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ABSTRACT:

In the last years several V-SLAM(Visual Simultaneous Localization and Mapping) approaches have appeared showing impressive
reconstructions of the world. However these maps are built with far more than the required information. This limitation comes from the
whole process of each key-frame. In this paper we present for the first time a mapping method based on the LOOK UP TABLE(LUT)
for visual SLAM that can improve the mapping effectively. As this method relies on extracting features in each cell divided from image,
it can get the pose of camera that is more representative of the whole key-frame. The tracking direction of key-frames is obtained by
counting the number of parallax directions of feature points. LUT stored all mapping needs the number of cell corresponding to the
tracking direction which can reduce the redundant information in the key-frame, and is more efficient to mapping. The result shows
that a better map with less noise is build using less than one-third of the time. We believe that the capacity of LUT efficiently building
maps makes it a good choice for the community to investigate in the scene reconstruction problems.

1. INTRODUCTION

Visual Simultaneous Localization and Mapping (Smith,1986) is
one of the key issues that whether autonomous robotics com-
munity or computer vision community is very concerned about.
It has been developed for a long time, and mainly solves two
problems; one is estimating the camera trajectory, the other is
reconstructing the geometry of environment at the same time.
Recently, key-frame-based SLAM has almost become the domi-
nating technique for solving a variety of computer vision tasks.
According to researches by Strasdat (Strasdat,2011) et al., key-
frame-based techniques are more accurate per computational u-
nit than filtering approaches. key-frame-based Parallel Track-
ing and Mapping (PTAM) (Klein,2007) were once regarded by
many scholars as the gold standard in monocular SLAM. Nowa-
days the most representative key-frame-based system is probably
ORB-SLAM (Mur-Artal,2015), it achieves unprecedented per-
formance with respect to other state-of-the-art SLAM approach-
es. Although the excellent performance of ORB-SLAM if we
compare it with other solutions, key-frame-based SLAM stil-
l cannot be considered perfectly. The main contribution of ORB-
SLAM is that the ORB features can be well localization and re-
localization. But the reconstructing of the environment is not it-
s strength. KinectFusion (Newcombe,2011) and RGB-D Map-
ping (Henry,2014) is good at mapping. But today maps are al-
most built by using the whole frame, and the same information in
neighbour frames is more than 80%, in other words, most infor-
mation in an image is redundant for mapping. The problem gets
worse if the scenario is not static, because few useful informa-
tion also contains dynamic targets that we do not want to build in
maps. To address this limitation, we consider that the key-frame
segmentation is crucial, and we find a big lack in these sense in
ORB-SLAM like systems. In this paper we do not use the deep
learning methods to segment and understand the scene, instead
we split key-frames into 16 copies to justify the LUT method.
In order to verify the validity of this novel method, we design a
∗Corresponding author

RGB-D SLAM program for indoor application. Figure 1 shows
the flowchart of the system, which we describe in the following
sections.

Figure 1. System overview

2. ALGORITHM IMPLEMENTATION SCHEME

2.1 Tracking

The image is divided equally into 16 parts at the first stage. The
number 16 just as an example in this paper, however, an image
should be divided into at least four tiles. And then we extract
a certain number of SIFT feature points and compute ORB de-
scriptor in each cell. Typically, we retain the same number of
feature points in each cell. But in order to ensure correct track-
ing in textureless scene, we also let the amount of key-points re-
tained per cell be adjustable if some grids contains no points. If
enough matches are found, we retrieve each feature points from
the last frame, which has a depth value in depth graph, from 2D
image coordinates to 3D camera coordinates. At this point we
have a set of 3D to 2D correspondences and the camera pose can
be computed by solving a PnP problem (Lepetit,2009) inside a
RANSAC scheme. The final stage in the tracking is to decide
if the current image is a new key-frame. To achieve this goal,
we use same condition with PTAM on the distance to other key-
frames (Klein,2007).
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2.2 Estimating Direction

Once the tracking system calculates a set of key-points and fea-
ture matches, we can estimate directions by counting the number
of parallax directions of feature points. The feature points of the
current frame are subtracted from the matching feature points of
the previous frame in the x and y directions respectively. We de-
termine an eight-neighbourhood direction based on the parallax
in the x and y directions compared to the threshold that is preset,
and select the direction with the largest number of statistics as
the tracking direction. The tracking direction is very useful for
mapping, which is explained in Sections 2.5.

2.3 Loop Closer

The nature of the loop closer is to identify where the robot has
ever been. If loops are detected from the map, the camera lo-
calizations error can be significantly reduced. The simplest loop
closer detection strategy is to compare the new key-frames with
all the previous key-frames to determine if the two key-frames
are at the right distance, but this will lead to the more frames that
need to be compared. The slightly quicker method is to random-
ly select some of the frames in the past and compare them. In
this paper we use the both strategies to detect the similar key-
frames. A pose graph is a graph of nodes and edges that can
visually represent the internal relationships between key-frames,
where each node is a camera pose and an edge between two nodes
is a transformation between two camera poses. Once a new key-
frame is detected, we add a new node to store the camera pose of
the currently processed key-frame, and add an edge to store the
transformation matrix between the two nodes.

2.4 Global Bundle Adjustment

After knowing the network of pose graph and initial guesses of
camera pose, we use global bundle adjustment to estimate the ac-
curate camera localizations. Our bundle adjustment includes all
key-frames and remains the first key-frame fixed. To solve the
non-linear optimization problem and carry out all optimization-
s we use the Levenberg Marquadt method implemented in g2o
(Kuemmerle,2011), and the Huber robust cost function. Inmathe-
maticsand computing, the Levenberg Marquardt algorithm (Hart-
ley,2003), is used to solve non-linear least squaresproblems, es-
pecially, suitable for minimization with respect to a small number
of parameters. The complete partitioned Levenberg Marquardt
algorithm is given as algorithm 1.

2.5 Mapping with LUT

Once having an accurate estimation of the camera pose, we can
project all key-frames to the perspective of the first key-frame by
the corresponding perspective transformation matrix. To perform
a 3D geometrical reconstruction, we can convert the 2D coordi-
nates in the RGB image and the corresponding depth value in the
depth image into 3D coordinates using a pinhole camera mod-
el. But in the current SLAM indoor scenes, the camera move-
ment is typically very small. Redundant information is still too
much for the mapping even if the screening of key-frames such
as ORB-SLAM (Mur-Artal,2015). As the biggest innovation of
this paper, we present for the first time a mapping method based
on the LOOK UP TABLE(LUT) for visual SLAM that can solve
this difficult situation and improve the mapping efficiently. As in
Sections 2.1 and 2.2, we divide the image into 16 parts and get
the direction of an 8-neighborhood. Now we create a table that
stores each tracking directions and the number of the grid that

Algorithm 1 Levenberg−Marquardt algorithm.

Given: A vector of measurements X with covariance matrix∑
X , an initial estimate of a set of parameters P =

(aT , bT )T and a function f taking the parameter vector P
to an estimate of the measurement vector X .

Objective: Find the set of parameters P that minimizes
εT

∑
X−1ε where ε = X −X−1.

1: Initialize a constant λ = 0.001 (typical value);
2: Compute the derivative matrices A = [∂X/∂a] and B =

[∂X/∂b] and the error vector ε;
3: Compute intermediate expressions:

U = AT ∑
X−1A

V = BT ∑
X−1B

W = AT ∑
X−1B

εA = AT ∑
X−1ε

εB = BT ∑
X−1ε

4: Augment U and V by multiplying their diagonal elements by
1 + λ;

5: Compute the inverse V ∗−1, and define Y = WV ∗−1. The
inverse may overwrite the value of V ∗ which will not be
needed again;

6: Find δa by solving (U∗ − YWT )δa = δA − Y δB ;
7: Find δb by back-substitution δb = V ∗−1(εB −WT δa);
8: Update the parameter vector by adding the incremental vec-

tor (δTa , δTb )
T and compute the new error vector;

9: If the new error is less than the old error, then accept the new
values of the parameters, diminish the value of λ by a factor
of 10, and start again at step 2, or else terminate;

10: If the new error is greater than the old error, then revert to the
old parameter values, increase the value of λ by a factor of
10, and try again from step 4.

is necessary to mapping corresponding to the tracking direction.
For example, the top direction corresponds to 0,1,2,3 cells and
the top-left direction corresponds to 0, 1, 2, 3, 4, 8, 12 cells. The
LUT used in our program is shown in table 1.

Direction The mapping cells Note
0 0,1,2,3,4,8,12 top-left
1 0,1,2,3 top
2 0,1,2,3,7,11,15 top-right
3 3,7,11,15 right
4 3,7,11,12,13,14,15 bottom-right
5 12,13,14,15 bottom
6 0,4,8,12,13,14,15 bottom-left
7 0,4,8,12 left

Table 1. Look up table

As shown in Figure2, if we divide the key-frame into n cells, and
use f(cell) to describe the information of the cell, then an image
can be expressed as:

f(image) =

n∑
i=0

f(celli) (1)

And the map can be expressed as:

f(map) =
∑

f(direction) (2)

The mapping information of each direction can be expressed as:

f(direction) =
∑

cell∈D

f(cell) (3)
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Where D is the mapping cells corresponded to a certain direction.

Figure 2. Schematic diagram of image segmentation

3. EXPERIMENTS

In this section we present two experiments, which attempts to
show the performance of our approach. We perform the experi-
ments with an Intel Core i7-4600U CPU @ 2.10GHz × 4 proces-
sor, but we only use one thread to test and verify our method. In
addition, we used the TUM RGB-D Bench-mark (Sturm,2012) as
it provided the depth image which can reduce the complexity of
algorithm design.

3.1 Tracking

In this experiment we compare the effect of the image segmen-
tation 16 parts and then extract the feature points and the overall
extraction of feature points on the camera pose. Figure 3 and
Figure 4 shows the feature points which are extracted from the
whole image, and Figure 5 and Figure 6 shows the images which
are divided into 16 parts and then the feature points are extract-
ed. As you can see by comparing Figure 3 and Figure 5, we can
find that after the image segmentation, the number of the feature
matching is increased, and by comparing Figure 4 and Figure 6,
we can find that the distribution of the feature matching is rel-
atively uniform. We also calculate RMSE of the reprojection to
represent the camera pose error size, and find that the reprojection
errors(Hartley,2003) calculated using our method is smaller than
that of the non-processing, which is shown in Figure 7. In other
words, the camera pose error becomes smaller when the feature
points are evenly distributed.

Figure 3. Extract feature points in whole image and good
matches condition is 5 times the minimum distance

3.2 Estimating Direction and Mapping with LUT

In this experiment the eight-neighbourhood direction of the pic-
ture is defined as the direction of camera movement (see Figure

Figure 4. Extract feature points in whole image and good
matches condition is 5 times the minimum distance

Figure 5. Divide image equally into 16 parts and extract feature
points respectively

Figure 6. Divide image equally into 16 parts and extract feature
points respectively

Figure 7. RMSE of the reprojection

8). In order to estimate the camera move direction, we subtrac-
t the coordinates of the matching feature points of the current
frame from the coordinates of the feature points of the previous
frame. Then the parallax is compared with the threshold to de-
termine which direction to move. As shown in the Table 1, we
can find the grid number needed for mapping. And then we on-
ly update these grid information in the map. Figure 9 shows the
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result of the method that based on the entire key-frame, and Fig-
ure 10 shows the result of our method. Through the contrasts of
Figure 9 and Figure 10 we can find that the noise in map built by
LUT-based method is reduced and the ghosting disappeared. But
the disadvantage is that the information on the left is incomplete.
This is because at the situation of far left, left direction of move-
ment only appeared once. Table 2 shows the time consumption of
the two mapping methods. It can be found that we use less than
one-third of the time to build a better map with less noise.

Figure 8. The direction of camera movement

Figure 9. The result of key-frame-based SLAM

Figure 10. The result of our method

Mapping method time consumption
Keyframe-based 4.88s

LUT-based 1.46s

Table 2. Average time consumption

4. CONCLUSION

We have presented a novel LUT-based SLAM mapping method,
which effectively improves the quality and speed of mapping. To
the best of our knowledge there is no similar mapping ideas used
in SLAM programs. As is vividly shown in the Figure 11, we
changed the key-frame-based mapping method into LUT-based
mapping method. Therefore it can greatly improve the mapping
speed and reduce the redundant information of mapping.

Figure 11. The whole image processing into deals only with a
part of every image
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