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ABSTRACT: 

 

Indoor positioning is a fundamental requirement of many indoor location-based services and applications. In this paper, we explore 

the potential of low-cost and widely available visual and inertial sensors for indoor positioning. We describe the Visual-Inertial 

Odometry (VIO) approach and propose a measurement model for omnidirectional visual-inertial odometry (OVIO). The results of 

experiments in two simulated indoor environments show that the OVIO approach outperforms VIO and achieves a positioning 

accuracy of 1.1% of the trajectory length. 

 

 

1. INTRODUCTION 

Robust and real-time indoor positioning is crucial in location-

based services and applications such as indoor navigation, 

emergency response, and tracking goods inside buildings (Gu, 

et al., 2009).  Since Global Navigation Satellite System (GNSS) 

signals are mostly blocked or jammed by obstacles such as 

walls and ceilings, or interfered by wireless equipment, GNSS 

cannot provide a reliable and continuous positioning solution in 

indoor environments. Consequently, various technologies for 

indoor positioning have been proposed in the past few years. 

Wireless technologies such as Wi-Fi, ZigBee, Bluetooth, Ultra-

WideBand (UWB), and magnetic measurements have been used 

and tested by different industrial and research teams (Liu, et al., 

2007). The Indoor Positioning Systems (IPSs) based on these 

technologies can estimate the position of a user or object at a 

course granularity, with accuracies in the order of tens of 

meters, up to a fine granularity, with accuracies down to a few 

meters (Konstantinidis, et al., 2015). However, these IPSs 

require an infrastructure of beacons and sensors pre-installed in 

the environment, which limits their applicability. 

 

The common approach to infrastructure-free indoor positioning 

is Pedestrian Dead Reckoning (PDR). In PDR the position is 

estimated based on inertial measurements sensed by 

accelerometers and gyroscopes, which are available in most 

smartphones. The advantage of inertial positioning is that it is 

purely self-contained and therefore does not need any external 

references. In addition, inertial sensors can provide continuous 

positioning. However, due to the incremental nature of 

estimation in PDR, the position estimates drift over time 

(Groves, 2013). State of the art PDR approaches combine 

inertial measurements with step length estimation and use 

motion state recognition and landmarks to constrain the drift of 

position estimates (Gu, et al., 2016a; Gu, et al., 2016b). 

 

Despite the widespread availability of cameras, e.g. on 

smartphones, they have mainly been used for positioning robots 

in indoor environments (Caruso, et al., 2015; Bonin-Font, et al., 

2008). As an exteroceptive sensor, a camera captures visual 

information surrounding the user in a sequence of images, 

which can be matched to estimate the trajectory of the camera. 

This approach is usually referred to as Visual Odometry (VO) 

(Nistér, et al., 2004). The visual information can also be used to 

simultaneously construct a map of the environment, in an 

approach commonly known as Simultaneous Localization and 

Mapping (SLAM) (Langelaan, 2007; Ong, et al., 2003). The 

accuracy of vision-based positioning can be better than 1 meter 

(Caruso, et al., 2015). However, using a camera as the only 

sensor for position estimation is likely to fail in environments 

with insufficient texture and geometric features, such as 

corridors with plain walls. To resolve this issue, visual 

information can be fused with inertial measurements. This 

approach is known as Visual-Inertial Odometry (VIO) 

(Mourikis & Roumeliotis, 2007; Kim & Sukkarieh, 2007; Li & 

Mourikis, 2013). In VIO, visual observations from a camera are 

fused with inertial measurements from an IMU within a filtering 

method such as an Extended Kalman Filter (EKF) to ensure 

continuous positioning in environments which lack salient 

features or texture. 

 

Compared to perspective cameras, omnidirectional cameras 

such as dioptric cameras (with fish eye lens) and catadioptric 

cameras (with mirrors) provide a larger field of view (FoV) 

allowing image features to be tracked in longer sequences. This 

has been shown to result in more accurate position estimation 

(Zhang, et al., 2016). While omnidirectional cameras have been 

used in VO approaches (Caruso, et al., 2015; Zhang, et al., 

2016), their performance within a VIO framework has not been 

evaluated for indoor positioning. 

 

In this paper, we evaluate the performance of visual-inertial 

odometry using both perspective and omnidirectional cameras 

in simulated indoor environments. We fuse inertial 

measurements with image features tracked in multiple images 

within a Multi-State Constraint Kalman Filter (MSCKF) 

(Mourikis & Roumeliotis, 2007). We propose a new algorithm 

called Omnidirectional Visual-Inertial Odometry (OVIO) based 

on the MSCKF estimation approach. Because the standard 

perspective model is unsuited for omnidirectional cameras, in 

this algorithm, we define the measurement model on a plane 

tangent to the unit sphere rather than on the image plane. 

 

The paper is organized as follows. In section 2, we briefly 

describe the visual-inertial odometry approach, and in Section 3 

we propose a new algorithm to integrate omnidirectional images 

with inertial measurements. In section 4, we evaluate the 

performance of visual-inertial odometry in two simulated indoor 

environments. Finally, conclusions are drawn and directions for 

future research are discussed. 
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2. VISUAL-INERTIAL ODOMETRY USING A 

PERSPECTIVE CAMERA 

Visual and inertial measurements are typically integrated using 

an Extended Kalman Filter (EKF) (Huster, et al., 2002; You & 

Neumann, 2001). The EKF estimation consists of two steps: 

propagation, and update. In the propagation step, according to a 

linear system model, the IMU state, which is a vector of 

unknowns such as position, velocity, rotations and IMU biases, 

as well as its covariance matrix are propagated. In the second 

step, the state vector is updated from the image observations 

through a measurement model. Amongst the EKF methods, 

some consider epipolar constraint between pairs of images 

(Roumeliotis, et al., 2002; Diel, et al., 2005) while others 

consider a sliding window of multiple images (Nistér, et al., 

2006). The Multi-State Constraint Kalman Filter (MSCKF) is a 

filtering method that employs all the geometric constraints of a 

scene point observed from the entire sequence of images 

(Mourikis & Roumeliotis, 2007). Using all the geometric 

constraints obtained from a scene point results in more accurate 

position estimation and smaller drift over time. For this reason, 

the MSCKF is adopted as our estimation method to integrate the 

inertial measurements from an IMU with visual measurements 

from a camera. 

 

In the MSCKF, after the state vector is propagated, this vector 

will be updated when a scene feature is tracked in an 

appropriate window of camera poses. Mourikis and Romeliotis 

(2006) recommend a window size of 30 camera poses. Figure 1 

shows the general workflow of the MSCKF. 

 

 

Figure 1. The general workflow of the MSCKF. 

 

3. MEASUREMENT MODEL FOR 

OMNIDIRECTIONAL VISUAL-INERTIAL ODOMETRY 

Though the MSCKF takes full advantage of the constraints that 

a scene point provides, it has been used only for the integration 

of IMU measurements and visual observations from a 

perspective camera. However, as mentioned before, an 

omnidirectional camera has the advantage of capturing more 

features around the camera, resulting in more accurate 

positioning. Therefore, we propose an algorithm to integrate 

visual observations from a sequence of images captured by an 

omnidirectional camera with the IMU measurements.  

 

The measurement model defined in the conventional MSCKF 

involves the residual vectors of the image points and the 

reprojection of these on the image plane (Mourikis & 

Roumeliotis, 2006). The image plane is not appropriate for 

omnidirectional images which have large distortions. To solve 

this issue, we calculate the residual vectors on a plane that is 

tangent to the unit sphere around each measurement ray. 

Figure 2 shows the projection and reprojection of the j-th scene 

point Xj in a central omnidirectional camera in which the rays 

pass through view-points, Ci, i = 1 … Nj, where Nj is the 

number of images from which the scene point Xj is seen. The 

normalized point 𝐱𝑖𝑗
𝑠  is the projection of the scene point Xj to 

the unit sphere around view point Ci. Along the vector 𝐱𝑖𝑗
𝑠 , the 

vector p" is the projection of the scene point on the mirror or 

the lens. This vector is a function of the point on the sensor 

plane, u", which is highly non-linear and depends on the 

geometric shape of the lens or mirror (Barreto & Araujo, 2001). 

A generic model was proposed by Scaramuzza et al. (2006) in 

which the non-linearity between the unit sphere and the image 

plane is represented by a polynomial. This model is flexible 

with different types of central omnidirectional cameras, and is 

therefore adopted here to project the points from the unit sphere 

to the image plane and vice versa. According to this model, the 

vector 𝐱𝑖𝑗
𝑠  can be calculated as: 

                       xij
s = [

xij
s

y
ij
s

zij
s

] = 𝒩 ([
u"ij

𝑔(‖u"ij‖)
])                   (1) 

where, 𝒩 is the normalization operator mapping points from 

the mirror or lens onto the unit sphere, and 𝑔(‖u"ij‖) is a non-

linear function of the Euclidean distance ‖𝐮"𝑖𝑗‖ of the point  

𝐮"𝑖𝑗  to the centre of the sensor plane given by: 

                           𝑔(‖𝐮"𝑖𝑗‖) =  ∑ 𝑎𝑙‖𝐮"𝑖𝑗‖
𝑙𝑁

𝑙=0                    (2) 

In the above expression, the coefficients al, are the camera 

calibration parameters, where l = 1 . . . N. 

 

The normalized vector �̃�𝑖𝑗
𝑠  is the reprojection of the scene point 

on the unit sphere obtained from: 

                           x̃ij
s =𝒩 ([I3|03,1]M̂Ci

-1
X̂
sj

)                   (3) 

In this equation, the vector X̂
sj

 is the estimation of the 

homogeneous vector of the scene point. The matrix M̂ci
 is the 

estimation of the camera motion comprising the rotation matrix 

of the camera Ci from the global frame {G} to the camera frame 

{Ci}, ĈG

Ci
 and the translation of the camera Ci in the global 

frame {G}, P̂Ci

G
:  

                                 M̂ci
= [
ĈG

CiT
P̂Ci

G

03,1
T 1

]                   (4) 

 

 

Figure 2. The components of reprojection in a single view-point 

omnidirectional camera. 
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Due to the redundancy of normalized points, their covariance 

matrices are singular. Therefore they must be reduced to the 

minimum parameters (Förstner, 2012). To this end, the 3D 

normalized points are mapped to the plane that is tangent to the 

unit sphere around each ray. From the difference between the 

reduced vectors of xij
s  and x̃ij

s , the 2D residual vector rij is 

obtained. 

 

By projecting the feature points extracted from omnidirectional 

images onto the tangent plane and reprojecting their 

corresponding points on the same plane, the residuals can be 

calculated. Now, this residual model can be linearized with 

respect to the camera exterior orientation parameters and the 

scene point. Finally, the residuals are stacked in a vector and 

they will be used in the standard measurement model in the 

EKF update to update the vector of unknowns. The proposed 

procedure for integrating inertial measurements with 

omnidirectional image measurements within the MSCKF 

framework is given in Algorithm 1. 

 

Algorithm 1 The proposed OVIO based on the MSCKF  

 

System model 

After recording each inertial measurement, 

 Propagate the state vector  

 Propagate the covariance matrix 

 

Measurement Model 

Having recorded each image, 

 Add the camera pose to the state vector and augment 

the covariance matrix. 

 Detect, match, and track the projected points 

corresponding to the scene point Xj in the image 

plane. 

 Calculate the normalized points, 𝐱𝑖𝑗
𝑠 , on the unit 

sphere as well as the normalized reprojected points, 

�̃�𝑖𝑗
𝑠 . 

 Reduce the points to the tangential plane to calculate 

the residual rij. 

 Stack the 2D residuals. 

 

Update 
Once the measurements of the scene point Xj and the 

corresponding residuals are obtained, 

 Update the state vector  

 Update the covariance matrix. 

 

 

4. EXPERIMENTS 

A challenge in the evaluation of vision-based positioning 

algorithms in indoor environments is the accurate measurement 

of a ground truth trajectory. To overcome this issue, we carry 

out experiments in two simulated indoor environments with 

predefined ground truth trajectories. The first simulation 

involves predefined features in the scene, and thus no error in 

feature tracking, to find out to what extent the integration of a 

camera with an IMU can reduce the drift compared to the IMU-

only integration. The second simulation is performed in a 

photorealistic synthetic environment to study the effect of 

feature tracking on the final accuracy and examine the 

performance of the proposed OVIO. In both experiments we 

evaluate the accuracy by computing the Root Mean Squared 

Error (RMSE), where the error is defined as the difference 

between the estimated position and the corresponding point on 

the ground truth trajectory. 

4.1 Simulation using predefined features 

The aim of this simulation is to evaluate the performance of 

visual-inertial odometry with perfect visual observations. In this 

simulation, a total of 3000 features were randomly generated on 

the walls of a corridor along a ground truth trajectory with an 

approximate length of 77 meters. The image measurements of 

the features were recorded at 1Hz simulating a perspective 

camera moving at a constant velocity. The IMU measurements 

were simulated at 100 Hz using points on the ground truth 

trajectory. The IMU measurements were added with a constant 

error and a random noise for simulating the biases associated 

with the inertial measurements. Figure 3 shows the simulated 

environment with the generated feature points, the ground truth 

trajectory, the trajectory obtained from the simulated IMU 

measurements only, and the trajectory estimated by the VIO 

approach. It is evident that while the IMU trajectory quickly 

drifts away, the VIO trajectory closely follows the ground truth. 

 

Figure 4 shows the cumulative distribution of translational and 

rotational errors for the perspective VIO approach and for the 

IMU integration. The total RMSE, defined as the root mean 

square of RMSEs along the trajectory, for translation and 

rotation are about 0.5 m and 0.04 rad respectively for the VIO 

approach, whereas these values for the IMU-only integration are 

6.15 m and 0.24 rad. Considering the trajectory length, the 

perspective VIO reaches an overall positioning accuracy of 

0.6% of the trajectory length compared to 8% for the IMU-only 

integration. Note that this accuracy is achieved without 

considering any feature tracking error.   

 

 

 

Figure 3. Top: The simulated indoor environment with the 

generated feature points. Bottom: The top view of the simulated 

indoor environment and the estimated trajectory (blue) 

compared with the IMU trajectory (red) and the ground truth 

(green). 
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Figure 4. Left: Cumulative distribution of translational error for 

the perspective VIO approach and the IMU integration. Right: 

Cumulative distribution of rotational error for the perspective 

VIO approach and IMU integration. 

 

4.2 Simulation in a photorealistic synthetic environment 

To study the effect of feature tracking error on the position 

estimation and also to evaluate the proposed OVIO, an 

experiment was conducted in a synthetic indoor environment 

created in Blender1. We generated photorealistic synthetic 

images for a perspective and a fisheye camera along a ground 

truth trajectory. To render the perspective images, we used the 

built-in perspective module in Blender, and for the 

omnidirectional images we applied an open-source patch 

(Zhang, et al., 2016) which is based on the Scarramuzza’s 

model (Scaramuzza, 2006). To simulate further research in 

vision-based indoor positioning, we publicly release our dataset 

consisting of synthetic images rendered with the perspective and 

fisheye cameras2. The images were recorded at 30 Hz with the 

resolution of 640×480 looking in the forward direction. The 

FoV considered for the perspective is 90º and for the fisheye is 

180º. Figure 5 shows sample images of these datasets. 

 

  

  

Figure 5. Example images from the sequence recorded using a 

simulated perspective camera (top) and a simulated fisheye 

camera (bottom). 

 

We extracted features using the Speeded Up Robust Features 

(SURF) (Bay, et al., 2008) and tracked them using Kanade-

Lucas-Tomasi (KLT) tracking (Tomasi & Kanade, 1991). The 

miss-matched points were identified as outliers and rejected by 

an M-estimator SAmple Consensus (MSAC) (Torr & 

Zisserman, 1998) algorithm with a 3-point affine transform. 

                                                                 
1 https://www.blender.org/ 
2 https://www.researchgate.net/profile/Milad_Ramezani/contributions 

Figure 6 shows an example of feature matching results in both 

the perspective and the fisheye view. 

 

  

Figure 6. Features after tracking process in perspective view 

(left) and fisheye view (right). The green pluses show the 

features tracked along the image sequence. 

 

 

Figure 7 (left) shows a boxplot of the number of tracked 

features in each frame for both the perspective view and the 

fisheye view. The total number of tracked features in the 

perspective view is 1628, and in the fisheye view is 1690. 

Moreover, the minimum number of tracked features in the 

fisheye view is 17, while this value is 3 for the perspective 

view. Overall, the number of features tracked in the fisheye 

image sequence is only slightly higher than that in the 

perspective one. However, as it can be seen from Figure 6, the 

features tracked in the fisheye view cover a larger area around 

the camera than the perspective one, providing a better 

geometry for position estimation.  

 

  

Figure 7. Left: Boxplot of the number of tracked features in 

each frame for both perspective and fisheye views. Right: 

Boxplot of the number of frames from which each feature is 

observed.  

 

Figure 7 (right) shows a boxplot of the number of frames from 

which each feature is observed. The larger values for the third 

quartile and the maximum indicate that some features are seen 

over a longer sequence of images in the fisheye view than in the 

perspective view.  

 

To generate the IMU measurements, we used the ground truth 

comprising the 3D position and 4D quaternion resampled at 300 

Hz. Similar to the previous experiment, we added a constant 

error and a normalized random noise to simulate the static and 

dynamic bias of the accelerometers and gyroscopes.  

 

The top view of the estimated trajectories compared to the 

ground truth is shown in Figure 8. It can be seen that the 

trajectories estimated by the omnidirectional VIO and the 

perspective VIO closely follow the ground truth whereas the 

IMU trajectory exhibits a significant drift. Figure 9 shows the 

cumulative distribution of the translation errors and the rotation 
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errors for the perspective and the omnidirectional VIO as well 

as the IMU-only integration. Clearly, the omnidirectional VIO 

outperforms the perspective VIO and results in more accurate 

position estimates. The difference in the performance of VIO 

and OVIO is more significant in terms of rotational accuracy, 

where OVIO gives rotation estimates that are 3 to 4 times more 

accurate than those obtained by VIO. The total length of the 

trajectory that the camera travelled is about 47 meters. 

Considering the length of the trajectory and the total error for 

translation, the drifts for the IMU integration, perspective and 

omnidirectional VIO are 9%, 1.3% and 1.1% respectively.   

 

By comparing these results with those of the first experiment 

with error-free features, we can see that although the drift of the 

IMU integration is similar in the two experiments, the drift of 

the perspective VIO is approximately twice as large in the 

second experiment with synthetic images. This indicates that the 

IMU errors and the feature tracking errors contribute equally to 

the drift of the trajectory estimated by the visual-inertial 

odometry method. 

 

 

 

Figure 8. Top view of the estimated trajectory for perspective 

VIO (blue), and spherical VIO (magenta) compared with the 

IMU only integration (red) and the ground truth (green). 

 

  

Figure 9. Left: Cumulative distribution of translational error for 

the perspective VIO, the omnidirectional VIO and the IMU 

integration. Right: Cumulative distribution of rotational error 

for the perspective VIO, the omnidirectional VIO and the IMU 

integration. 

5. CONCLUSION  

In this paper, we evaluated the performance of visual-inertial 

odometry in 3D indoor positioning. We proposed a 

measurement model to integrate visual observations from an 

omnidirectional camera with inertial measurements within a 

MSCKF estimation process. The results of the experiments with 

synthetic images of an indoor environment showed that the 

proposed omnidirectional visual-inertial odometry (OVIO) 

method outperforms the perspective VIO, and achieves a 

positioning accuracy of 1.1% of the length of the trajectory.  

 

In the future, we will focus on integrating information from a 

Building Information Model (BIM) with the OVIO to eliminate 

the drift and maintain the positioning accuracy for longer 

distances. 
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