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ABSTRACT: 

Terrestrial Laser Scanning (TLS) utilizes light detection and ranging (lidar) to effectively and efficiently acquire point cloud data for 
a wide variety of applications. Segmentation is a common procedure of post-processing to group the point cloud into a number of 
clusters to simplify the data for the sequential modelling and analysis needed for most applications. This paper presents a novel method 
to rapidly segment TLS data based on edge detection and region growing. First, by computing the projected incidence angles and 
performing the normal variation analysis, the silhouette edges and intersection edges are separated from the smooth surfaces. Then a 
modified region growing algorithm groups the points lying on the same smooth surface. The proposed method efficiently exploits the 
gridded scan pattern utilized during acquisition of TLS data from most sensors and takes advantage of parallel programming to process 
approximately 1 million points per second. Moreover, the proposed segmentation does not require estimation of the normal at each 
point, which limits the errors in normal estimation propagating to segmentation. Both an indoor and outdoor scene are used for an 
experiment to demonstrate and discuss the effectiveness and robustness of the proposed segmentation method.  

1. INTRODUCTION

Because Terrestrial Laser Scanning (TLS) effectively and 
efficiently acquires detailed point cloud data, it has been widely 
used in topographic mapping, engineering surveying, forest 
management, industrial facilities, cultural heritage, geohazard 
analysis, and so forth. In these applications, however, the point 
cloud needs to be divided into simpler features based on common 
attributes to support further processing and analysis. This 
process, known as segmentation, groups the points based on 
similar geometric, colormetric, or radiometric attributes. The 
grouped points can be then used for feature extraction, 
classification, modeling, and other applications.  

Many segmentation approaches have been developed based on 
analyzing data from Airborne Laser Scanning (ALS). While 
some of these techniques can be applied to TLS data, TLS has 
notable differences from ALS and Mobile Laser Scanning (MLS) 
in characteristics such as view angles, scan resolution, and 
applicability for an area of interest.  

An object can be scanned from by TLS from several scan 
positions while ALS is often only capable of scanning from above 
an object. Although MLS acquires the data from the side of an 
object similar to TLS, MLS still relies on the accessibility of the 
area for the platform holding the MLS system, resulting in less 
flexibility. In addition, because MLS and ALS are designed for 
covering a large area, the TLS data usually focuses on a smaller 
area at higher resolution, enabling more details to be captured. 
The resolution (point density) of TLS data also varies 
significantly across the scene by orders of magnitudes. Thus, with 
respect to data size and geometric complexity, segmentation for 
TLS data presents additional challenges compared with ALS data 
and MLS data. Existing segmentation approaches for TLS can be 
categorized into point cloud-based and image-based. Both of 
these approaches will be discussed in detail in the following 
sections. 
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1.1 Point Cloud-based Segmentation 

Point cloud-based methods process the data in 3D space, 
primarily using geometric characteristics. Most of these methods 
are based on either region growing or clustering depending on the 
core criteria set for the relation between the points in neighbor or 
the attribute of each single point. 

1.1.1 Region growing: The basic idea of region growing is 
that each segment will initiate from a seed point and criteria for 
the neighbors of the current point is given to determine whether 
to grow or break. Rabbani et al. (2006) present a region growing-
based method for the segmentation of smooth surfaces. The 
points with residuals lower than a threshold in plane fitting are 
set as seed points while another angle threshold of normal 
difference is used as the criteria of growing. Belton and Lichti 
(2006) perform covariance analysis for each point and its 
neighbors to classify this point to be on a surface, a boundary, or 
an edge. Then, the points on a surface are further examined by its 
curvature. Nurunnabi et al. (2012) propose a similar idea of 
segmentation with a more robust normal estimation and feature 
extraction based on a modified Principal Component Analysis 
(PCA). Dimitrov et al. (2015) present a multi-scale feature 
detection considering point density, surface roughness, and 
curvature, which could help the following stage of region 
growing. Vo et al. (2015) build an adaptive octree to resample the 
data into voxels and then a coarse segmentation is performed 
based on region growing. Habib and Lin (2016) propose a region-
growing multi-class simultaneous segmentation procedure for 
planar and pole-like features. The procedure of region growing 
starts from the seed regions selected optimally based on the 
residuals of fitting a planar or pole-like feature.  

1.1.2 Clustering: Some existing segmentation methods 
which cluster points based on one or more geometric attributes 
computed for each individual point. The attributes can be an n-
dimensional feature vector, which can distinguish the points lying 
on different class of object. For example, Vosselman et al. (2004) 
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summarize the 3D Hough transform for extracting the 
parameterized shapes such as planes, cylinders, and spheres. The 
normal vectors computed accurately can be used for improving 
the efficiency and reliability. Biosca and Lerma (2008) present a 
clustering method for segmentation where for each point, a plane 
best fit to its neighbors is used for computing the feature vector 
including the height difference, normal direction, and projected 
distance against the origin. Then Fuzzy C-Means (FCM) and 
Possibilistic C-Means (PCM) are utilized for grouping the points. 
Similarly, Lari et al. (2011) utilize point density to classify the 
point cloud into planar and rough surfaces, after which the normal 
of the best fitting plane at each point is used for computing the 
attributes. Aijazi et al. (2013) resample the data into 3D voxels 
and the position, normal, colors, intensity information of each 
voxel is utilized for assigning a feature vector to each voxel, 
which is further used in clustering and classification. Maalek et 
al. (2015) first extract planar features and linear features from the 
point cloud and then cluster the planar feature points by using the 
plane parameters. Su et al. (2016) present a segmentation 
algorithm for industrial sites where an octree-based split is 
performed based on a graph theory based analysis and a 
combination of proximity, orientation, and curvature connectivity 
criteria is used for a merging process. Kim et al. (2016) propose 
a segmentation of planar surfaces using the magnitude of normal 
position vector for a cylindrical neighbor, which uses two sets of 
best-fitting plane parameters against two origins as attributes. 
Lastly, Hackel et al. (2016) propose an efficient method of 
semantic classification and demonstrate the effectiveness using 
both TLS and MLS data.  

1.2 Image-based Segmentation 

The basic idea of image-based segmentation methods is to project 
or structure the TLS data into a 2D image first, perform an image 
segmentation, and finally map the results back to the 3D point 
cloud data. There are two major advantages in image-based 
segmentation: 1) efficiency in image processing, and 2) a 
substantial amount of available techniques for image 
segmentation, edge detection, and analysis. 

Gorte (2007) presents a segmentation algorithm based on a range 
image where range is defined as the 3D Euclidean distance from 
a point to the scan origin. The range, horizontal and vertical 
angles of the normal vectors to each point are used to generate a 
three-band image in a spherical coordinate system. Then image 
segmentation is performed by setting criteria based on the range 
image gradients. The results show that it works properly on 
vertical planes but fails on horizontal planes. Zhou et al. (2016) 
fix this problem by fine-tuning the computation of the plane 
parameters instead of coarse estimation. Weinmann and Jutzi 
(2015) further exploit this scan grid to derive various metrics for 
evaluating the quality of each point in a TLS scan. Barnea and 
Filin (2013) utilize the mean-shift algorithm to segment three 
images generated by range, normal, and colors respectively, 
followed by a refinement. Mahmoudabadi et al. (2013) 
implement Simple Linear Iterative Clustering for clustering and 
Support Vector Machine (SVM) for categorizing the segments to 
multiple classes. In addition to range, normal, and color 
information used in the aforementioned methods, 
Mahmoudabadi et al. (2016) consider intensity, angle of 
incidence in the segmentation as well. High Dynamic Range 
(HDR) imaging is utilized to minimize color inconsistencies 
across multiple images caused by variable lighting conditions. A 
series of images are generated with these characteristics and then 
segmented to identify and extract edges. All of these edges from 
the input metrics are integrated for obtaining the final results of 
segmentation.  

1.3 Challenges in Segmentation 

Many of the existing segmentation methods perform a normal 
estimation or a plane fitting for each individual point, which 
provides important geometric details. Despite a number of 
approaches to adaptively define neighbors, normal estimation can 
be typically unreliable at the edges of a surface. Some methods 
utilize color information from the photographs to assign 
attributes to point cloud. However, there are many potential error 
sources such as misalignment between the point cloud and 
photographs, lighting effect, moving objects, and so on, which 
may cause a failure of segmentation. To overcome these 
challenges, this paper presents a fast segmentation method for a 
TLS scan based on edge detection. By taking advantage of the 
grid data structure used in storing TLS data, the proposed method 
first detects different types of edge points in a scan. The point 
cloud can be then clustered by using these edge points as closed 
boundary of each segment. 

2. METHODOLOGY

Many TLS systems collect data in a certain range and resolution 
of horizontal and vertical angles. Based on this scan pattern, each 
scan can be structured into a grid. This grid structure is exploited 
in the proposed segmentation method consisting of two steps: 1) 
edge detection; 2) region growing. First, points lying on 
silhouettes or edges are extracted by analyzing the angle of 
incidence and the normal variation. Then, based on the results of 
edge detection, region growing is utilized for grouping the points 
inside the closed boundaries determined in the edge detection. 

2.1 Edge Detection 

Two types of edge points are extracted for segmentation: 1) the 
points lying on the silhouettes; 2) the points with a large variation 
in normals (e.g., the intersection of two planar surfaces).   

Because the low power, either visible or near infrared laser pulse 
used in TLS does not normally penetrate most objects, an object 
in the scene can cause an occlusion effect where a data gap 
(shadow) occurs behind this object. However, this effect can be 
used to separate objects at different ranges by detecting the 
silhouette edges of these objects in a scan. To detect silhouette 
edges, for each point, we search for its adjacent eight neighbors 
in the grid structure, and the projected incidence angle is 
computed with each neighbor point based on the law of cosines 
(Figure 1). Based on a given threshold of incidence angle, the 
point is then analyzed to determine whether it is an edge point or 
not. Note that the threshold of incidence angle should be set based 
on the angle resolution and maximum obliquity of a surface is 
acceptable within the scan. 

Figure 1. Silhouette edge detection based on projected incidence 
angle: A is the current point being analyzed, lying on the 
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silhouette edge of an object while B is its neighbor, lying on 
another object behind; 𝑑𝑑𝐴𝐴𝐴𝐴,  𝜌𝜌𝑎𝑎 and 𝜌𝜌𝑏𝑏 are the distances 

between A and B, and the 3D Euclidean distance of A and B to 
the scan origin O, respectively; 𝑛𝑛⇀𝐴𝐴𝐴𝐴 is the normal component of 

AB coplanar with triangle OAB, and lastly the corresponding 
projected incidence angle is 𝛼𝛼. 

 
Normal estimation at each individual point is a common 
procedure in point cloud segmentation, after which the gradient 
and curvature of the normal can be derived to set criteria for 
region growing or assign the attributes to each point for 
clustering. Normal estimation is usually completed by fitting a 
plane or performing statistical analysis with neighboring points. 
Unfortunately, there are two limitations with such an approach. 
1) An ideal result of neighbor searching in 3D space (e.g., k 
nearest neighbors, local neighbor (spherical or cylindrical), and 
so on) at a point requires several neighbors to be evenly 
distributed around it to obtain an accurate and reliable normal. 
Unfortunately, this situation is difficult to achieve in most cases 
unless the scan configuration to all the objects in the scene is 
given because the point density changes dramatically from 
different geometries between the various objects and the scanner; 
2) Even if an ideal result of neighbor searching exists, estimating 
a normal at the intersection of multiple surfaces is challenging 
because the neighbors do not all lie on the same plane.  
 
Instead of performing an error-prone normal estimation for each 
individual point, a normal variation analysis is proposed to detect 
an edge point by analyzing the differences of normals between 
the triangular patches around a point. The basic idea of the 
normal variation analysis is that: 1) in the grid structure, the eight 
neighbor points are used to generate eight triangles and eight 
shared edges around a point; 2) the normal gradient at each shared 
edge can be then derived from the normal for all triangles around 
the center point; 3) the maximum normal gradient is compared 
against a given threshold to finally determine if it is an edge 
(Figure 2). Considering the high point density and ranging errors 
in close range, during neighbor searching in each direction, the 
points within a given threshold of minimum distance are skipped. 
 

 
Figure 2. Edge detection based on normal variation analysis: 

Point C (red) is the center point being analyzed with neighbors 
(blue) in the grid data structure; Points T, C, and B technically 
lie on the intersection of Plane 1 and Plane 2 (hence, on both 
planes), while the other points lie on only one of the planes. 

The proposed edge detection analyzes each point with its 
neighbors independently, enabling us to parallelize the procedure 
to process multiple points simultaneously using multiple threads.  
 
2.2 Region Growing 

Region growing is widely used in segmentation for point cloud 
data. The concept behind region growing is to start from a seed 
point and grow to the neighbor point if it meets a given criteria 
(Vosselman et al., 2004). In the proposed method, a region 
growing in the grid structure is simply performed within the 
points lying on a smooth surface, where all the points that are not 
labeled as edge points are selected to be seed points. The 
proposed region growing is not required to set other constraints 
because: 1) the normal gradient has been analyzed in the previous 
procedure of edge detection; 2) the extracted edge points enclose 
the segments of smooth surface in the point cloud. In this case, 
the growth ends after growing to the edge points to group the 
points lying on either a smooth surface or its edges into one 
segment so that the boundary of each segment is extracted, which 
can be potentially used for refining the edge detection results.  
 

3. EXPERIMENT 

3.1 Indoor Scene 

To demonstrate the effectiveness of the proposed segmentation 
method in an indoor environment, we collect one scan in a room 
using a Leica P40 3D laser scanner, resulting in 9,135,288 points 
(Figure 3(a, b)). In this indoor scene, there are various objects 
with different geometric features of different sizes. In addition, 
there are different types of noise or undesired points in this data 
such as mixed pixels, points with a significant ranging error 
(range walk) due to refraction on shiny or transparent objects, 
points captured on tiny objects or geometry that cannot be 
identified in the data, and so on. Note that by taking advantage of 
parallel programming, the processing time of this dataset is less 
than 10 seconds using 8 threads (excluding data I/O operations). 
 
First, to extract the silhouette edges, each point is examined by 
computing the projected incidence angles with its neighbors in 
the angular scanning grid structure (Figure 3(c)). 85 degrees was 
selected as the threshold of projected incidence angle, which 
represents the most oblique surface that can be captured with 
some confidence in a scan. Next, a normal variation analysis 
completes the edge detection for the remaining points where the 
points with a maximum gradient of normals between neighbors 
larger than 20 degrees are labeled as edge points (Figure 3(d)). 
Finally, region growing groups the points belonging to the same 
smooth surface and eliminates those segments with less than 100 
points. In this case, the edge points adjacent to the smooth surface 
segments are preserved to visualize the borders and features 
(Figure 3(e)). 
 
For an object in close range, there are a few mixed pixels between 
its silhouette edges and the object behind. In the point cloud data, 
these mixed pixels can artificially form a very oblique surface 
between two objects which does not actually exist. By computing 
the projected incidence angles, the proposed approach not only 
extracts the silhouette, but also eliminates the mixed pixels from 
the other points lying on smooth surfaces (Figure 4(a)).  
 
The objects in the scene are made of various types of material in 
the test data, which could bring errors to the range measurement 
in different ways. For example, the white board on the wall is a 
highly glossy surface such that when laser pulses hit at near 
perfect incidence, the returns are saturated, resulting in 
significant range measurement errors, which is called range walk 
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(Figure 4(b)). This effect also occurs on the lockers and 
photographs on the wall.  

There are also some objects present in this scene that can refract 
the laser beam such as the plastic light covers on the ceiling 
(Figure 4(c)). These errors are difficult to model, but fortunately, 
these points usually have a large variation in normals leading to 
detection as edge points at this stage. Then, depending on the 
sequential processing and application, these edge points can be 
further classified and used for feature extraction, if desired. 

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 3. Segmentation results based on edge detection: (a) 
initial TLS data presented as an angular grid image colored by 
intensity; (b) the initial TLS data colored by image texture; (c) 
points lying on silhouettes (blue) are extracted; (d) points with 
large variation in normals are extracted as edges (orange); (e) 
grouping of smooth surfaces following region growing where 

the borders of each segment are colored in black and each 
segment is randomly colored. 

(a) 

(b) 

(c) 

Figure 4. The proposed edge detection approach separates the 
points with different types of noise from the ones on the smooth 

surface: (a) mixed pixels; (b) range walk; (c) refraction. 
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For most objects in the test data, the edges can be well defined 
and provide an enclosed boundary of a region by using the 
proposed edge detection approach (Figure 3(d)). Since there is no 
constraint of geometry in the proposed region growing, some 
objects with complex geometry such as the pipes (and joints 
between sections) can be grouped properly (the purple and green 
segments in Figure 5). However, the pipe in this data set is over-
segmented due to the discontinuity in the grid structure where it 
is occluded by the objects in front (a hanging power plug). The 
segmentation result at the door shows that upper and left rails of 
the door frame (the yellow segment in Figure 5) are segmented 
from the wall and the door while the other rail is grouped with 
the door (the red segment in Figure 5). In addition, even though 
there are edge points extracted on the door, which ideally would 
be separated into different components (the panels, stiles, and 
rails) in the segmentation, the region growing may connect the 
points on both sides of the edges unless the edges enclose the 
region strictly in the grid structure. These components may need 
to be further segmented based on the target level of detail in the 
sequential processing or application. These problems can be 
solved, to some extent, by comparing multiple scans and adapting 
the threshold of the maximum difference in normal in the normal 
variation analysis. By analyzing multiple scans, an object with 
such features on it can be scanned more completely and 
continuity will be improved so that the edge detection and region 
growing can be more robust. 

Figure 5. Close-up view of the segmentation result with the 
borders colored in black at the door and pipes.  

3.2 Outdoor Scene 

To further demonstrate the versatility and the parameter 
robustness of the proposed segmentation method, an outdoor 
scan (Figure 6(a)) including 50,204,636 points collected by the 
same scanner is tested using the same parameter settings where 
the maximum normal variation and maximum incidence angle 
are 20 and 85 degrees, respectively. The processing using 8 
threads requires about 40 seconds to complete (excluding disc 
I/O).   

The result of edge detection (Figure 6(b)) shows that the blue 
points lying on the vegetation (tree leaves and grass) and other 
occlusion effects caused by vehicles and pedestrians are  readily 
extracted as silhouette edges, indicating that this technique 
functions well to perform noise removal.  Notice, however, that 
the distant points on the road are eliminated as well because they 
fail to pass the incidence angle criteria. If desired, the edge points 
in red lying on the line features of the building façade can be 
further used as input for line drawing in some applications such 
as building documentation (Liang et al., 2013). 

The building façade is segmented into a number of patches 
through the proposed method where even the large bricks on the 
façade can be extracted properly (Figure 6(c, d)). Depending on 

the desired level of detail, these segments on the building façade 
can be further modeled by fitting planes and the criteria of 
merging can be set accordingly. The over-segmentation occurring 
on the road and sidewalk due to the occlusion effects could be 
solved in a similar fashion. 

(a) 

(b) 

(c) 

(d) 

Figure 6. Segmentation results for an outdoor scan: (a) the raw 
TLS data colored by image texture; (b) the edge detection where 
extracted silhouettes are colored in blue while the edges are in 

orange; (c) grouping of smooth surfaces following region 
growing where the borders of each segment are colored in black 
and each segment is randomly colored; (d) close-up view of the 

segmentation result for the building façade. 
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To further test the robustness of the proposed method to the point 
density, we down-sample the raw dataset by 1/9 (including 
5,577,473 points) and run the proposed method with the same 
parameter settings except for the minimum number of points in 
each cluster, which is dependent with the scan resolution. The 
result (Figure 7) shows that the proposed segmentation is robust 
across scan resolution. Further, over-segmentation problems 
occur less than with the full scan because by down-sampling the 
data, some of the occlusion effects are eliminated.  
 

 
(a) 

 

 
(b) 

 
Figure 7. (a)Segmentation results for the scan down-sampled by 

1/9; (b) close-up view for the segmented building façade. 
 

4. CONCLUSION 

This paper presents a fast segmentation method for TLS data 
consisting of two primary steps: edge detection and region 
growing. First, the silhouette edge points are extracted by 
computing the projected incidence angles. Then, a normal 
variation analysis separates the edge points from the smooth 
surfaces. Finally, a region growing without the constraint of the 
grid structure groups points lying on the same smooth surface. 
Results from testing in both indoor and outdoor scenes 
demonstrate that the proposed method effectively segments the 
TLS data including objects in different shapes and sizes. The 
capability of handling different types of noise in the TLS data is 
illustrated and discussed. Ultimately, the proposed method is very 
efficient due to exploiting the grid structure storing TLS data, 
and, as a result, the efficiency performance can be further 
improved through parallel programming. Nevertheless, a 
limitation is that this approach cannot be applied directly to 
unstructured TLS data.  
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