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ABSTRACT: 
 
Superpixel segmentation has an advantage that can well preserve the target shape and details. In this research, an adaptive 
polarimetric SLIC (Pol-ASLIC) superpixel segmentation method is proposed. First, the spherically invariant random vector (SIRV) 
product model is adopted to estimate the normalized covariance matrix and texture for each pixel. A new edge detector is then 
utilized to extract PolSAR image edges for the initialization of central seeds. In the local iterative clustering, multiple cues including 
polarimetric, texture, and spatial information are considered to define the similarity measure. Moreover, a polarimetric homogeneity 
measurement is used to automatically determine the tradeoff factor, which can vary from homogeneous areas to heterogeneous areas. 
Finally, the SLIC superpixel segmentation scheme is applied to the airborne Experimental SAR and PiSAR L-band PolSAR data to 
demonstrate the effectiveness of this proposed segmentation approach. This proposed algorithm produces compact superpixels 
which can well adhere to image boundaries in both natural and urban areas. The detail information in heterogeneous areas can be 
well preserved. 
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1. INTRODUCTION 

Object-based segmentation and classification are promising in 
remote sensing field, which significantly outperform the pixel-
based image processing (Niu and Ban 2013; Ban and Jacob 
2013). Therefore, object generation plays a key role in this kind 
of processing, where the images are segmented into many 
homogeneous regions. A superpixel is defined as a local region 
which preserves most of the object information and well 
adheres to the object boundaries (Xiang et al. 2013). To better 
preserve the polarimetric and statistical characteristics of the 
images and also overcome the influence of speckle noise in the 
meantime, superpixel generation and segmentation with regular 
size and shape seem promising for PolSAR data. Until now, 
numerous superpixel segmentation algorithms have been 
proposed for optical images, among them, the simple linear 
iterative clustering (SLIC) (Achanta et al. 2012) method is 
popular and shows good performance in superpixel generation. 
In contrast, there are very few superpixel generation and 
segmentation approaches proposed for SAR and PolSAR 
images. Xiang et al. (Xiang et al. 2013) developed a novel 
superpixel generation algorithm based on pixel intensity and 
location similarity, which modified the similarity measure of 
SLIC to make it applicative for SAR images. For PolSAR data, 
Liu et al. (Liu et al. 2013) incorporated the revised Wishart 
distance and edge map into the Normalized cuts algorithm to 
produce superpixels. On the basis of SLIC, Feng et al. (Feng, 
Cao, and Pi 2014), Song et al. (Song et al. 2015), and Qin et al. 
(Fachao, Jiming, and Fengkai 2015) utilized the symmetric 
revised Wishart distance, Bartlett distance and revised Wishart 
distance respectively as the similarity measures instead of the 
original one to generate superpixels. It can be seen that these 
methods are all designed based on the assumption of Wishart 

distribution, which can well describe the backscatters of natural 
areas. However, for heterogeneous urban areas, this assumption 
is usually violated (Wenjin, Huadong, and Xinwu 2015; Soergel 
2010), making the superpixels not well adhere to urban 
boundaries and preserve the polarimetric features. In the 
meantime, it is quite difficult to find a particular distribution to 
describe the backscatters of urban areas since they are 
extremely complex (Wenjin, Huadong, and Xinwu 2015). 
Therefore, superpixel generation and segmentation for PolSAR 
images, especially in heterogeneous urban areas, still remains 
unsolved. Another drawback of these methods lies on the non-
adaptive selection of trade-off factor, which balances the 
polarimetric similarity and spatial proximity while 
simultaneously provides control over the shape and 
compactness of superpixels. This parameter is usually set 
manually to a constant value by trial and error, which might not 
be suitable in some areas. 
 
Recent studies show that the higher scene heterogeneity leads to 
non-Gaussian clutter modelling (Vasile et al. 2010). The 
spherically invariant random vector (SIRV) proposed by Yao 
(Yao 1973), is a sort of non-Gaussian processes with random 
variance and has been already used in PolSAR data 
classification (Doulgeris, Anfinsen, and Eltoft 2008) and 
segmentation (Bombrun et al. 2011). Inspired by SLIC and the 
SIRV product model, this paper proposes an adaptive 
superpixel segmentation algorithm (Pol-ASLIC) for PolSAR 
images. The key points of this approach are the definition of 
pixel similarity measure and the adaptive setting of trade-off 
factor. The edge map is also essential to the final superpixel 
generation. The main contributions of this paper are listed as 
follows: 1) We utilize a new edge detector based on the SIRV 
model to detect PolSAR image edges. Traditional CFAR 
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detector is designed on the basis of Wishart distribution and 
cannot well detect the edges in complicated scenes. In contrast, 
our method can get a better edge map, especially in 
heterogeneous urban areas. 2) We define an effective similarity 
measure which contains multiple cues including polarimetric, 
texture, and spatial information for superpixel generation in 
PolSAR images. Therefore, more local information can be 
considered. 3) We propose an adaptive trade-off factor to 
control the shape and compactness of superpixels. Similar to 
(Fengkai, Jie, and Deren 2015), the equivalent number of looks 
(ENL) and new edge maps are combined to produce an 
effective polarimetric homogeneity measurement, which is then 
incorporated into the trade-off factor, making it flexible in 
homogeneous and heterogeneous regions. Thus, the number of 
parameters in traditional SLIC reduces to only one, i.e., the 
superpixel number. Furthermore, there are very few over- or 
under-segmentation in the final superpixel map compared to 
other methods. 
 

2. SIRV PRODUCT MODEL FOR POLSAR DATA 

2.1 Parameter Estimation 

In the SIRV product model, the m -dimensional complex 
measurement k  is defined as (Vasile et al. 2010) 

τ=k z                                         (1) 
where z  is an independent complex circular Gaussian vector 
with zero mean and normalized covariance matrix †E{ }=Μ zz . 
The superscript † denotes the conjugate transpose operator. τ is 
a positive random variable and its PDF is not explicitly 
specified. For PolSAR data, the normalized covariance matrix 
Μ  characterizes polarimetric diversity while the random 
variable τ  can be considered as spatial texture, which 
represents the randomness of spatial variations and only affects 
the scattering power. The PDF of k is denoted as (Vasile et al. 
2010) 
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where N  represents the number of independent samples used 
in the estimation. For PolSAR applications, the target vector k  
can be formed using the linear bases as 

T

HH HV VV, 2 ,S S S =  k                       (3) 

here HH VV,S S and HVS are the elements of complex scattering 
matrix, T is the transpose operator. Therefore, in this paper, m  
equals to 3. For a given Μ , the texture estimator îτ can be 
obtained by maximizing the log likelihood function of (2) like 
(Vasile et al. 2010) 
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Replacing iτ  in (2) with (4), we can obtain the maximum 
likelihood estimator of normalized covariance matrix as (Vasile 
et al. 2010) 
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which can be obtained by a recursive algorithm as 

1
ˆ ˆ( ).i if+ =C C                            (6) 

Note that the convergence of (6) can be assured with an 
arbitrary initialization of ˆ

iC  (Vasile et al. 2010). Therefore, 

this algorithm can be initialized with the identity matrix 

0
ˆ

m=C I . The span for SIRV case is given by 

{ } { } { }† †E ( ) E Tr .P mτ τ τ τ= = = = ⋅z z z z Μ      (7) 

The texture estimator in (4) can then directly be linked to the 
total scattering power (span) according to (7). Hence, the 
maximum likelihood estimator of span is defined as 

              (8) 
It can be observed that the estimated covariance matrix is 
independent of the total scattering power and it only contains 
the polarimetric information. Finally, according to (1), the 
conventional covariance matrix C  can be derived as  

ˆ ˆ .P
m

=C C                               (9) 

In terms of the number of samples N used in the estimation, 
existing studies have shown that the span driven adaptive 
neighborhood (SDAN) (Vasile et al. 2008) can achieve a good 
tradeoff between preserving signal characteristics and collecting 
a large number of samples. According to the above estimation 
scheme, the conventional covariance matrix C  of a PolSAR 
data set is decomposed into two parameters, i.e., the normalized 
covariance matrix Ĉ  which contains polarimetric information 
and the span P̂  that contains scalar texture information. In the 
next sections, for simplicity, Μ and P  are represented by the 
estimations Ĉ  and P̂ , respectively. These two parameters will 
be finally utilized for PolSAR edge detection and superpixel 
segmentation. 
 
2.2 Distance Measure between Covariance Matrices 

Measuring pixel similarity in PolSAR images is quite essential 
to our proposed framework. It will be used in the following 
edge map calculation and superpixel segmentation. This 
subsection introduces the SIRV distance between two 
normalized covariance matrices. 
 
For normalized covariance matrices, since they do not respect 
the Wishart distribution, conventional Wishart distance cannot 
be directly applied. Similar to (Liu et al. 2013), the likelihood 
ratio test respects to the texture τ  and the normalized 
covariance matrix Ĉ  is also adopted to derive the 
corresponding SIRV distance. The new hypothesis test is 
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where iΜΣ  and jΜΣ  are the center normalized covariance 

matrices of two regions iΘ  and jΘ , respectively. Then the 
generalized likelihood ratio is 
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Correspondingly, maximizing 1Q  in (11) is equivalent to 
minimizing the following SIRV distance like 
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It can be observed that this distance measure considers the 
polarimetric information from neighborhood pixels, which can 
reduce the effect of speckle noise to some extent. However, this 
distance measure is not symmetric, which makes it unsuitable 
for superpixel generation. Similar to the definition of symmetric 
revised Wishart distance in (Anfinsen, Jenssen, and Eltoft 2007), 
we define the symmetric SIRV distance as 

   (13) 
where it can be seen that the first term of (12) is removed and 
the symmetric distance is dominated by the second term which 
takes into account the neighbor observed samples. This is 
beneficial for some distributed targets, such as the complex 
buildings in heterogeneous urban areas. 
 
3. METHODOLOGY OF SUPERPIXEL GENERATION 

3.1 SLIC Superpixel Segmentation 

The basic idea of SLIC is the performance of local k-means 
clustering, and image pixels are iteratively assigned to 
neighborhood superpixels with close pixel gray value and 
spatial location (Achanta et al. 2012). The procedure includes 
three steps: 1) initialization of the cluster centers; 2) k-means 
clustering in a local region; and 3) post-processing. 
 
Let pN  be the total pixel number, and K  is the desired 

superpixel number. Initially, K  cluster centers are sampled on 
a regular grid with uniform step size p /S N K= . The centers 

are then moved to the locations corresponding to the lowest 
gradient position in a 3 3×  neighborhood, which avoids 
centering a superpixel on an edge and to reduce the chance of 
seeding a superpixel with a noisy pixel. Next, in the assignment 
step, each pixel is assigned to the nearest cluster center with the 
least distance whose search region overlaps its location, and 
then the superpixel centers will be updated. In terms of the 
distance measure SLICD , the pixel spectral information and the 
spatial location information are combined into a single distance 
measure as (Achanta et al. 2012) 

2 2
p s

SLIC

d dD
Sλ

   = +   
  

                 (14) 

where sd  is the Euclidean distance between two superpixels 
with center locations at ( , )i ix y  and ( , )j jx y . pd  represents the 
pixel spectral distance, which is the Euclidean distance in the 
three dimensional CIELAB color space. It should be noted that 
if simply defining SLICD  to be five dimensional Euclidean 
distance, there will be inconsistencies in clustering behavior for 
different superpixel sizes. For example, for large superpixels, 
spatial distances outweigh color proximity, giving more relative 
importance to spatial proximity than color. This will produce 
compact superpixels those do not adhere well to image 
boundaries. In contrast, for smaller superpixels, the converse is 
true. Therefore, it is necessary to normalize color proximity and 
spatial proximity by their respective maximum distances within 
a cluster. The maximum spatial distance within a given cluster 
should be the sampling interval S . However, for color 
distances, since it can vary significantly in different clusters, it 
is not easy to determine the maximum color distance λ  in (14). 
This problem can be avoided by modifying (14) as 

( )
2

2 s
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dD d
S
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               (15) 

where β  is a weighting factor to be set manually that controls 
the shape and compactness of superpixels. Finally, after the 
clustering procedure, the pixels in the same cluster may be 
disjointed in space. Such pixels should be assigned the label of 
the nearest cluster center using a connected components 
algorithm. 
 
3.2 Edge Detector 

In CFAR edge detection algorithm, a set of filters with different 
orientations are applied on each pixel of a PolSAR image to 
calculate the edge map. The filter is displayed in Fig. 1 (a), 
which is controlled by four parameters, i.e., the length fl , the 
width fw , the spacing fd between two rectangle regions, and the 
angular increment fθ between two orientations. These filters 
estimate the average covariance matrix within the rectangle 
window on both sides of the center pixel and then calculate the 
Wishart distance as a measure of the probability of an edge 
pixel. The edge strength of each pixel is represented by the 
maximum distance from different sets of filters in this pixel. 
This method has been used in various PolSAR image 
applications (Lang et al. 2014; Liu et al. 2013), however, there 
are still two limitations: 
i) Rectangle window functions are poor 2-D smoothing filters. 

Strong speckle in PolSAR data will diminish the average 
accuracy of covariance matrix since all the pixels are put 
equal weights; 

ii) The Wishart distribution is not suitable for heterogeneous 
urban areas, resulting in incorrect covariance matrix 
estimation and the corresponding distance measure. 

 
Filter banks have been proven to be effective for the edge 
detection since they can extract directional intensity variations. 
Inspired by this idea, we replace the rectangle-shaped filter with 
Gauss-shaped filter to overcome the first limitation of 
traditional CFAR edge detector, as shown in Fig. 1 (b). The 
horizontal Gauss-shaped window function is defined as: 

2 2

2 2
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2 22 2 x yx y
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σ σπσ πσ
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fθ fθ

(a) (b)

fd

1R

2R

 
Fig. 1. Filter configuration. (a) Rectangle-shaped filter. (b). 
Gauss-shaped filter. 
where xσ and yσ control the window length and width, 

respectively. W is the Gauss weight for each pixel, which will 
be used for the average of local covariance matrix of center 
pixel on both sides of the window. From (16) it can be observed 
that the pixels near the center pixel have larger weights than 
other pixels. This is in accordance with the fact that information 
contained at the pixels near the center pixel is more important 
than those at other pixels when deciding whether the center 
pixel is an edge pixel. At each orientation, the local average 
center covariance matrix for a PolSAR image can be computed 
as 
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After that, we utilize the SIRV distance given in (13) to 
calculate the similarity of center normalized covariance 
matrices on both sides of the central pixel. 
 
3.3 Homogeneity Measurement 

The new edge map introduced in previous subsection not only 
is beneficial to the initialization of cluster centers in SLIC, but 
also will be helpful to analyze the homogeneity in PolSAR 
images. Inspired by (Lang et al. 2014), in this paper, we utilize 
the ENL estimation method proposed in (Anfinsen, Doulgeris, 
and Eltoft 2009) to calculate the ENL value for each pixel and 
then further combine the proposed edge map to define a 
homogeneity measurement for PolSAR data. It is worth 
pointing out that this ENL estimator is less affected by texture 
and thus provides more accurate results than other estimators. 
Therefore, although the technique in (Anfinsen, Doulgeris, and 
Eltoft 2009) is based on the Wishart distribution, it can be used 
for ENL estimation in this study. 
 
The random matrix Z  is assumed to be positive semidefinite 
and satisfy complex Wishart distribution with L  degrees of 
freedom and scale matrix { }E / L=Σ Z . Then the following 

moment of Z  can be derived as (Anfinsen, Doulgeris, and 
Eltoft 2009): 

( ){ } ( ) ( )22E Tr Tr Tr .L L= +ZZ ΣΣ Σ        (18) 
Based on (18), the trace moment-based estimator of ENL is 
derived as 

( )
( ) ( )

2Tr
ENL

Tr Tr
=

−
Σ

XX ΣΣ
               (19) 

where / L=X Z . The detailed derivation of this estimator can 
be found in (Anfinsen, Doulgeris, and Eltoft 2009). 
 
Since the ENL and edge map are both related to target 
polarimetric information and more importantly, their value 
trends in homogeneous and heterogeneous regions are opposite, 
combining the ENL and edge map can significantly improve the 
probability of discriminating homogeneous and heterogeneous 
areas. According to (Fengkai, Jie, and Deren 2015), the 
homogeneity measurement can be represented as  

ENLHoM=
EDGE

                       (20) 

where EDGE  denotes the proposed edge map. 
 
3.4 Similarity Measure with Multiple Cues 

This subsection gives the distance measure for PolSAR 
superpixel generation and segmentation, which considers the 
polarimetric, texture, and spatial information at the same time. 
The homogeneity measurement is incorporated into the distance 
measure, making the trade-off factor adaptive to balance the 
shape and compactness of the superpixels. We firstly introduce 
the polarimetric similarity cue and texture similarity cue, then 
give the complete distance measure which is incorporated with 
the homogeneity measurement. 
 
As we discussed before, the conventional covariance matrix can 
be decomposed into two parts, i.e., the normalized covariance 

matrix Ĉ  which contains the polarimetric information and the 
span P̂  that contains scalar texture information. Since the 
distance measure in (13) mainly considers the polarimetric 
information, we define a texture distance TD  based on the 

estimated span P̂  like 

T

ˆ ˆ( , ) ( , )
ˆmax( )

i i j jP x y P x y
D

P

−
=                          (21) 

where ˆmax( )P  denotes the maximum value of P̂  and | |⋅  
represents the absolute value operator. It should be noted that 
since the estimated span only contains the scalar texture 
information without polarimetric information, simple 
subtraction operation can be applied on P̂  directly. 
 
In (15), β  is utilized as a weighting factor to balance the 
spectral similarity and spatial proximity. Similarly, in (Song et 
al. 2015; Fachao, Jiming, and Fengkai 2015; Feng, Cao, and Pi 
2014), this parameter is also chosen to be a constant to balance 
the polarimetric and spatial similarity. This parameter is usually 
set manually by trial and error, which might cause over- or 
under- superpixel segmentation in some spatially complicated 
areas. In this paper, the parameter β  is set adaptively 
according to the local spatial complexity of the scene, which 
can be defined as 

( )adp
1 HoM( , ) HoM( , ) .
2 i i j jx y x yβ β= ⋅ +         (22) 

It can be seen that this adaptive parameter considers the 
homogeneity measurement of two compared pixels. Then the 
complete adaptive distance measure for superpixel generation is 
defined as 

( ) ( )
2

2 2 s
Pol-ASLIC SIRV T adp .dD SD D

S
β  = + + ⋅  

 
     (23) 

It is worth noting that since TD  is already normalized, there is 
no need to set another trade-off factor. adpβ  can be used to 
balance the spatial proximity and other two similarity measures. 
Specifically, for homogeneous areas where adpβ  is high, there is 
not too much edge information, the spatial proximity 
overweighs other two similarity measures, leading to compact 
superpixels. In contrast, for heterogeneous areas, adpβ  is low 
and can suppress the spatial proximity, therefore, the 
superpixels are generated mainly on the basis of polarimetric 
and texture information, which can well adhere to image 
boundaries. In (22), since the homogeneity measurement is 
quite large in homogeneous areas and low in heterogeneous 
areas, β  can be set to 1 in different cases. Thus, the number of 
parameters in original SILC algorithm is reduced from two to 
only one, i.e., the number of superpixels, making the proposed 
method easy to use. 
 
The implementation procedure of Pol-ASLIC is similar to that 
of SLIC except the steps before local iterative clustering, which 
covers the following steps. 
Input: original PolSAR image 

1) Normalized covariance matrix and span estimation. 
2) Edge map calculation based on the normalized covariance 

matrix. 
3) ENL estimation using (19). 
4) Homogeneity measurement calculation using (20). 
5) Set the number of superpixels K  and initialize the cluster 

centers. 
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6) Local iterative clustering with the adaptive distance 
calculated using (23). 

7) Post-processing to eliminate the disjointed pixels. 
Output: superpixel map. 
 

4. RESULTS AND ANALYSIS 

4.1 Dataset Description 

Here we choose one PolSAR dataset to demonstrate the 
effectiveness of our proposed method with visual presentation 
and quantitative evaluation and comparison. This dataset, as 
shown in Fig. 2 (a), was acquired by ESAR L band system with 
study area located in Oberpfaffenhofen, Germany. The number 
of looks is four. There are a lot of man-made buildings in Fig. 2 
(a), which is a heterogeneous urban area. For the visual 
presentation and quantitative evaluation, the manual 
segmentations are used as the ground truth. We select one area 
from the Pauli image and depict the ground truth segmentations, 
which are yellow lines in Fig. 2 (b). 

    (a)                                            (b) 
Fig. 2. ESAR L-band image from the Oberpfaffenhofen area in 
Germany. (a) Pauli RGB image. (b). The yellow lines are 
superimposed onto Pauli RGB image, depicting the ground 
truth segments. 
 
In our experiment, two superpixel segmentation methods for 
PolSAR data, i.e., Qin’s method in (Fachao, Jiming, and 
Fengkai 2015) and Liu’s method in (Liu et al. 2013), are 
utilized for comparison. The former is a modified version of 
SLIC and the latter is designed based on Normalized cuts. In 
these two compared approaches, the edge maps produced by 
traditional CFAR edge detector are both incorporated into the 
superpixel segmentation. 
 
4.2 Comparison of the Superpixel Segmentation Results 

In this subsection, we will compare the superpixel segmentation 
results of three methods by visual assessment and quantitative 
evaluation. Fig. 3 gives the superpixel segmentation results of 
ESAR dataset using Liu’s, Qin’s, and our proposed methods, 
respectively. The numbers of superpixel are all set to 2200. To 
compare the results in detail, two areas marked with yellow 
rectangles A and B are selected from Fig. 3 (c)-(f) and are 
shown in Fig. 4. Area A mainly includes the buildings while 
Area B covers natural targets, as well as some man-made 
targets. Fig. 3 (a), (c), and (e) present the final superpixel maps 
of three methods, where the red lines superimposed onto the 
Pauli images depict the superpixel boundaries. Fig. 3 (b), (d), 
and (f) give the corresponding representation maps, in which 
the coherency matrix of each pixel is replaced by the average 
coherency matrix of the superpixel this pixel belongs to. From 
Fig. 3 (a) and (b), we can see that the edges of the superpixels 

are very smooth, and the shapes of the superpixels are quite 
regular. In natural areas, the results are acceptable. However, in 
urban areas, these superpixels cannot adhere well to image 
edges, the points and lines in the image cannot be preserved and 
most of the urban information is lost. There are two reasons for 
this result. On one hand, the edge map calculated by traditional 
CFAR edge detector does not work well in heterogeneous urban 
areas. On the other hand, unlike SLIC, Normalized cuts 
algorithm does not consider the pixel local information. 
Compared with Fig. 3 (a), the result in Fig. 3 (c) seems much 
better, where most of the edges and points are preserved. The 
superpixels can well adhere to image boundaries and capture 
the local information. 

(a) (b)

(c) (d)

(e) (f)

A

A

B

B

Fig. 3. Superpixel generation results of Liu’s, Qin’s, and our 
proposed approaches with K = 2200 for ESAR image. The first 
column denotes the final superpixel maps of different methods. 
The red lines superimposed onto the Pauli images depict the 
superpixel boundaries. The second column gives the 
representation maps, where the coherency matrix of each pixel 
is replaced by the average value of the superpixel this pixel 
belongs to. 
 
However, the shape of the superpixel is very irregular and the 
edges are not smooth, even in the homogeneous natural areas, 
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as shown in Fig. 4 (c) and (g). In this method, to well preserve 
the edges and points, the trade-off factor which balances the 
polarimetric similarity and spatial proximity is set to 1.0. 

Therefore, the polarimetric similarity overweighs spatial 
proximity, leading to irregular superpixels. 

(c) (d)(a) (b)

(g) (h)(e) (f)  
Fig. 4. Comparison of detailed superpixel generation results in area A and B. The first row denotes the final superpixel maps. The 
green lines superimposed onto the Pauli images depict the superpixel boundaries. The second row gives the corresponding 
representation maps. (a) and (b) are the results of area A in Fig. 3 (c) and (e), respectively. (c) and (d) are the results of area B in Fig. 
3 (c) and (e), respectively. 
 
The results in Fig. 3 (e) and (f) indicate that our proposed 
algorithm can generate promising superpixels for PolSAR 
images. The target points and edges can be preserved very well. 
Moreover, the compactness of the superpixels is adaptive. In 
homogeneous areas, the edges of superpixels are very smooth 
and the superpixel shapes are quite regular, which can be seen 
in Fig. 4 (d) and (h). This is because in such areas, the 
homogeneity measurement is high, making the spatial 
proximity overweigh other two similarities. Therefore, the 
superpixels are compact and regular. In contrast, within 
heterogeneous areas, the homogeneity measurement is low. To 
preserve the detailed information, spatial proximity is not as 
important as polarimetric and texture similarities any more. 
Therefore, the superpixels have irregular shapes and can well 
preserve the image edges and points. From Fig. 4, we can also 
see that in heterogeneous areas, our method can achieve better 
results than Qin’s method, where the building edges are clearer 
and the man-made targets are better extracted. This is because 
our new edge detector based on the SIRV product model can 
detect more accurate edges. In addition, the proposed distance 
measure considers more local information for superpixel 
generation, such as the span information. Compared with other 
two methods, it can be concluded that the proposed method 
provides smoother approximations in homogeneous areas, and 
also can keep better details in heterogeneous areas. 
 
4.3 Quantitative Evaluation 

In this paper, to perform a quantitative comparison of different 
methods, we adopt two commonly used evaluation metrics: i.e., 
boundary recall (BR) and achievable segmentation accuracy 
(ASA). BR is defined as the fraction of ground truth boundaries 
correctly recovered by the superpixel edges. If a true boundary 

pixel falls within 2 pixels from at least one superpixel edge, it 
can be regarded to be recovered correctly. Therefore, a high BR 
indicates that the superpixels can well adhere to image edges 
and very few true boundaries are missed. ASA is defined as the 
highest achievable accuracy of object segmentation when 
regarding the superpixels as units. By labeling each superpixel 
with the ground truth segments of the largest overlapping area, 
ASA can be obtained as the fraction of labeled pixels those are 
not leaked from the ground truth boundaries. Thus a high ASA 
means that the superpixels comply well with objects in the 
PolSAR image. These two indicators can evaluate the final 
superpixel maps. 
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Fig. 5. Boundary recall (BR) of three methods with different 
superpixel numbers. 

 
Fig. 5 and Fig. 6 depict the BR and ASA of three methods with 
different numbers of superpixels, respectively. This number is 
set from 250 to 2500 with different step sizes. According to 
these two figures, Liu’s method performs the worst in terms of 
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boundary adherence and achievable segmentation accuracy. In 
addition, another drawback is its extremely low time efficiency. 
Qin’s method and our proposed method have similar BR values 
when the superpixel number does not exceed 500. However, if 
we increase this value, our method has a better boundary 
adherence than Qin’s method. In Fig. 6, these two methods have 
similar results but our method still performs slightly better than 
Qin’s approach. 
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Fig. 6. Achievable segmentation accuracy (ASA) of three 
methods with different superpixel numbers. 
 
It is worth mentioning that the number of superpixels in these 
methods is set to 2200. Although increasing this value can 
achieve better results for all the three methods, it is not 
recommendatory to produce too many superpixels for PolSAR 
data. The main advantage of superpixel generation is that 
superpixels can cause substantial speed-up of subsequent 
processing since the number of superpixels of an image is 
significantly lower than the number of pixels. Therefore, the 
goal of our approach is to get better segments for PolSAR data 
with a limited number of superpixels. 
 

5. CONCLUSION 

 
This paper proposes an adaptive superpixel segmemtaton 
method for PolSAR images. The whole framework is designed 
on the basis of local iterative clustering and a heterogeneous 
statistical model, which has three main contributions, i.e., edge 
map calculation, homogeneity measurement evaluation, and 
adaptive distance measure definition. The Gauss-shaped filter 
and SIRV model have been utilized to improve the traditional 
CFAR edge detector for PolSAR images. The edges of urban 
areas can be effectively extracted and the locations are also 
accurate. Multiple clues are combined in the distance measure 
for superpixel segmentation, making it more effective to cluster 
pixels since more local information is considered. Moreover, 
this distance measure can balance different similarities 
adaptively, according to the homogeneity measurement. The 
performance of our proposed method is demonstrated on one 
PolSAR dataset from the ESAR platform, with visual and 
quantitative evaluation. The superpixel generation and 
segmentation results show that our proposed method has a 
better performance and can balance over segmentation and 
under segmentation more effectively than other methods. 
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