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ABSTRACT: 

Nowadays, lidar is widely used in cultural heritage documentation, urban modeling, and driverless car technology for its fast and 
accurate 3D scanning ability. However, full exploitation of the potential of point cloud data for efficient and automatic object 
recognition remains elusive. Recently, feature-based methods have become very popular in object recognition on account of their 
good performance in capturing object details. Compared with global features describing the whole shape of the object, local features 
recording the fractional details are more discriminative and are applicable for object classes with considerable similarity. In this 
paper, we propose a two-step classification approach based on point feature histograms and the bag-of-features method for automatic 
recognition of similar objects in mobile lidar point clouds. Lamp post, street light and traffic sign are grouped as one category in the 
first-step classification for their inter similarity compared with tree and vehicle. A finer classification of the lamp post, street light 
and traffic sign based on the result of the first-step classification is implemented in the second step. The proposed two-step 
classification approach is shown to yield a considerable improvement over the conventional one-step classification approach.  

* Corresponding author 

1. INTRODUCTION

With the rapid development of 3D lidar technology, point 
clouds are becoming ever more widely used across various 
application fields, including building modeling, road mapping, 
road monitoring and nowadays driverless car technology. 
Compared with traditional data acquisition methods in 
photogrammetry and remote sensing, lidar scanners are faster 
and invariably more accurate in their collection of huge 
amounts of unstructured 3D point data. However, raw point 
clouds contain geometric information only, and extracting 
semantics such as object types is a challenging task. 
Considering the complexity of data and the variety of object 
types, it is a difficult and labour-intensive task to manually 
extract objects from point clouds. Therefore, the development 
of methods for automated and efficient object recognition in 
point clouds is of considerable importance.  

A common approach to object recognition in point clouds is 
supervised classification based on the geometric features of 
objects of interest. The types of features used in classification 
methods can be divided into two main categories: global 
features and local features (Bayramoglu and Alatan, 2010; 
Castellani et al., 2008). Global features, such as size and height, 
describe the overall shape of the object, whereas local features 
captured at key points characterize the object surface within 
local neighborhoods (Tangelder and Veltkamp, 2008). 
Although global features are useful for the recognition of 
objects with large intra-class variability (Lehtomäki et al., 
2010a; Vosselman et al., 2004), they are not sufficiently 
discriminative for object classes which are similar, such as the 
different pole-like objects shown in Figure 1.  

In contrast, local features capture the detail of objects, which 
makes it possible to distinguish similar objects with local 

differences. However, in order to achieve an acceptable 
classification accuracy, local features need to be encoded into a 
sufficiently discriminative high-dimensional feature vector. 
Consequently, a relatively large number of training samples is 
required to sufficiently train the classifier, which is a practical 
challenge in point cloud classification (Khoshelham and Oude 
Elberink, 2012). In the literature, similar objects have often 
been grouped into more general categories, such as pole-like 
objects (Rodríguez-Cuenca et al., 2015; Yokoyama et al., 2013). 
Poor classification accuracies have generally been reported for 
similar objects when they have not been grouped (Golovinskiy 
et al., 2009; Pu et al., 2011). 

(a) (b) (c) 

Figure 1. Street light, lamppost, and traffic sign have global 
similarity but local differences. 

In this paper, we investigate the problem of recognizing similar 
objects in point clouds by using a segment-based classification 
approach based on local features, namely point feature 
histograms (Rusu et al., 2008) encoded by the bag of features 
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(Csurka et al., 2004) method. We propose a two-step 
classification approach to overcome training sample limitations. 
We experiment with different supervised classifiers to evaluate 
the performance of our method. 
 
The paper is organized into five sections. Section 2 provides a 
review of the state of the art. In Section 3, the proposed 
classification method based on point feature histograms and bag 
of features is described. Section 4 discusses the results of 
classification experiments and, finally, conclusions are provided 
in Section 5. 
 

2. LITERATURE REVIEW 

Point cloud classification methods can be divided into two main 
categories: point-based and segment-based. In point-based 
methods, local features are extracted from small neighborhoods 
around individual points. Point-based methods have been 
widely used for the detection of ground, wall and basic 
structures. The Geometric Index (GI) (Rodríguez-Cuenca et al., 
2015) is one of the most widely used local features for point 
cloud classification. Directional Associate Markov Network 
(AMN) was used by Munoz et al. (2008) to classify wires, 
poles, ground and scatter. Jutzi and Gross (2009) and 
Weinmann et al. (2015) used features derived from eigenvalues 
of the covariance matrix of the points in local neighborhoods. 
The neighborhood selection, definition, and combination of 
different geometric features in 2D and 3D are analyzed by 
Weinmann et al. (2015). 
 
In segment-based methods, individual points are grouped into 
segments, and segment features are used for classification 
(Golovinskiy et al., 2009; Khoshelham et al., 2013; Pu et al., 
2011). Golovinskiy et al. (2009) considered multiple object 
classes in an urban area and reported low classification accuracy 
(60%) for some object classes. Velizhev et al. (2012) improved 
this workflow by using the Spin image and implicit shape model 
(ISM) and achieved a precision of 68% and 72% for cars and 
light poles, respectively. These were the only object classes 
considered in their experiment. Yang et al. (2015) achieved a 
good accuracy level for the extraction of urban objects based on 
segmentation of super-voxels, rather than individual points, 
using a set of rules defined for uniting separate segments. 
However, the design of rules and the setting of thresholds in the 
identification and classification of different object classes 
required manual interpretation and interaction based on the 
shape (geometric structure), height and width information of 
each object.  
 
Detection of pole-like objects such as tree trunks, traffic signs, 
and light poles have been widely studied for their unique 
structure (Cabo et al., 2014; Landa and Ondroušek, 2016; 
Lehtomäki et al., 2010b; Yokoyama et al., 2011). 3D Hough 
transform combined with RANSAC has been shown to work 
well in the detection of pole-like structures by Vosselman et al. 
(2004). In the research of Brenner (2009), a pole is recognized 
by decomposing it into sliced horizontal stacks with a kernel 
region and outer ring of the kernel. Lam et al. (2010) applied a 
robust vertical line fitting method to detect poles. The Minimum 
Bounding Rectangle (MBR), Minimum Bounding Circle and 
height percentiles were used to detect planar shapes and poles, 
respectively, by Pu et al. (2011). Radial distance, mean value 
and standard deviation of points in a local cylindrical 
neighborhood were employed by Rodríguez-Cuenca et al. 
(2015). Scan line information has also proved very useful in the 
automated detection of vertical pole-like structures in road 

environments (Lehtomäki et al., 2010a). Cabo et al. (2014) 
detected pole structures by the inner and outer radius after 
voxelization of points. While, most of these methods assumed 
that poles are vertical, the pairwise 3-D shape context method 
introduced by Yu et al. (2015) works independently of the pose 
of pole-like objects.  
 
The classification of pole-like objects is mainly achieved by 
setting a series of thresholds for feature values (Aijazi et al., 
2013; Li and Elberink, 2013; Masuda et al., 2013; Pu and 
Vosselman, 2009; Yang et al., 2015; Yokoyama et al., 2013). 
The shortcoming of these knowledge-based methods is that the 
thresholds should be adjusted under different scenarios. The 
accuracy of classification is highly related to the threshold 
setting. Supervised machine learning methods are adopted in 
the classification of similar pole-like objects for its 
independence from threshold setting (Fukano and Masuda, 
2015; Lai and Fox, 2009). However, the limitation of 
supervised machine learning based methods is the requirement 
of a large number of training samples. 
 
The limitation and imbalance of training samples for some 
object classes pose a significant challenge for the classification 
of point clouds. Khoshelham et al. (2013) and Weinmann et al. 
(2015) used feature selection methods to reduce the required 
number of training samples. Azadbakht et al. (2016) 
investigated different sampling strategies to overcome an 
imbalance in the distribution of training samples. In this paper, 
we propose a two-step classification method for distinguishing 
similar objects with insufficient and unbalanced training data. 
 

3. METHODOLOGY 

The conceptual framework of the proposed approach is shown 
in Figure 2. It includes data pre-processing, feature description, 
and object classification. In the pre-processing phase, points on 
the ground and on building façades are removed. The remaining 
points are grouped into individual segments. These individual 
segments are manually labelled for the training and evaluation 
of the adopted classifier. Then, point feature histograms are 
computed as local features and then encoded into high-level 
features using the bag-of-features method. Finally, the 
classification of the segments is performed in two steps.  
 
 
 
 
 
 

 

 
 
 
 
 

Figure 2. The conceptual framework of the method consisting of 
data pre-processing, feature extraction and classification. 

 
3.1. Pre-processing 

In segment-based classification methods, the removal of the 
points on the ground, along with those on building facades, 
roofs, and fences, helps achieve a better segmentation result.  
 

Classification 

• Classification of 
tree, vehicle and 
pole-like object 

• Classification of 
poles into lamp 
post, street light 
and traffic sign. 

Feature 
Description 

• Feature extraction 

• Feature encoding 

 

Pre-processing  

• Removal of 
ground and 
façade points  

• Segmentation 
into components  
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3.1.1 Removal of Ground and Façade Points: To remove 
the ground points, we use a variant of the progressive TIN 
densification algorithm (Axelsson, 2000) which is implemented 
in Lastools(1). The algorithm requires the setting of four 
parameters for the filtering of ground points, namely step, spike, 
offset and standard deviation. In the Lasground tool, suitable 
values for these parameters are recommended according to land 
cover type. In this paper, “city and warehouse” was selected as 
the land cover type, based on the data in this experiment. The 
building roofs and façades were removed manually in Cloud 
Compare(2). 
 
3.1.2 Connected Component Segmentation: After the 
filtering of ground and façade points, a connected component 
segmentation is applied to group the points into individual 
segments. The connected component segmentation is based on 
the assumptions that points that are closer than a certain 
distance belong to one connected component. Different 
connected component parameters were compared by the 
performances of segmentation. The maximum distance between 
points and the minimum number of points of the segment were 
set as 0.2m, and 500 respectively after comparative experiments. 
To perform the connected component segmentation more 
efficiently, the point cloud is first restructured in an octree data 
structure. After the segmentation, every individual object should 
ideally be segmented as one single component. In this paper, we 
focus on the evaluation of classification performance and, 
therefore, over-segmentation and under-segmentation errors are 
manually removed at this stage. 
 
3.2 Feature Description 

3.2.1 Feature Extraction: To avoid the influence of 
occlusions and low point density, we extract local features at 
every point in each segment rather than at key points only. To 
extract local features, we use Point Feature Histograms (PFH), 
and to combine local features into segment features we use the 
bag of features method (Csurka et al., 2004). The PFH is a 
robust multi-dimensional feature descriptor that describes the 
local geometry around the surface points (Wahl et al., 2003). It 
has been demonstrated to be effective in labelling 3D points 
based on the type of surface it belongs to, and it is very 
discriminative in classifying various geometric primitives 
(cylinder, plane, sphere, cone, torus, corner and edge) (Rusu et 
al., 2008). 
 
In order to calculate the PFH, k neighbors of the query point are 
selected. A value of 6 was experimentally found suitable for k. 
For each pair of points (Pt, Ps) and their associated normals (nt, 
ns), a Darboux frame coordinate system is defined as shown in 
Figure 3. The axes of the coordinate system are defined as:  

u = ns  (1) 

d
p - pst= u ×v  

(2) 

w = u × v  (3) 

(1) https://rapidlasso.com/lastools/  
(2) http://www.danielgm.net/cc/  

 

Figure 3. The Darboux frame coordinate system defined for 
calculating three angular features for a pair of points. 

(Reproduced from point cloud library(3).) 

The angular features describing the difference between the two 
normals ns and nt are defined as: 

tα = ⋅nv  (4) 

( )t s
d

ϕ
−

= ⋅
p p

u  (5) 

1tanh ( , )
t t

θ −= w × n u × n  
(6) 

The distance d used here between point Pt and Ps is the 
Euclidean distance. After all the triplets <α, φ, θ> between each 
pair of two points in the k-neighbourhood are computed, the set 
of all triplets at the query point is binned into a histogram, the 
PFH. In this process, the value of each feature is divided into 5 
subdivisions and the number of occurrences in each subinterval 
is counted. In order to avoid the overlapping of the values of 
these three features in each bin interval, a histogram with 53 
bins in a fully correlated space is created. 
 
3.2.2 Feature Encoding: Feature encoding by bag-of-
features is performed by constructing a vocabulary of dominant 
local features from the data directly and creating a histogram of 
these features for each segment. The construction of the 
vocabulary is done by the k-means clustering algorithm 
(MacQueen, 1967). Each cluster center is the mean of a number 
of similar point feature histograms and represents a frequently 
appearing local surface characteristic. Once the vocabulary is 
constructed, a bag of features is created for each segment by 
counting the number of point feature histograms assigned to 
each cluster. The resulting histogram encodes the point feature 
histograms into a feature vector for the segment. 
 
3.3 Classification 

After all point feature histograms are encoded into segment 
features, a classifier can be trained using the manually labelled 
training samples. In order to classify the segments, we consider 
five object classes: vehicle, tree, lamp post, traffic sign and 
street light. As we will see, the application of the classifier in a 
single step will result in poor classification accuracies for 
similar object classes, i.e. lamp post, traffic sign, and street 
light, which are less abundant in the data, and are, therefore, 
represented with fewer training samples. To alleviate this 
problem, we propose a two-step classification approach. In the 
first step, a classifier is trained to classify the segments into 
three general classes: vehicle, tree and mixed pole. In the 
second step, a classifier is trained to classify the mixed poles 
into three specific classes: lamp post, traffic sign, and street 
light.  

(3).http://pointclouds.org/documentation/tutorials/pfh_estimatio
n.php  
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We experiment with several classifiers: Gaussian support vector 
machines (SVM) (Andrew, 2000), random forest (Breiman, 
2001), decision tree (Quinlan, 1986), and discriminant analysis 
(Klecka, 1980). SVM classifiers try to find the best hyperplanes 
with the largest margin to separate one class from another. The 
performance of SVM is highly dependent on the kernels applied 
and the data to be classified. In our experiment, the Gaussian 
kernel is selected for its superior performance over the other 
two kernels. Decision tree makes a prediction by following the 
decision in the tree from the root node down to a leaf node. 
Random forest is an ensemble method that aggregates the 
results of multiple weak classifiers, each trained by a bootstrap 
subset of the training set. The quadratic discriminant classifier 
computes a quadratic decision boundary between training 
samples of different categories. The parameters of different 
models under each classifier were trained by optimization 
experiments and k-fold cross validation. 
 

4. RESULTS AND ANALYSIS 

4.1 Data Description 

The experimental dataset was collected by the German company 
TopScan in December 2008 using an Optech Lynx Mobile 
Mapper system, the basic specifications of which are shown in 
Figure 4. The data was recorded over the city of Enschede, 
Netherlands. Two rotating scanning sensors were mounted on 
the top of the vehicle with scanning planes at 45 degrees angles 
to the central lane, and perpendicular to each other. The vehicle 
drove at 50km/h and scanned 20kms of the road. The strip 
overview is shown in Figure 5. 
 

 

Figure 4. Optech LYNX Mobile Mapper specifications. 

 
The result of the ground points removal is shown in Figure 6. 
After removal of building and ground points, further 
segmentation and labeling were conducted, as indicated in 
Figure 7. The Lidar data collected in strip 4, 5, 6, 12, and 13 are 
used in this paper.  
 
The training dataset was created by manually labeling the 
segments using an interface developed in Matlab, which 
allowed 3D viewing and rotation of each segment, as seen in 
Figure 8. The number of segments after pre-processing is 
described in Table 1.  

A feature vector was generated for each segment by 
extracting point feature histograms and encoding these by 
the bag of features method. We used 125 bins for the 
PFHs and initially set the vocabulary size in the bag of 
features method as 30, resulting in a feature vector of 
length 30 for each segment. 

 

Figure 5. Overview of the scanned strips from the experimental 
dataset. 

 

Figure 6. Classification of ground and non-ground points. 
Ground points are in red and non-ground points in green. 

 

Figure 7. The result of connected component segmentation in 
strips 4, 5, 6, 12 and 13. 
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Figure 8. Interface for manual labeling of the segments. 
 

Label Number 

Tree 82 

Lamp post 30 

Traffic sign 19 

Vehicle 182 

Street light 52 

Table 1. Number of labelled segments after segmentation and 
manual labeling. 

 
4.2 One-step Classification 

Using the labelled segments each represented by a bag of 
features, we trained the Gaussian SVM, random forest, decision 
tree and quadratic discriminant classifiers. The scale of the 
Gaussian kernel in Gaussian SVM was set as 1 / ( )sqrt P  (P is 
the number of features). In the decision tree, a value of 13 was 
experimentally found appropriate for the number of minimum 
leaf size, and the twoing rule (Steinberg, 2009) was adopted as 
the split criterion. In the random forest, the tree template had 
the same setting with the decision tree, and 100 was 
experimentally set as the number of learners. 
 
An experiment with different vocabulary sizes (i.e. the number 
of features per segment) was then conducted to test the 
performance of the classifiers. We set the upper and lower limits 
as 15 and 100 according to the number of labelled segments. 
The accuracy of the classifiers against vocabulary sizes 15, 30, 
50 and 100 is shown in Figure 9. 
 

0.6

0.7

0.8

0.9

15 30 50 100
Vocabulary Size

Ac
cu

ra
cy

SVM Random Forest
Decision Tree Quadratic Discriminant

 
Figure 9. Classification accuracy with different vocabulary sizes 
 
 

 
Usually, a larger vocabulary size provides higher discriminative 
power at the cost of an increase in both storage and processing 
time (Alonso et al., 2011). The result of the test with different 
vocabulary sizes reveals that the classifiers showed good 
performance at a relatively small vocabulary size of 30. Thus, in 
the following experiments, the vocabulary size is set as 30. Also, 
the quadratic discriminant classifier is not included in the 
following experiments due to its low accuracy at all vocabulary 
size settings. 
 
The classifiers were then evaluated in a one-step classification 
using a five-fold cross-validation scheme. The training dataset 
was divided into five folds, and in five iterations the classifier 
was trained with four folds and tested with the remaining fold. 
The average precision and recall over the five tests were used as 
performance measures for the classifiers. The result of the one-
step classification is shown in Figure 10. 
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(b) Precision 
Figure 10. Recall and precision of one-step classification 

obtained from 5-fold cross validation with vocabulary size 
equal to 30. 

 

As it can be seen, vehicles and trees are classified with higher 
precision and recall than the other three classes. Lamp posts are 
classified with a low recall, and street lights are classified with a 
low precision. For the class traffic sign, all classifiers perform 
poorly as both precision and recall values are below 30%. The 
number of correctly recognized items is recorded in Table 2. 
 
 

Label True 
Number 

Number of Recognized items 

SVM Random 
Forest 

Decision 
Tree 

Tree 82 71 69 66 
Lamp post 30 10 10 12 
Traffic sign 19 0 0 1 

Vehicle 182 177 177 170 
Street light 52 43 44 40 

Table 2. The number of correctly recognized items in one-step 
classification method. 

 
 

A possible reason why traffic signs have a low classification 
recall and precision is the limited number of samples compared 
to other categories. Another reason is the complexity and 
diversity of traffic sign designs within the dataset, and their 
similarity to lamp posts and street lights, as shown in Figure 11. 
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Figure 11. Structural diversity of traffic signs. 
 

In addition, the lamp posts and street lights in this dataset are all 
somehow attached with sign boards, which make the 
classification of light poles and traffic signs more complex and 
difficult. Light poles attached with sign boards can be seen in 
Figure 12. 
 

 

Figure 12. Light poles are sometimes attached to sign boards. 

 
4.3 Two-step Classification 

As is shown in Figure 10, the one-step classification accuracy 
for street light, traffic sign, and lamp post classes is relatively 
low. Compared with tree and vehicle, these three categories all 
share a similar pole-like structure and have a low number of 
samples. In order to improve the classification result, a two-step 
classification is performed. At the first step, three general 
classes, i.e tree, mixed class (lamp post, traffic sign, and street 
light), and vehicle are classified. In the second step, the 
classifiers are first trained with the manually labelled segments, 
and then applied to those segments that were classified as mixed 
in the first step. The result of the first-step three-class 
classification in the hierarchical classification scheme is shown 
in Figure 13 and the number of correctly recognized items in 
this classification is recorded in Table 3. 
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Figure 13. Recall (a) and precision (b) values obtained from 5-
fold cross validation in the first step. 

 

Label True 
Number 

Recognized Number 

SVM Random 
Forest 

Decision 
Tree 

Tree 82 71 67 68 
Mixed 101 90 87 87 
Vehicle 182 174 174 160 

Table 3 Number of correctly recognized objects in the first step. 
 

From the first step, we can see that SVM outperforms the other 
two classifiers. The result is consistent with the result of one-
step classification. Thus, the classification result of each 
classifier in the first step is adopted as testing data in the second 
step, while the manually labelled segments are used as training 
data. In decision tree, 5 was tested as the best choice of the 
number of minimum leaf size. The result of the second step 
classification is shown in Figure 14. 
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(b) Precision 
Figure 14. Recall and Precision values in the second step of 

two-step classification. 
 

The number of correctly recognized items in the two 
classification steps is recorded in Table 4.  
 
 

Label True 
Number 

Recognized Number 

SVM Random 
Forest 

Decision 
Tree 

Tree 82 71 67 68 
Lamp post 30 16 23 19 
Traffic sign 19 3 7 13 

Vehicle 182 174 174 160 
Street light 52 46 47 44 

Table 4 The number of correctly recognized items in the second 
step. 

The result of the two-step classification by combining the 
results of two steps is shown in Figure 15. 
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 (b) Precision 

Figure 15. Recall and precision of two-step classification. 
 

From a comparison of the first and second steps of the two-step 
classification, we can see that SVM outperformed the ensemble 
(random forest) and decision tree methods in the first step, 
where tree, mixed, and vehicle are each very distinguishable. 
However, in the second step, when the items are more difficult 
to separate, the SVM yielded relatively poor performance when 
compared with the two other classifiers. The two-step 
classification generated a better result compared to the one-step 
method, largely due to the fact that the one-step classification 
could not handle well an unbalanced dataset in which it was 
difficult to distinguish between basically similar objects 
belonging to different categories, i.e. traffic signs, lamp posts 
and street lights. 
 

5. CONCLUSION 

In this paper, the application of point feature histograms 
combined with the bag-of-features method for segment-based 
classification of mobile lidar point clouds was investigated. The 
proposed two-step classification approach for distinguishing 
similar objects with unbalanced data was shown to yield a 
significant improvement over the conventional one-step 
classification approach. The PFH based bag-of-feature method 
provides an effective representation of local surface 
characteristics of objects and therefore has the potential for the 
classification of point clouds into more specific object classes 
and object parts. In the future, other local features will be 
tested, combined with various encoding methods to examine 
performance differences. Additionally, the proposed two-step 
method will be tested on more categories with intra-class 
variability, not only on pole-like objects. 
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