a Matterport system into indoor components for large-scale 

indoor scenes. The authors use walls as space divider to 

semantically generate space subdivisions and use this 

information to detect other structure elements. However, their 

work is not an effort for reconstruction but more towards scene 

understanding.  

One specific challenge when using mobile laser scanners in 

environments with many glass walls is the large number of 

reflections and points measured through transparent surfaces. 

There are a few works in the robotics domain that investigate this 

problem (Foster et al., 2013; Koch et al., 2017). The authors try 

to tackle scanner failures by understanding the relative geometry 

of real wall, glass wall and reflected wall. To our knowledge 

there is no research until now which investigates indoor 

environments using the IMLS trajectories. 

 

3. PERMANENT STRUCTURE DETECTION 

 

The input of our method can be mobile laser scanner point clouds 

acquired by trolley systems (e.g. NavVis M3, VIAMETRIS 

iMS3D), backpack (Google-Cartographer, Chen et al., 2010) or 

hand-held systems (e.g. ZEB1, ZEB-REVO). The examples in 

this paper are acquired by ZEB1 handheld laser scanner and 

NavVis M3 Trolley. Both systems use LiDAR sensors (e.g. 

Hokuyo UTM-30LX) with 3 to 5 cm noise in 10 to 30 m range 

according to the specifications. In this research, the assumption 

is that the point clouds are already registered in a common 

coordinate system and all points contain time stamps in both the 

trajectory and point clouds. Although some of the MLS data 

contain RGB information, in this research the color information 

is not exploited. The trajectories that we use in most algorithms 

consist of a set of ordered points of scanner positions with time 

stamps. To make a connection between each point in the point 

clouds and its scanner position in the trajectory we use time 

stamp in both datasets. 

 

3.1 Removing Reflected Points 

In the first step of our workflow, we filter noisy points, 

specifically points that are reflected from glass surfaces inside the 

main structure and cause “ghost walls” (s3 in Figure 1). We 

remove reflected points in a segment wise process. Our approach 

starts with the surface growing segmentation described in 

(Vosselman et al., 2004) followed by the removal of 

unsegmented points. 

A point is labelled as reflected when the nearest trajectory point 

is more than 150 seconds (time lag parameter) earlier or later 

(Figure 2). If a specific percentage of points (e.g. 70%) in a 

segment is labelled as reflected points, the whole segment will be 

labeled as reflected segment and will be excluded from further 

processing (Figure 3). 

 

3.2 Generating Surface Patches 

Surface patches are composed of merging segments based on 

some rules. For subsequent steps, the level of details of 

segmentation result is too high. Generalization is the transition 

from one level of details to another. Thus, we use a generalization 

approach to merge segments, build on a method explained by 

Haala and Kada (2010). Two segments will be merged and 

generalized based on three criteria: (i) planes of two segments 

should be within a specific distance (generalization distance = d), 

(ii) planes normal should be almost parallel (angle threshold = θ), 

(iii) bounds of two segments should have overlap or be within a 

distance from each other alongside their planes (proximity 

distance = d’). Using the third criterion, we avoid generalizing 

segments whose planes are coplanar but their bounds are far from 

each other. Generation of surface patches is not limited to vertical 

segments but can be carried out on segments with arbitrary angle. 

Figure 4 shows one example of surface patch generation.
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Figure 1. The trajectory (the zigzag orange line) and segments; 

s1, s2 and s3 are real surface, glass surface and reflected surface 

respectively. The data is acquired by ZEB1. 

 

Figure 2. Trajectory and segments are colored by time. The 

different color of reflected surface and nearby trajectory is 

because of time difference. 

Figure 3. Reflected surfaces are detected and labeled to be 

removed (green). Trajectory is cyan and correct points are in 

coral. 

  

 
Figure 4. All segments from figure (a) are generalized in two 

surface patches in figure (b). For this example, we used 

parameters: d=40cm, θ=10 degree, d’=40cm. Noise of this data 

is 5-8 cm. 

 

3.3 Detecting Walls, Floors and Ceilings 

In order to label each surface patch as wall, floor and ceiling we 

use the adjacency of extracted planar surfaces. Even in complex 

indoor environments, elements of the permanent structure often 

share common edges. For example, walls are connected to the 

floor and ceiling. However, this connection may not be detected 

because of clutter and gaps in the data. Especially at the 

connection between wall and floor, there is usually a lot of clutter 

(e.g. furniture). We define an adjacency graph as G = (V, E, w) 

where V is representing each surface and E is a set of graph edges 

representing the connection and w is a set of attributes (e.g. 

intersection type). Encoding indoor planar surfaces and their 

connections in a graph has several advantages: 1. Processing 

graphs is computationally faster than processing segments and 

lines. 2. We can interpret graphs for extraction of primitives, and 

patterns. 3. It is possible to modify surfaces and their connections 

by adding/removing edges to the graph (e.g. removing furniture 

nodes). 

 

3.3.1 Constructing Adjacency Graphs: To construct edges of 

the graph, we check if two surfaces intersect and if the 

intersection line is within a distance (e.g. 10 cm) of both surfaces. 

For each pair of adjacent surfaces one intersection line is 

generated (Figure 5, right). We classify surface patches to almost 

vertical and almost horizontal, using an angle threshold (e.g. 45 

degree). Based on this classification of surfaces, one class 

represents the walls’ connections (almost vertical) and the other 

wall and ceiling/floor connections (almost horizontal). In order 

to generate an adjacency graph, one edge E between each pair of 

intersecting surfaces is added to the graph G where vertices of E 

are the centers of gravity of each surface (Figure 6). We label (w) 

each edge of the graph based on following conditions: 

 

w = wallwall         iff   Svi  &&  Svj   intersect   

w = wallceiling    iff   Svi   &&  Shi    intersect  &&  Shi (z) >  Svi (z)   

w = wallfloor    iff   Svi    &&  Shi    intersect  &&  Shi (z) <  Svi (z) 

 

Where   Svi is an almost-vertical surface, 

 Shi is an almost-horizontal surface, and  

 S(z) is the z value of surface’s center of gravity. 

 

3.3.2 Labeling Surfaces: After generating the adjacency graph, 

we are able to analyze each node (v ϵ V) in the graph based on 

connections (e ϵ E). Each node, which is representing a surface 

(S), takes one of the labels wall, floor, ceiling or no-label based 

on the following conditions. 

 

(1) iff   Nowc  ≥  1   &&   S ϵ Svi            then S is wall 

(2) iff  Nowc  > 2   &&   Noww == 0      then S is ceiling 

(3) iff  Nowf  > 2   &&   Noww == 0      then S is floor 

 

Where  Nowc is the number of wallceiling  labels, 

  Noww is the number of wallwall      labels, and 

 Nowf  is the number of wallfloor     labels in each node. 

 

In labeling process, we do not include wallfloor connections as a 

valid condition for labeling a wall, because many features (e.g. 

furniture) are connected to the floor. The labeling process may 

assign a ceiling or floor label to any almost horizontal surface 

connected to other almost vertical surfaces. To modify these 

incorrect labels we need to estimate floor and ceiling height after 

the process and prune the results.

  

s2 s1 s3 
trajectory 

(a) 

(b) 
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Figure 5. Left: surface patches from generalization process. 

Right: intersection lines between pair surfaces. For simplicity of 

figures, we chose an area with minimal clutter. The data is 

acquired by a trolley system. 

 

  
Figure 7. Left: a wall surface containing holes, orange points are 

point clouds. Middle: the same wall surface in a voxel space, red 

voxels represent occupied areas and blue voxels are empty. Right: 

voxels after occlusion test, yellow voxels are openings and green 

are occlusions.  

 
Figure 6. (a) Shows surfaces with connected edges. (b) Shows 

edges and nodes of the graph. Each node is representing a 

surface. (c) Shows the floor and ceiling surfaces and edges of the 

graph. Three different colors of edges representing three types of 

connection for wallwall (cyan), wallceiling (purple) and 

wallfloor (brown). 

 

This implies that nodes with floor/ceiling label will be removed 

from the graph when the distance to the correct floor/ceiling 

height surpasses a threshold. Consequently, we remove also 

connected nodes with wall label. The results contain surfaces 

with wall, floor, ceiling and unknown labels. 

 

3.4 Detecting Openings Using MLS Trajectory and 

Occlusion Tests 

We use the detected wall surfaces in combination with the 

trajectory to detect openings (windows and doors). If we consider 

each opening as a hole in the wall surface, we need to 

discriminate between genuine openings and gaps because of 

occlusion. Therefore, we are not focusing on extracting the exact 

border of openings, but on labelling the holes in the point clouds. 

Adan and Huber (2011) use ray-tracing and occlusion labelling 

to detect openings. In their example they use ray-tracing for a 

single scanner position. However, in our case this is not 

applicable because each surface can be seen from many points on 

the trajectory.  

To implement occlusion test, we need the information from 

which scanner position in the trajectory, a point in the point cloud 

was observed. As explained in section 3.1, this information is 

available using time stamp in both data sets. Additionally, we 

reconstruct a 3D voxel space for each wall surface. Hence, in the 

position of holes, there are voxels with empty label and in the 

position of points there are voxels with occupied label. The 

occlusion test will label empty voxels further. One advantage of 

voxel space is speeding up the labelling process. Therefore, the 

occlusion test process needs three inputs: the whole point cloud, 

a set of voxels per surface and the trajectory. Per point in the point 

clouds, we reconstruct a ray to its corresponding scanner position 

for each time stamp (every 0.01 seconds depending on the data) 

and then check for occlusion by checking the intersection of the 

ray with other surface planes. If there is an intersection, the 

intersected voxel can take three labels: 1. occlusion if the 

intersection point is in front of the surface, 2. opening if the 

intersection point is behind the surface, 3. occupied if the 

intersection point is close to the surface and remains unchanged 

if there is no intersection (Figure 7). One drawback of the 

occlusion test is that during wall detection some surfaces are 

incorrectly labelled as walls, which consequently result in 

labelling fake openings (see black solid ovals in Figure 8b). 

 

3.5 Modified Point Clouds and Second Iteration 

One of the challenges of indoor reconstruction is removing points 

and surfaces outside the building footprint (Figure 8a). Modified 

point clouds are one of the side products of the occlusion test in 

which points behind transparent surfaces especially outside the 

building façade are removed. Then, by running wall detection 

method (section 3.3) for second time on modified point clouds, 

we remove excessive walls outside the building footprint (see 

black dot ovals in Figure 8b); we refer this process as second 

iteration for wall detection (Figure 8c). However, modifying 

point clouds in this way causes removing some of the points that 

belong to the main structure, but points that are measured through 

a transparent surface are expected to be noisier than point clouds 

and we prefer to eliminate them from the point cloud. The 

resulting dataset is essentially useful in buildings with glass 

walls. 

 

4. VOLUMETRIC SPACE PARTITIONING AND DOOR 

DETECTION IN VOXEL SPACE 

 

Partitioning the space to meaningful areas such as rooms and 

corridors is referred to room segmentation, space subdivision or 

space partitioning (Krūminaitė and Zlatanova, 2014; Mura et al., 

2016; Turner and Zakhor, 2014). By using mobile laser scanners, 

there is no information for the partitioning to individual rooms 

because we are not aware which points are captured in the same 

room. Therefore, we need a different approach than others who 

use TLS scans information for a coarse room segmentation 

(Ochmann et al., 2016).  

For detecting doors, we introduce a new approach that exploits 

the trajectory knowledge in combination with a voxel space. This 

method is capable of detecting most of the doors (either open or 

closed) intersected by the trajectory.

 

(a

) 
(b) 

(c) 
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Figure 8. The images show the input and output of section three. The algorithm takes laser point clouds as input and exports labeled 

laser points including walls, openings, floor, ceiling and clutter. (a) Cluttered 3D point clouds of a building story acquired by Zeb1. (b) 

Detected walls (orange) and openings (cyan) in the first iteration. Black dot ovals show incorrect walls outside the building footprint. 

Black solid ovals show incorrect detected openings (fake openings). (c) Detected walls and openings in second iteration after 

automatically removing points outside the building footprint. Blue boxes show the extent and thickness of the walls. 

 

4.1 Space Partitioning 

Space partitioning is independent from results of previous steps 

and is not based on segmentation into planes. The process starts 

with reconstructing 3D voxels from point clouds. Each voxel 

takes an occupied label if there are laser points in it and empty 

otherwise. The algorithm tries to collect empty voxels within a 

margin of occupied voxels. Therefore, per each empty voxel, we 

search all neighboring voxels by a search window (e.g. 30 cm) 

and we store this empty voxel if a percentage (e.g. 70%) of its 

neighbors is empty voxels. If we apply this process for the 

neighborhood of each empty voxel in three dimensions, the result 

will be a cluster with all empty voxels within a distance of 

occupied voxels (clutter), see Figure 9a. Since there are openings 

and gaps between permanent structures, some of the partitions 

remain connected. To disconnect some lose connections that 

probably are connected through small windows or small gaps, a 

morphological erosion in three dimensions on the result will be 

applied. Erosion will also remove very small empty spaces for 

instance under a table.  

Eventually, to have each individual empty space, we apply a 

connected component segmentation and generate various 

partitions (Figure 9a). As a result, each cluster of empty space 

could represent a room, corridor or empty space between 

furniture. One challenge in space partitioning is the presence of 

gaps and windows in the point clouds that causes the connection 

of partitions. In section 4.4, a solution for this problem is offered. 

 

4.2 Navigable and non-Navigable Space 

From the space partitioning results we extract those voxels which 

are just above the floor (e.g. 10 cm above the floor), and store 

them as navigable space (Figure 9d). This navigable area could 

be generated in various heights for the purpose of navigation for 

flying objects (e.g. drones). By using the original point clouds, it 

is likely that undesired space partitions and navigable space will 

be generated because of noisy points outside the building façade. 

These areas can be cropped by using the building footprint (as an 

external source) or using the method described in section 4.4. 

 

4.3 Door Detection Using Trajectory 

Doors are an important component for indoor reconstruction, 

especially for indoor navigation and room detection. During 

opening detection, we detected some of the doors as openings, in 

this step we specifically focus on detecting doors by using the 

trajectory. In the voxel space, each voxel can represent the center 

of a door if it satisfies three conditions: 

(i) Above each door center there should be at least several 

occupied voxels representing top of the door (top-door).  

(ii) Nearby (e.g. 15 cm) each door center there should be one or 

more trajectory points.  

(iii) In a neighborhood (e.g. 50 cm) of a door center there should 

be void (empty voxels) for open doors and not void (occupied 

voxels) for closed doors.  

If these three conditions are fulfilled, the voxel center is labelled 

as a door center candidate. In this article, we call the voxels and 

corresponding points above the door edge shortly top-door.  

There may be several door center candidates per door that meet 

the three conditions. After finding door centers, points on top-

door can be extracted, which gives us the position and orientation 

of the door and we can use this information to further look for 

door borders. In our examples, we just extract top-doors. The 

process needs the width and the height of the door, the search 

radius for the trajectory, the search radius for the void-hood as 

input, as well as a void-hood percentage (e.g. 70% empty voxels 

in the neighborhood). To speed up the process we only check 

voxels above a specific height, where a door center could be 

located. To search nearby trajectory points, the search area 

depends on the scanner device. For example, for a handheld laser 

scanner the search area should be different from a trolley laser 

scanner.

  

(a) (b) (c) 
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Figure 9. (a) Top view of space partitioning without using openings and wall information. Colored areas are empty spaces and black 

areas show the position of walls and clutter. (b) Space partitioning results after modification with openings and wall information. The 

overlaid orange layer show detected walls. Red dots show detected doors and red triangles show undetected doors. (c) Space partitioning 

and original floor plan. Light green area in the bottom of figure shows not correctly divided partitions. Small red triangles show the 

location of correct doors. (d) Navigable space (blue), clutter (yellow), and trajectory (coral). 

 

4.4 Combining Permanent Structure Results and Space 

Partitioning 

During the space partitioning process, some of the partitions 

could be connected to each other because of gaps and openings 

in the point clouds. To correct this problem and improve space 

partitioning, we use the detected openings and gaps resulting 

from the step described in section 3.4 and modify the partitions. 

Consequently, partitions that are incorrectly connected will be 

split (Figure 9b). However, this modification could result in over-

segmentation when incorrect openings are involved. In the case 

of large gaps and openings that are not detected by the occlusion 

tests, the space partitions remain connected (light green area in 

the bottom of Figure 9c and Figure 10). It is possible to separate 

connected partitions alongside the wall plane by using the wall 

information and post-processing. 

 

5. EVALUATION 

 

We tested our algorithms on a dataset of a three stories building 

acquired with the ZEB1 handheld system. The selected story 

contains 16 million points, which is reduced to 2.1 million by 

subsampling. The noise is between 5 to 8 cm (technical details 

are in (Sirmacek et al., 2016)). The dataset in Figures 5 and 6 

were acquired by a trolley system. The point clouds shown in 

other images were captured with the ZEB1 system. Figure 8 

shows the input and output of our approach in section three, 

where we detect walls and openings.  

 

5.1 Parameter Selection 

The first set of algorithms explained in section 3 is highly depend 

on the segmentation quality. Our algorithms for wall detection 

and opening detection work better with large segments, which 

contain several planes composing a wall. Generating surface 

patches reduces the number of segments from approximately 

1500 segments to 560 patches. For generating surface patches, 

we use the thresholds in Table 1. Usually, the thickness of a wall 

(including windows frames) varies from 40 to 80 cm, so the first 

threshold for planes distance should be in this range. The co-

planarity angle also should not exceed 20 degrees, because then 

surface patches will be skewed. The third parameter is the 

distance between segments alongside their plane and it should not 

be larger than a narrow corridor size. Otherwise, co-planar 

segments from two sides of the corridor could be merged and this 

would be problematic for occlusion tests.  

For the wall detection and the reconstruction of the adjacency 

graph, the intersection threshold of 0.10 m is appropriate for most 

kind of datasets. For the classification of planes to almost vertical 

and almost horizontal, we expect a fixed angle of 45 degree 

should result in precise outcome, but this has not been tested on 

various datasets. Additionally, during the wall detection we 

ignore small segments with less than 300 points (minimum 

segment size parameter). Other parameters (floor and ceiling 

height estimation) in wall detection are optional. 

In the second set of algorithms in voxel space (section 4), the 

selection of the voxel size is crucial and it should not be smaller 

than the point spacing. We tried our algorithm with a 5 cm, 10 

cm and 20 cm voxel size. With a 20 cm voxel size, the 

computation time is less but the results are sparse and less 

accurate especially in the border of openings. Therefore, 5 and 10 

cm voxel size are better choices.  

In the space partitioning and door detection, a larger search 

window size can significantly increase the computation time. The 

search window in space partitioning algorithms also defines the 

distance to the clutter.  

The selection of parameters for the door detection algorithm 

needs more investigation, because the void-hood percentage and 

search window size should be matched to find enough candidate 

points in the door centers. For example, doors that are half 

opened in the point clouds are difficult to process as an open door 

or closed door. One reason is, near the door center at the same 

time there are both empty neighbors and occupied neighbors that 

belong to the door position during scanning. 

 

5.2 Robustness 

The quality of the results for section 3 (reflection removal, wall 

detection, opening detection) depends on the segmentation and 

generation of surface patches. An ideal surface patch contains 

segments that belong to the same wall and has a rectangular 

shape. 

Despite being capable of dealing with non-Manhattan-World

(a) 

(d) (c) 

(b) 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W4, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W4-355-2017 | © Authors 2017. CC BY 4.0 License.

 
360



 
Figure 10. A 3D model of walls and space partitions. This model 

can be further processed to reconstruct a watertight model. 

 

structures, our algorithm may fail in cases of loose connections 

or no connection to the ceiling.  

The opening detection algorithm depends on the correctness of 

detected surfaces. More rectangular surfaces lead to better result, 

because of usage of bounding box for each surface to detect 

openings. In the case of walls which are not extended to the 

ceiling (e.g. kitchens island, staircases) excess openings will be 

generated (Figure 8b). Detecting excessive openings (false 

positive predictions) is especially problematic when we remove 

points behind them, because removed points might belong to the 

main structure. However, in our experiment the amount of these 

false positive openings is low and does not affect the overall 

accuracy significantly. Using the result of modified points from 

the opening detection step and running the wall detection 

algorithm for second iteration (section 3.5) considerably 

improves the wall detection results and removal of the incorrect 

walls outside the building footprint (Figure 8b).  

The space partitioning algorithm in principle is independent from 

segmentation, the result is more promising after correction with 

wall and opening detection results (Figure 9b). Navigable space 

in 2D and 3D is a valuable information and is robust against 

parameter selection. The only affecting issues for the navigable 

space are points outside of the building footprint or connections 

through undetected gaps or openings. The door detection 

algorithm is sensitive to parameter changes and can be error 

prone concerning the position of the door during the scanning. 

 

5.3 Accuracy 

Since we present the result as a set of labelled point clouds, the 

correctness and completeness is measured point-wise, not object-

wise (Tables 2 and 3). We calculated the accuracy of wall, floor 

and ceiling detection separately from opening detection. During 

the opening detection process, points (voxel centers) will be 

generated in the position of gaps and holes, but we just measure 

the correctness of the result of the generated points. The result is 

highlighted in Table 2, right. The lower precision of occluded 

area (gaps) is a consequence of detecting many false positives 

outside the building footprint.  In Table 2, left and Table 3 the 

correctness (precision) of wall, floor, and ceiling in both 

iterations is promising, however, the completeness (recall) of 

classes in second iteration dropped significantly. This is a result 

of removal of points behind the surfaces during the occlusion test, 

which consequently in second iteration deteriorate the 

completeness of the results.  

Regarding door detection algorithm, we detected twelve correct 

 
Table 1. Parameter settings per algorithm 

 

 
Table 2. Accuracy results of 2nd iteration (section 3.5), left: 

permanent structure detection results, right: opening detection 

results. For opening detection because we do not have total 

number of points in openings and gaps (there is hole in the data), 

we just show the correctness (precision) of the detected results 

and not completeness (recall). 

 

 
Table 3. Accuracy result of 1st iteration (section 3.3). 

 

hits out of seventeen doors (Figure 9b). Among detected doors, 

four doors are closed doors, which are cumbersome to detect 

without using the trajectory. Undetected doors are mainly 

because of sparse number of points on top of the door center or 

because the criteria for void hood search around the door center 

are not satisfied. 

The quality of space partitioning result is highlighted and 

compared with original floor plan in Figure 9c. Except the hall in 

the middle of area that is connected to the outside through large 

windows (light green area), other partitions are mostly detected 

and divided correctly. It is possible to improve this result with 

further processing with wall positions. 

 

5.4 Limitations 

Although our method for wall detection is not limited to vertical 

walls or horizontal floor/ceiling, it needs to be improved in 

complex surfaces with several connection angles. Another 

limitation is the composition of structure near the ceiling. If walls 

are not connected to the ceiling, or heavily occluded near the 

Algorithm Parameters Value

SurfaceGrowing 

Segmentation

distance to surface

seed search radius

0.10 m

1.0 m

Reflection Removal
time difference

# of reflected points in a segment

150 s

70%

Surface Patch 

Generation

planes distance

segments distance

planes angle

0.60 m

0.40 m

10 degree

Wall/Floor/Ceiling 

Detection

intersection threshold

surface angle threshold

floor height estimation (optional)

ceiling height estimation (optional)

dist to floor, ceiling (optional)

0.10 m

20 degree

-

-

0.50 m

PruneWall Detection
dist to floor, ceiling 0.50 m

Occlusion Test

(Opening detection)

voxel size

closenees dist to surface

0.10 m

0.60 m

Space Partitioning
voxel size

search windows size

0.10 m

5*voxel_size

Door Detection

voxel size

door size (width, height)

search windows size

percentage of void_hood points

trajectory search radius

0.10

9*21*voxel_size

5*voxel_size

70%

0.15 m

Class Precision Recall F1-Score Class Precision

Wall 0.95 0.53 0.68 Openings 0.73

Floor 0.97 0.67 0.79 Occluded 0.57

Ceiling 0.98 0.51 0.68 Occupied 0.89

Class Precision Recall F1-Score

Wall 0.88 0.95 0.91

Floor 0.93 0.98 0.95

Ceiling 0.93 0.98 0.95
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ceiling, the result is not promising. In spaces that there are 

structures not extended to the ceiling such as kitchen islands, 

staircases, bookshelves near the wall, the wall detection 

algorithm fails and opening detection can generate fake windows 

in such cases. Built-in bookshelves and cabinets will be detected 

as part of the wall structure, if during the patch generalization 

they are generalized as part of the surrounding wall. 

Concerning reflected points from glass surfaces, currently we 

remove them, and the better solution is try to reconstruct them in 

the correct position by exploiting scanning geometry. 

Among the algorithms, the occlusion test, generation of surface 

patches and space partitioning significantly take more time to 

process than the other algorithms.  

In this work, we do not provide detailed timing process and 

computation environment because it is not the focus of this 

research. Algorithms optimization is part of the future work. 

 

6. CONCLUSIONS AND FUTURE WORK 

We presented several algorithms for the interpretation of interior 

space using MLS point clouds in combination with the trajectory 

of the acquisition system. We use trajectories for the detection of 

openings, doors, and reflected surfaces. Furthermore, our 

permanent structure algorithm is not limited to Manhattan-World 

and 2.5D assumptions. By applying the voxel space to 3D point 

clouds, we extract and partition empty spaces by using opening 

and wall detection results. Applying our methods on a complete 

building with slanted walls, extracting stairs, detection of 

openings borders and generate a watertight model are topics of 

future work. 
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