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ABSTRACT: 

The optimal network design problem has been well addressed in geodesy and photogrammetry but has not received the same attention 

for terrestrial laser scanner (TLS) networks. The goal of this research is to develop a complete design system that can automatically 

provide an optimal plan for high-accuracy, large-volume scanning networks. The aim in this paper is to use three heuristic optimization 

methods, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO), to solve the first-order design 

(FOD) problem for a small-volume indoor network and make a comparison of their performances. The room is simplified as discretized 

wall segments and possible viewpoints. Each possible viewpoint is evaluated with a score table representing the wall segments visible 

from each viewpoint based on scanning geometry constraints. The goal is to find a minimum number of viewpoints that can obtain 

complete coverage of all wall segments with a minimal sum of incidence angles. The different methods have been implemented and 

compared in terms of the quality of the solutions, runtime and repeatability. The experiment environment was simulated from a room 

located on University of Calgary campus where multiple scans are required due to occlusions from interior walls. The results obtained 

in this research show that PSO and GA provide similar solutions while SA doesn’t guarantee an optimal solution within limited 

iterations. Overall, GA is considered as the best choice for this problem based on its capability of providing an optimal solution and 

fewer parameters to tune.  

1. INTRODUCTION

Unlike methods that only capture specific individual points at a 

time, e.g., a total station or GPS, light detection and ranging 

(LiDAR) systems measure large amounts of 3D points with very 

high acquisition speed. TLS quickly captures rich detail of an 

entire scene like a camera taking a 360° photo but with an 

accurate 3D position for every pixel. It determines the object 

position based on the time-of-flight or phase-shift between the 

laser beam emitted to the object and the corresponding reflected 

signal. In other words, TLS provides a remote sensing surveying 

technique with high speed, density, and accuracy, which makes 

it widely used in various fields within recent decades such as: 1. 

Engineering surveying, as topographical surveying  (Lague et al, 

2013), civil engineering surveying (Oskouie et al., 2016), 

deformation monitoring  (Mukupa et al, 2016), and complex 

industrial equipment modelling (Son, 2014); 2. Architecture 

reconstruction (Santagati et al., 2013), heritage documentation 

and preservation (Fanti et al., 2013); 3. Environmental 

monitoring and disaster prevention (Abellán et al., 2014). Since 

the objects to be scanned are either large (e.g., a very tall 

building) or occluded/self-occluded (e.g., a complex industrial 

site), a scanning network consisting of multiple scan locations is 

usually required to provide complete coverage of the object, 

which is the focus of this paper. 

The network design problem has been proposed and well 

addressed in geodesy (Kuang, 1996; Schmitt, 1982) and non-

topographic photogrammetry (Fraser, 1982, 1984). Based on the 

widely-accepted classification proposed by Grafarend (1974), the 

network design problems can be divided into four interrelated 
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sub-problems. They are: zero-order design (ZOD), which is to 

define a datum for the network; first-order design (FOD), which 

is to determine a configuration of instruments provided the 

stochastic model for observations is known; second-order design 

(SOD), the purpose of which is to optimize the stochastic model 

for observations; and, finally, third-order design (TOD), which is 

about further improvement to the network. The FOD of an indoor 

TLS network is of concern here, since only the distribution of 

scans is to be designed. Furthermore, the scans will be registered 

with signalized targets, then the overlap between adjacent scans 

need to be incorporated as well (Wujanz and Neitzel, 2016).  

Different configurations of TLS network impact the precision of 

TLS observations, the performance of registration, and 

eventually the quality of the final product. Over the past 15 years, 

several research papers and articles have appeared concerning 

this topic. Much research has demonstrated that scanning 

geometry impacts TLS observation quality. According to 

Soudarissanane et al. (2011), the scanning geometry of the laser 

beam is defined as the incidence angle between the laser beam 

and the object, as well as the range between the scanner and the 

object. Overall, from existing research it can be concluded that 

the quality of range observations decreases with increasing 

incidence angle (Lichti, 2007; Pejic, 2013; Roca-Pardiñas et al., 

2014; Soudarissanane et al., 2011; Ye and Borenstein, 2002) as 

well as scanner-object range (Boehler et al., 2003; Pejic, 2013; 

Roca-Pardiñas et al., 2014; Soudarissanane et al., 2011; Ye and 

Borenstein, 2002). The configuration of targets also need to be 

considered for registration using targets. Generally speaking, at 

least three targets should be evenly distributed throughout the 

scan overlap region (Becerik-Gerber et al., 2011; Johnson and 
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Johnson, 2012). It also has demonstrated numerically that the 

targets should not be bunched together, collinear or near collinear 

(Gordon and Lichti, 2004). 

 

A significant topic in the network design problem is network 

optimization. It can be said that optimal network design problems 

have been considered by surveyors ever since their inception, 

when most networks were designed based on surveyors’ intuition 

or experience. With the development of modern computer 

technologies, the design approaches have evolved from the 

empirical methods (Asplund, 1963), through analytical methods 

(Kuang, 1996; Schmitt, 1985a and 1985b), to some well-known 

heuristic methods, e.g., simulated annealing (Baselga, 2011; 

Metropolis et al., 1953), genetic algorithms (Holland, 1975; 

Saleh et al., 2004), and particle swarm optimization (Doma and 

Sedeek, 2014; Kennedy, 2011), whose principles are inspired by 

many adaptive optimization phenomena in nature.  

 

An optimal network design with maximum quality and minimum 

cost is necessary, especially when the network volume is large, 

like a scanning network consists of thousands of scans (e.g., 

Hullo. 2016), which is the major motivation of this study. The 

subject of this paper is to solve the FOD problem using three 

well-known heuristic methods, SA, GA and PSO, and make a 

comparison of their performances on an indoor TLS network 

example. As a starting point of TLS network design, the example 

and methods applied in this paper will eventually be extended 

into more realistic and complicated networks.  

 

This paper is structured as follows: the background of network 

design problems and the literature review for TLS network 

design are provided in this section. Three heuristic methods used 

in this paper are introduced in Section 2 while the optimization 

problem to be solved is described in Section 3. Performances of 

three optimization methodologies on a simulated indoor TLS 

network are compared in Section 4 and finally, conclusions are 

presented in Section 5. 

 

 

2. HEURISTIC METHODS INTRODUCTION 

2.1 Network Optimization Procedures 

The general procedures for optimal network design can be 

summarized as follows (Kuang, 1996): 

 

- Step 1: Defining network quality criteria 

- Step 2: Determining the initial network design  

- Step 3: Solving for the optimal network design solution 

Before network design, a quality measure must be determined for 

optimization. This quality measure is represented by an objective 

function 𝑓(𝑥)  depending on a set of parameters 𝑥  within the 

search domain 𝐷  and subjected to certain constraints, 𝐶𝑖 . To 

search for the optimum, the problem is formulated as: 

 
min 𝑓(𝑥)    𝑥𝜖𝐷

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:    𝐶1, 𝐶2, … 𝐶𝑖
                            (1) 

 

Techniques for the optimization of the problem in Eq. (1) can be 

classified as analytical methods and heuristic methods. The 

concept of analytical methods is to construct and minimize the 

objective functions 𝑓(𝑥)  under the proposed constraints. This 

minimization is usually realized by using Taylor series expansion 

to linearize the non-linear functions with respect to design 

parameters (e.g., scanner locations in TLS network). Analytical 

methods can automatically produce an optimal solution that 

meets the pre-set quality requirements. In recent decades, some 

heuristic methods based on simulating the mechanism of the 

natural ecosystem have been proposed and studied to solve the 

complex large-scale optimization problems.  

 

Analytical methods are computationally efficient while the 

heuristic methods avoid the derivation of complicated 

mathematical equations. This paper focuses on the comparison of 

three heuristic methods in the FOD of indoor TLS network 

optimization, whose principles will be introduced below. 

 

2.2 Simulated Annealing Algorithm 

The simulated annealing method was first developed by 

Metropolis et al. (1953). It simulates the rearrangement of 

particles in a body to crystalline state accompanied by the 

decrease of temperature. The particles of a body move freely 

within a range with an amplitude determined by the body 

temperature. Provided the cooling is slow enough, the particles 

can arrange themselves in states of increasingly lower energy, 

leading eventually to the state of lowest energy, i.e., the 

crystalline state (Baselga, 2011). The idea of SA follow the 

Monte-Carlo iterative method (Berne, 2004): 

 

1) Initial solution 𝑥0 . An arbitrary initial solution 𝑥0  and its 

objective function 𝑓(𝑥0)  are generated. In this paper, 𝑥 

represents a scanning plan with a set of scanner locations, 

𝑓(𝑥)  is the quality of this scanning plan, which will be 

further clarified in subsection 3.3. 

 

2) Improvement ∆𝑥. The improvement ∆𝑥 is generated by a 

random distribution function, which reflects the free 

movement of the particles. One of the most suitable 

functions is the normal distribution with density function of: 

 

𝑔(𝑥) =
1

√2𝜋𝜎𝑖
𝑒
−
𝑥2

2𝜎𝑖
2
                              (2) 

 

where 𝜎𝑖  is the standard deviation that defines the 

movement amplitude in each iteration and is determined by 

the current temperature 𝑇(𝑖): 
 

𝜎𝑖 = 𝜎0𝛽
𝑇(𝑖)

−1
, 0 < 𝛽 < 1             (3) 

 

where   𝜎0 = the initial standard deviation  

    𝛽 = the cooling factor  

 

For the temperature in each iteration, some widely accepted 

cooling schemes are (Baselga, 2011): 

 

𝑇(𝑖) =
𝑇0

log (𝑖+1)

𝑇(𝑖) =
𝑇0

1+𝑖

𝑇(𝑖) = 𝑇0𝛼
𝑖 , 0 < 𝛼 < 1

                      (4) 

 

where T0  = sufficiently high initial temperature, e.g.,   

10000℃, so the particles move widely in the body 

                   α = cooling rate 

 

For the application in this paper, 𝜎0 is determined based on 

the size of the room so that the candidate solutions can move 

freely within the entire room. The initial temperature 𝑇0 and 

cooling factors 𝛼  and 𝛽  are empirical values that largely 

effect the algorithm performance. 𝛽 is usually set as 𝛼2 to 

reduce the undefined parameters. 
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3) Acceptance criteria Equation 5 is used to prevent the 

solution from falling into a local minimum. 

 

𝑥𝑖+1 = {
𝑥𝑖 + ∆𝑥      𝑖𝑓 𝑓(𝑥𝑖 + ∆𝑥) < 𝑓(𝑥𝑖)                  
𝑥𝑖 + ∆𝑥     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑤𝑖𝑡ℎ 𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝
       0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                           

    (5) 

         

where 

𝑝 = 𝑒
−
𝑓(𝑥𝑖+∆𝑥)−𝑓(𝑥𝑖)

𝑇(𝑖)                              (6) 

 

4) Repeat step 2 and 3 until the stop criterion is reached. In this 

paper, the stop criterion for all methods is the maximum 

number of iterations. Then the solution with the minimum 

objective function is save as the optimal network design. 

 

The flowchart in Figure 1 shows the simulated annealing method. 

 

 
Figure 1. Flowchart of the simulated annealing method 

 

2.3 Genetic Algorithm  

Developed originally by Holland (1975), the genetic algorithm is 

based on Darwinian evolutionary theory of survival of the fittest. 

A new population (i.e., a group of candidate solutions) is 

generated from old ones based on some genetic rules. Each 

solution is evaluated by its fitness until the best solution is found. 

The basic principle of GA is outlined as follows: 

 

1) Initial population. Generate a random population with 𝑖 

chromosomes, 𝑥0
𝑖 , and their objective functions, 𝑓(𝑥0

𝑖 ). The 

chromosomes 𝑥𝑖  in this paper are  𝑖  scanning plans with 

different sets of scanner locations and 𝑓(𝑥𝑖) represent the 

quality of each plan. 

 

2) Generate a new population. A new population is created 

based on Darwinian evolutionary theory with three genetic 

operators as shown in Figure 2:  

 

- Selection: Select two chromosomes from a population 

with a probability based on their objective functions; 

 

- Crossover: Elements of two parent chromosomes are 

crossed over based on a certain rule to create two children 

chromosomes; 

 

- Mutation: Elements in an arbitrary chromosome is 

mutated with a mutation probability. 

 

These three operations are repeated until each chromosome 

in the population have been modified (i.e., a new population 

is generated). 

 
Figure 2. Illustration of the GA operators 

 

3) Keep generating new population until the stop criterion is 

reached and the chromosome with the minimum objective 

function is considered as the optima.  

 

Flowchart of the Genetic Algorithm is depicted in Figure 3: 

 
Figure 3. Flowchart of the genetic algorithm 

 

2.4 Particle Swarm Optimization 

The particle swarm optimization (Kennedy, 2011) is based on the 

movement of a group of birds (i.e., particles). Each particle flies 

in a defined search space to discover its best solution, and adjusts 

its movement based on its own flying experience as well as the 

flying experience of other particles (Doma and Sedeek, 2014). 

The PSO algorithm has four main steps: 

 

1) Initial particles. Generate 𝑖 particles with random positions 

𝑥0
𝑖  within the search domain 𝐷, random velocities 𝑣0

𝑖  and 

objective functions 𝑓(𝑥0
𝑖 ). Similar to GA, particles 𝑥𝑖 are 𝑖 

scanning plans with different sets of scanner locations, and 

𝑓(𝑥𝑖) are the quality of each plan. 

 

2) Velocity update. The velocity of each particle 𝑣𝑘
𝑖  is updated 

based on the local optimum position 𝑝𝑖 of this particle over 

time, and the optima of all particles 𝑝𝑔: 

𝑣𝑘+1
𝑖 = 𝑤𝑣𝑘

𝑖 + 𝑐1𝑟𝑎𝑛𝑑
(𝑝𝑖−𝑥𝑘

𝑖 )

∆𝑡
+ 𝑐2𝑟𝑎𝑛𝑑

(𝑝𝑔−𝑥𝑘
𝑖 )

∆𝑡
        (7) 

 

where    𝑤 = inertial factor 

𝑐1 = self-confidence factor 

𝑐2 = swarm confidence factor  

 

Random Initial Solution 𝑥0 and𝑓(𝑥0)
Initial Temperature 𝑇0

Random New 

Candidate 𝑥𝑖 and 

𝑓(𝑥𝑖)

Probability of 

Acceptance 𝑝
Accept New 

Candidate 

Better𝑓(𝑥𝑖)

Worse𝑓(𝑥𝑖)

Reject New 

Candidate 

If (Random Number < 𝑝)

Termination 

Criteria

End

Yes

No

Update 

Temperature 𝑇𝑖

Chromosome 3 1 0 1 0 0 1

Population

Chromosome 1 1 0 0 1 1 1

Chromosome 2 0 1 1 0 1 0

Chromosome 3 1 0 1 1 0 1

… 1 0 0 0 1 0

Chromosome n 0 0 1 1 1 1

Crossover

Mutation

Chromosome 1 1 0 0 1 1 1

Chromosome 2 0 1 1 0 1 0

Chromosome 1 1 0 1 1 1 1

Chromosome 2 0 1 0 0 1 0

Chromosome 3 1 0 1 1 0 1

Initial Population with 

𝑛 Chromosomes 𝑥0
 and 𝑓(𝑥0

 )

Termination 

Criteria

End

Yes

No

Selection
Mutation

Optimal Chromosomes 𝑥
and 𝑓(𝑥)

New Population with 

𝑥𝑖
 and𝑓(𝑥𝑖

 ) Crossover

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W4, 2017 
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W4-75-2017 | © Authors 2017. CC BY 4.0 License.

 
77



 

The first two terms represent the influence of current motion 

and previous optimal motions of this particle; the third term 

is the influence of the optimal motion of all particles.  

Factors 𝑤, 𝑐1 and 𝑐2 are empirical values that largely effect 

the algorithm performance. 

 

3) Position update. The positions are updated based on their 

velocities with Equation 8: 

 

𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝑣𝑘+1
𝑖 ∆𝑡                             (8) 

 

The idea of PSO algorithm is depicted in Figure 4: 

 

 
Figure 4. Position update in PSO algorithm 

 

4) Termination criterion. Step 2 and 3 are repeated until the 

stop criterion is met. Finally, the position with the minimum 

object function will be saved as the optimal solution. 

 

The flowchart of the PSO method is shown in Figure 5: 

  

 
Figure 5. Flowchart of the particle swarm optimization 

 

2.5 Parameters Description 

The adopted parameters in each heuristic method for the network 

design problem in this paper are clarified in Table 1: 

 

Unknown parameters 𝑥 A set of scanner locations 

Objective function 𝑓(𝑥) 
Summation of incidence angles  

(explained in subsection 3.3) 

Empirical 

parameters 

SA 

Initial temperature: 𝑇0 

Initial standard deviation: 𝜎0 

Cooling factors: 𝛼 

PSO 

Inertial factor: 𝑤 

Self-confidence factor: 𝑐1  

Swarm confidence factor: 𝑐2 

GA — 

Table 1. Adopted parameters in the three heuristic methods 

3. OPTIMIZATION PROBLEM 

The problem of interest in this paper is the optimal design of an 

indoor TLS network using the three heuristic methods. The 

optimization problem is stated as: minimize the number of 

necessary scanner locations to obtain full coverage of an indoor 

scene. This network optimization is solved based on 

(Soudarissanane and Lindenbergh, 2011): 

 

1) The 2D map of a scanning scene; 

2) The discretized scanning scene; 

3) The discretized possible viewpoints (VPs). 

 

In the work of Soudarissanane and Lindenbergh (2011), the 

optimal solution was sought using the greedy algorithm, which is 

time-efficient but provides sub-optimal solutions. The 

optimization methods investigated in this paper are relatively 

time-consuming but find optimal solutions, which can reduce the 

scanning cost, especially for large networks.  

 

3.1 2D Discretized Data 

Figure 6 shows an example of how the data discretization works. 

The walls of the scanning scene are extracted from the 2D floor 

map and then discretized with a certain unit (e.g., segments with 

the length of 1m), as S1 to S8 in Figure 6. Similarly, possible 

viewpoints are also discretised as VP1 to VP4.  

 

 
Figure 6. Example of the scanning problem 

 

3.2 Scanning Geometry Constraints 

As mentioned in Section 1, TLS observation quality is impacted 

by scanning geometry. Based on the existing research (Lichti, 

2007; Pejic, 2013; Roca-Pardiñas et al., 2014; Soudarissanane et 

al, 2011), the observation quality is satisfactory when the scanner 

is placed where: 

 

- The incidence angle of the laser beam is less than 60° - 65°; 
- The range between the object and the scanner is within the 

range capability defined by the manufacturer. 

These two factors are used as constraints in the network design. 

Since the test data is a small room within the range capability of 

most scanners, only the incidence angle constraint is considered 

in this paper. A Boolean score table for all discretised segments 

from an arbitrary viewpoint is obtained as Figure 7. The visibility 

zone for one viewpoint is the scanning area where the incidence 

angle constraint is satisfied. The marking rule is: 

 

- Case 1: Two vertices of the segment fall into the visibility 

zone;  

- Case 0: Less than two vertices of the segment is within the 

visibility zone. 

Particle memory influence

Swarm influence

Particle motion influence

𝑥𝑘
𝑖

𝑥𝑘+1
𝑖

𝑣𝑘+1
𝑖

𝑝𝑔

𝑝𝑖

𝑣𝑘
𝑖

Initial Swarm with 

𝑛 Particles 𝑥0
 , 𝑣0

 and𝑓(𝑥0
 )

New Swarm with 

𝑥𝑖
 , 𝑣𝑖

 and𝑓(𝑥𝑖
 )

Termination 

Criteria

End

Yes

No

Update

Swarm Own Flying Memory

Swarm Influence

Optimal Particle 𝑥 and𝑓(𝑥)

Current flying

VP1 VP2

VP3 VP4

S1 S2

S6 S5

S3

S4

S8

S7
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Figure 7. Boolean wall segments 

 

The entire score table for the example in Figure 6 is constructed 

as Table 2. 

 

       Segments 

VPs 
S1 S2 S3 S4 S5 S6 S7 S8 

VP1 1 0 1 1 1 1 0 1 

VP2 0 1 1 0 1 1 1 1 

VP3 1 1 1 1 0 1 1 0 

VP4 1 1 0 1 1 0 1 1 

Table 2. Boolean score table for the example in Figure 6 

 

3.3 Statement of Problem 

It can be seen from Table 2 that the combination of any two and 

more possible VPs can provide a full coverage of the room. 

Furthermore, a quality measure needs to be determined for 

optimization. Since the observation quality is impacted by the 

incidence angle, the summation of all incidence angles of laser 

beams hitting the visible segment vertices is defined as the 

objective function 𝑓(𝑥) in this optimization problem. A small 

sum of incidence angles corresponds to a network of good 

quality. 

 

Finally, the optimization problem in this paper is stated as: 

determine the scanning network using heuristic methods to obtain 

a full coverage of the indoor scene with minimal number of scan 

locations as well as minimal summation of incidence angles.  

 

4. APPLICATION 

In this section, the SA, GA and PSO methods are used in the 

problem of optimizing an indoor TLS network design. Each 

method’s performance is compared in terms of the quality of the 

solutions, runtime and repeatability. All methods are conducted 

on an Intel® CoreTM i5, 3.33GHz, 8 GB RAM computer, in the 

MATLAB R2015b environment. 

 

4.1 Description 

4.1.1 Experiment Environment: The experiment 

environment tested in this section is Room 125 in the CCIT 

building located on the University of Calgary campus. It has an 

area of 163.96 𝑚2 and is depicted in Figure 8(a). 

 

 (a) 2D floor map 

 
(b) Discretized data 

Figure 8. Layout of the experiment data 

 

With the known coordinates of the room corners, the walls were 

extracted as shown in Figure 8(b). Using the method described in 

Subsection 3.1, the room was discretized into 74 wall segments 

with length of 1m and 68 possible viewpoints with an interval of 

1.5m. 

 

4.1.2  Pseudocode: Table 3 shows the pseudocode of the 

method used in the experiments. The room is discretized as wall 

segments S𝑖 and possible viewpoints VP𝑗 with their score tables 

ST𝑗 . The method starts with one arbitrarily-selected viewpoint 

VP𝑜. The location of this viewpoint is updated using SA, GA or 

PSO and the summation of incidence angles the objective 

function. Another viewpoint is added into the viewpoints set VP𝑜 

if full coverage cannot be acquired with the current number of 

viewpoints. The method runs iteratively until a set of viewpoints 

with full coverage and minimum incidence angle summation is 

found. 

 

Since the location of viewpoints generated by SA, GA and PSO 

can be any point bounded by the walls, it is time-consuming to 

construct a score table for each new viewpoint. To solve this 

problem, the nearest points of the newly-generated viewpoints 

are searched in VP𝑗. Then their corresponding score tables, which 

have been pre-generated, can be used directly to improve 

computation efficiency. 

 

SA, GA and PSO in indoor network design 

Input: S𝑖 , 𝑖 = 1…𝑚, VP𝑗, ST𝑗 , 𝑗 = 1…𝑛 

Output: A set of viewpoints VP𝑜 ∈ VP, 𝑜 = 1… 𝑙, 𝑙 ≤ 𝑛. 
 

Initialization: VP𝑜, 𝑜 = 1 

while VP𝑜, 𝑜 ≤ 𝑛  

Update VP𝑜 using SA, GA or PSO 

Search (the nearest VP𝑜in VP𝑗) 

tempBest = Min (summation of the incidence angles) 

if ~full coverage 

Add (one more viewpoint to VP𝑜, 𝑜 = 𝑜 + 1) 

         else 

break 

end 

end 

Table 3. Algorithm pseudocode 

 

Wall Segments

Viewpoint

Visibility Zone
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4.1.3  Parameters Selection: As shown in Table 4, different 

sets of empirical parameters were tested and their corresponding 

objective functions were used for evaluation.  

 

Parameters #VP 
Objective 

function°(×104) 

SA 

𝑻𝟎 = 104 °, 𝛔𝟎 = 16m, 𝛂 = 0.95 5 1.5670 

𝑻𝟎 = 102 °, 𝜎0 = 16m, 𝛼 = 0.95 6 2.0677 

𝑇0 = 104 °, 𝝈𝟎 = 5m, 𝛼 = 0.95 6 1.9292 

𝑇0 = 104 °, 𝜎0 = 16m, 𝜶 = 0.5 7 2.4493 

GA 

— 4 1.3328 

PSO 

𝒘 = 0.8, 𝒄𝟏 = 0.1, 𝒄𝟐 = 0.1 4 1.2536 

𝑤 = 0.1, 𝑐1 = 0.8, 𝑐2 = 0.1 5 1.4396 

𝑤 = 0.1, 𝑐1 = 0.1, 𝑐2 = 0.8 6 1.8069 

𝑤 = 0.33, 𝑐1 = 0.33, 𝑐2 = 0.33 5 1.5474 

Maximum iteration: 3000 

Number of chromosomes/particles: 30 

Table 4. Parameters selection for each method 

 

As can be seen In Table 4, the performance of each method varied 

with the selection of parameters. The maximum iterations for all 

methods was 3000 and the number of chromosomes or particles 

in GA and PSO was set to 30. No empirical values are required 

in GA. The parameters to provide optimal solutions for each 

method are listed in their first rows. 

 

For SA, an extremely large initial temperature 𝑇0 , an initial 

standard deviation 𝜎0  agrees with the room size and a slow 

cooling factor 𝛼 allow the candidate solutions to move widely 

within the moving area at first and eventually converge to the 

optimal solution. Parameters in its first row are proven to provide 

the optimal solution by varying a single parameter at a time. As 

in Table 4, tuning the parameters to other values prevents the SA 

method from finding optimal solutions. 

 

For PSO, the optimal solution can be found when the inertial 

factor 𝑤  is much larger than 𝑐1  and 𝑐2 . By doing so the 

improvement to the solutions mainly depend on the randomly-

generated movement, and are only slightly impacted by the 

current optimum. If the self-confidence factor 𝑐1 or the swarm 

confidence factor 𝑐2 is set larger, as in the second and third case 

in Table 4, the solution is more likely to be stuck in the current 

optima since the method trusts it too much. Tuning the factors to 

equal values provide a solution of the medium performance. 

 

4.2 Results and Discussion 

The performances of three adopted methods are compared 

regarding the quality of the solutions, runtime, and repeatability. 

 

4.2.1 Quality of the Solutions: Successive solutions from the 

three heuristic methods as well as the greedy method are depicted 

in Figure 9. Represented by different symbols, the optimal 

solutions from iteration 1000, 2000 and 3000 are green triangles, 

blue circles and red squares, respectively. Their corresponding 

objective functions are also provided in Table 5.  

 

It can be seen that within the maximum number of iterations, the 

performances of PSO and GA are similar. The optimal solution 

of PSO, i.e., 4 viewpoints with a minimum objective function of 

1.2536×104(°), can be found only when the parameter values are 

suitably selected, which is not an issue for GA. Since SA 

generates only one candidate per iteration, compared with 30 

candidates in GA and PSO, it requires more iterations to find the 

optimal solution. Thus, SA cannot find a solution for 1000 

iterations and only provides a solution with 5 viewpoints within 

the maximum number of iterations, which can be overcome when 

the iteration limitation is increased beyond 3000. The greedy 

method solution shows that a sub-optimal plan with a minimum 

of 5 viewpoints for this case can be obtained with no iteration, 

and the impact of being away from the optimum will increase in 

case of more complex scenes. 

 

Iteration 
Successive solutions 

(Symbols in Figure 9) 

Objective 

function °(×104) 

SA 

1000 — — 

2000 Blue circles (○) 1.7879 

3000 Red squares (■) 1.5670 

GA 

1000 Green triangles (∆) 1.3416 

2000 Blue circles (○) 1.3328 

3000 Red squares (■) 1.3328 

PSO 

1000 Green triangles (∆) 1.3665 

2000 Blue circles (○) 1.3276 

3000 Red squares (■) 1.2536 

Greedy method 

 Red squares (■) 1.7274 

Table 5. Successive solutions and objective functions 

 

         
(a)  SA 

 

   
 (b)  GA       
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(c)  PSO  

 

    
           (d)  Greedy method 

Figure 9. Layout of optimal viewpoints from different methods 

 

4.2.2 Runtime: Each optimization method was repeated 20 

times and the average runtimes are listed in Table 6. GA and PSO 

have a similar total runtime and runtime per iteration. The reason 

that SA runs faster per iteration is because SA generates one 

solution once per iteration while other two methods generate 30 

solutions in each iteration. However, since SA cannot find 

optimal solutions with 4 viewpoints, its total runtime is longer 

than the other two methods. 

 

Method Ave. total runtime Ave. runtime per iteration 

 s s 

SA 44.3436 0.0074 

GA 37.4379 0.0125 

PSO 35.5385 0.0118 

Table 6. Average runtime 

 

4.2.3 Repeatability: The objective functions for the solutions 

in 20 runs are used to evaluate the repeatability of each method. 

From Figure 10, one can see that solutions from GA and PSO are 

more repeatable than solutions from SA, which is demonstrated 

numerically in Table 7. 

 

Method Mean Standard Deviation 

 °(×104) °(×102) 

SA 1.7828 5.6039 

GA 1.3688 1.7252 

PSO 1.2784 1.4134 

Table 7. Mean and Standard deviation of the objective functions 

 

 
Figure 10. Objective functions in 20 runs 

 

5. CONCLUSIONS 

Compared with in geodesy and photogrammetry, optimal 

network design for TLS hasn’t received the same attention in 

current research. In this paper, the first-order design of an indoor 

TLS network, i.e., the configuration of scanner locations, is of 

interest. The experiment environment was simulated with 

discretized wall segments and possible viewpoints. A minimum 

number of viewpoints with a complete coverage of all wall 

segments was found by adopting three heuristic optimization 

methods: simulated annealing, genetic algorithm and particle 

swarm optimization. The experiment environment was a 

simulated room located on the University of Calgary campus. 

 

Comparisons were made regarding the quality of the solutions, 

runtime, and repeatability. It was demonstrated that PSO has the 

best performance when its empirical parameters are selected 

suitably while SA performs the worst that cannot guarantee an 

optimal solution within the same iterations. GA provides similar 

solutions with PSO with tuning less empirical parameters. Thus, 

GA is determined as the best choice for this problem.  

 

This problem is currently considered in 2D space, which can be 

further extended to the more complex 3D problems. Known as 

the Next Best View problem, this type of problem is normally 

solved by the strategy of ray-tracing, which is computational 

complex even for a trivial object (Pito, 1999). Also, constraints 

like the overlap rate between adjacent scans and the minimum 

range capability of the selected scanner can be involved. In 

addition, the number and configuration of targets is another 

consideration for optimal performance of point cloud 

registration. Eventually, a full design system that can 

automatically provide an optimal plan for the high-accuracy and 

large-volume scanning network is to be developed in this 

research. 
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