
GMZ: A GML COMPRESSION MODEL FOR WEBGIS

Ayush Khandelwal a, Dr. K. S. Rajan a

a Lab for Spatial Informatics, International Institute of Information Technology, Hyderabad, India –

ayush.khandelwal@research.iiit.ac.in, rajan@iiit.ac.in

Commission IV, WG IV/4

KEY WORDS: GIS, Lossless compression, GML, Simple features profile, WFS

ABSTRACT:

Geography markup language (GML) is an XML specification for expressing geographical features. Defined by Open Geospatial

Consortium (OGC), it is widely used for storage and transmission of maps over the Internet. XML schemas provide the convenience

to define custom features profiles in GML for specific needs as seen in widely popular cityGML, simple features profile, coverage,

etc. Simple features profile (SFP) is a simpler subset of GML profile with support for point, line and polygon geometries. SFP has

been constructed to make sure it covers most commonly used GML geometries. Web Feature Service (WFS) serves query results in

SFP by default. But it falls short of being an ideal choice due to its high verbosity and size-heavy nature, which provides immense

scope for compression. GMZ is a lossless compression model developed to work for SFP compliant GML files. Our experiments

indicate GMZ achieves reasonably good compression ratios and can be useful in WebGIS based applications.

1. INTRODUCTION

1.1 Motivation

GML proves to be a great modelling language for geospatial

web due to its advent from XML, a de-facto standard for web,

which has the advantages of being human readable, browser

friendly, extensible, editable and queryable. It also comes

bundled with the two unavoidable drawbacks of XML –

verbosity and being text based. XML, as we know is highly

verbose in its nature. It is stored as Unicode text forbidding

GML to leverage storing coordinates (which make up

significant content of a GML document) as floating-point

numbers or some combination of integers that can potentially

take significantly less space compared to storing coordinates as

strings. This bloats the size of GML documents and makes it

fall short of being the most favourable choice for current usage

patterns that are mostly Internet based. Consequently, we are

forced to think of ways to make GML more efficient without

the need to do away with the advantages that it comes with.

The rapidly multiplying Internet users put a lot of pressure on

Internet services. Smart phones provide enough processing

power to users, making mobile GIS feasible. But storage and

bandwidth still suffer. Compression is an obvious choice in this

direction. With conventional text compression algorithms such

as LZ77, Huffman coding, Burrows-

Wheeler transform, PPM, etc. already in place, we are inclined

to use them everywhere. But these compression algorithms are

unbiased towards structure that exists in data and therefore,

cannot leverage this towards achieving better compression

ratios. Consquently, they produce inferior compression ratios

compared to models aimed at XML compression. GML is even

more well-structured and predictable indicating that developing

GML specific compression models to get better compression

ratios make sense. However, we refrain from developing a

compression model for the whole of GML. Rather, this work is

restricted to anything that falls into GML’s Simple Features

Profile (GML simple features profile, 2011) because of its high

use on the internet through WFS. It’s a good first step at

realizing what future compression models should be able to

achieve.

1.2 Literature survey

Majority of current work on GML compression has focused

mostly on just the storage efficiency of data. GPress (Guan and

Zhou, 2007) and some other compression models (LI et al, 2008;

Weiand Guan, 2010) are based on three principles: separating

spatial data, attribute data and file structure and storing in

different containers; applying delta encoding on floating point

coordinates and finding semantic similarity between attributes.

Based on the same idea, GQComp (Dai et al, 2009) uses a

custom encoding for coordinates, makes provision for spatial

and attribute data querying through the combination of feature-

structure tree and R* tree spatial indexing; and achieves good

compression. Another compression technique called Gtree

(Harshita and Rajan, 2010; Harshita, 2013) restricted to work

for only polygon data, uses a tree based structure for managing

the coordinate data.

One common issue with most techniques is that they use delta

encoding for coordinate compression which leads to loss of

precision when calculating the delta. This can lead to errors,

slivers, disjoint ends that are highly undesirable. GQComp uses

a lossless custom encoding for coordinates and so far, produces

best compression ratios. But its query subsystem doesn’t make

sense as loading the entire data in-memory puts too much

pressure on already ladden modern day systems. It is equivalent

to decompressing the entire document and then performing

query on it.

Our technique is loosely based on Gtree, specifically designed

to work with SFP. We are using a custom encoding which is a

mix of delta encoding and dictionary encoding to compress

coordinate data. Apart from the fact that it’s lossless and

produces good compression ratios, our model has provision for

query in compressed state. Though the query subsystem is still

under development and out of scope of this paper, we would

like to emphasize that our model provides access to individual

features by decompressing them in isolation. This is an essential

requirement for querying and in favour of our claim.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W4, 2017
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-2-W4-9-2017 | © Authors 2017. CC BY 4.0 License. 9

mailto:ayush.khandelwal@research.iiit.ac.in
mailto:rajan@iiit.ac.in

1.3 Dataset

Due to the unavailability of compiled SFP compliant GML 3

datasets, it has largely been prepared by making GML files SFP

compliant or by converting shapefiles into SFP compliant GML

files. QGIS has been used for the conversion process. We have

prepared GML files for 2 countries – India and USA. The India

files were downloaded from mapcruzin.com, a provider of

region wise shapefiles, and then converted to GML. The USA

GML files were downloaded from data.gov, the data portal of

the government of US, and then made SFP compliant. The

dataset is combination of point, line and polygon GML files.

The file size ranges from 20 MB to around 1 GB with most files

under 100 MB.

2. MAIN BODY

2.1 Understanding the data

GML is based on an abstract model of geography given by

OGC which defines the world in terms of features where each

feature has a set of properties. Properties can be grouped into

two categories – spatial property, which is the geometry that

stores the coordinate data of the feature (point, line or polygon)

and non-spatial property, which is the non-spatial description of

the feature. A feature is the smallest meaningful unit of GML. It

can have any number of spatial and non-spatial properties.

Referring to the GML snippet below, feature Road has 1 spatial

property and 3 non-spatial properties. All features with the same

name compulsorily have the same set of properties. Since,

spatial properties are fairly complex compared to non-spatial

properties, they have their own GML substructure which is

identified using the gml namespace. They are described using a

subset of geometry types such as Point, LineString, Curve,

Polygon, Surface, etc. The usage of these geometry types is

explained in detail in the SFP specification document. Non-

spatial properties are restricted to have any structure, a notion

imposed by SFP owing to the fact that databases are not

designed to handle nested data.

This simplification of data into segments - spatial, non-spatial

and XML tree structure - groups symantically similar data,

which inturn facilitates almost isolated and targeted

compression on these data segments. Since GML is

predominantly coordinate data like any map data, our focus will

be on coordinate data compression with provision for non-

spatial data compression and XML structure encoding. Here is a

list of characteristics of GML based on which our compression

model is based. These characteristics will be referenced in the

next section:

2.1.1 Duplication: Coordinates can be duplicated when

adjacent polygons share boundaries, when linestrings share end-

points or random duplicity among features.

2.1.2 Adjacency: Difference between adjacent coordinates

can be very less when data is closely packed which is often the

case in polygons and linestrings.

2.1.3 Text-based: Each digit of a coordinate is stored as a

byte, which ultimately bloats the size of data.

2.2 Compression Model

The algorithm is a 2-step process and involves 2 passes over the

document. The steps are explained in detail:

Figure 2. Compression model pipeline

<gml:featureMembers>

 <ogr:Road>

 <ogr:GEOM>

 <gml:lineString>

 <gml:posList>34.987644195556605 -

105.217300415038963

 34.987632751464808 -105.217117309570227

 34.987617492675746 -105.216644287109261

 </gml:posList>

 </gml:lineString>

 </ogr:geom>

 <ogr:ID>87687</ogr:ID>

 <ogr:NAME>I 40</ogr:NAME>

 <ogr:TYPE>Interstate</ogr:TYPE>

 </ogr:Road>

 <ogr:Road>

 <ogr:GEOM>

 <gml:lineString>

 <gml:posList>36.809299468994105 -

107.915138244628807

 36.808723449707003 -107.91530609130848

 36.808464050292926 -107.915161132812386

 </gml:posList>

 </gml:lineString>

 </ogr:geom>

 <ogr:ID>87688</ogr:ID>

 <ogr:NAME>NM 575</ogr:NAME>

 <ogr:TYPE>State Highway</ogr:TYPE>

 </ogr:Road>

</gml:featureMembers>

Figure 1. GML snippet

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W4, 2017
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-2-W4-9-2017 | © Authors 2017. CC BY 4.0 License.

10

2.2.1 First pass (coordinate compression): In the first pass,

the coordinate data is separated from the GML tree as XList to

store X-coordinates and YList to store Y-coordinates. The

following steps are performed on each List separately in order –

duplicate removal, sorting and index building.

Duplicate removal is done to eliminate data redundancy that we

identified in point 2.1.1. This is followed by sorting. The

intuition behind sorting can be understood in relation with delta

encoding. Delta encoding is a way of storing or

transmitting data in the form of differences (deltas) between

sequential data rather than complete files; more generally this is

known as data differencing (Delta encoding). It is well suited to

work with sorted data because sorting brings coordinates with

least difference adjacent to each other, which produces

minimum values of delta. This is in conjunction with point 2.1.2.

The next step is creation of coordinate dictionaries, XMap and

YMap, used for storing the coordinate and its reference as its

key-value pair. This reference is just the array index of XList for

X-coordinate or YList for Y-coordinate. These indices will be

used in place of the original coordinate during the structure

compression step.

The coordinate compression function, coordCompressor takes a

coordinate list at a time and applies a custom encoding on it. A

coordinate is broken down into its integral and decimal parts.

The integral parts of successive coordinates exhibit very high

repeatability, and therefore, will be stored almost negligibly,

only when a new integral part is encountered. Integral part

ranges from -90 to 90 for latitude and -180 to 180 for longitude.

Hence, it can be stored by a signed 2-byte short int datatype. On

the other hand, the decimal parts of successive coordinates

exhibit high proximity, i.e., mathematical difference between

consecutive decimal parts is significantly smaller compared to

the decimal parts themselves. The delta of the two consecutive

decimal parts is what is stored. It can be stored using any of the

unsigned integer datatypes - byte, short int, int or long long int -

depending on its size. This is different from many compression

models, which directly apply delta compression on the entire

coordinate leading to lossy compression. There is also some

metadata that needs to go along with each coordinate – flag to

indicate if a new integral part is encountered, length of the

decimal part and datatype used for storing delta. We have

managed to store all this metadata in just one byte. These

operations are applied on each coordinate and help solve the

issue identified in point 2.1.3.

2.2.2 Second pass (structure and attribute compression):

In the second pass, the structure tags are replaced by the

corresponding encodings and attribute data is compressed. The

properties of a feature have their own custom namespaces and

tags. Nonetheless, they remain the same for all features sharing

the same name. Therefore, we store these property names just

once per unique feature name. We traverse the feature tree and

identify if the property is spatial or non-spatial.

Spatial properties are made up of one of the 12 geometry types

and 10 subtypes provided in SFP. These geometry types are

tightly structured due to strict usage specification. These 22 tags

have been given a value from 0-21. The tags are replaced by

their encoding while traversing the spatial property. Two tags –

pos and posList – are the innermost tags in a geometry tree

structure and enclose coordinates for a feature’s geometry. We

now find the references or indices of these coordinates from

XMap and YMap and replace them with their indices. The value

of these indices will be of the order of millions when we have

let’s say, millions of coordinates. To prevent storing such high

values, we store just the delta of indices of successive

coordinates. The idea is that coordinates in a feature tend to be

very close numerically. Therefore, their position in coordinate

List will be close leading to a small value of delta. In our

experience, we could notice that this delta could be stored in

single signed byte most often.

Figure 3. GML geometry tags available in SFP

Relative to the amount of coordinates, attributes often make up

a small part of GML. Developing sophisticated compression

technique at the cost of increased complexity is not worthwhile

considering the change in overall compression ratios

contributed by attribute compression. We start with identifying

the type – integer, float or string. Integer and float types are

stored as integers and floats, respectively. String types show

some amount of duplication across features. They are evaluated

for feasibility of dictionary encoding and stored accordingly.

2.3 Software tools

In a typical client-server architecture such as WFS, the server is

the producer and provider of GML, and therefore, needs

compression support primarily. On the other hand, the client

(web browser) is the consumer of GML, and therefore, needs

decompression and visualization support. Depending on the

need, we have created separate tools for server and client.

Figure 4. Rendered GMZ in Firefox using an add-on

0 - Point 13 – Arc

1 – MultiPoint 14 – Circle

2 – LineString 15 – CircleByCenterPoint

3 – MultiLineString 16 - LineStringSegment

4 – Curve 17 – LinearRing

5 – MultiCurve 18 – Ring

6 – Polygon 19 – exterior

7 – MultiPolygon 20 - interior

8 – Surface 21 – pos

9 – MultiSurface 22 – posList

10 – Geometry

11 – MultiGeometry

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W4, 2017
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-2-W4-9-2017 | © Authors 2017. CC BY 4.0 License.

11

The compression model has been developed as a python script,

with options for compression and decompression given a GML

file. The C version of ElementTree known as the cElementTree,

which is faster and uses less memory, is being used for parsing

XML tree structure. We have constructed functions to handle

each geometry type supported in SFP. The compressed data is

stored in python’s bytearray, which is dumbed in a binary file at

the end. A compressed binary file is finally returned.

GML, being XML based, has the advantage of being browser

readable. It can be parsed natively and rendered in the browser

itself. GMZ has no such advantage. To make it browser

readable, a lean, cross-platform, client-side and easily

installable solution in the form of a Firefox add-on has been

implemented to perform decompression and visualization. The

files are rendered as SVG in the browser tab.

3. CONCLUSION

3.1 Results

Filename
Original

size

Compressed

size

Compression

percentage

Polygon

India_adm0 20.1 MB 4.8 MB 76

india_adm1 31.1 MB 7.9 MB 74.6

india_adm2 42.1 MB 10.5 MB 75.06

india_landuse 47.2 MB 7 MB 85.17

india_building

s
76.8 MB 6.8 MB 91.1

india_natural 70.3 MB 14.4 MB 79.5

Linestring

india_railways 22.7 MB 3.5 MB 84.6

india_waterwa

ys
67.7 MB 17.9 MB 73.56

india_roads 840 MB 122 MB 85.5

Point

india_places 22.6 MB 7 MB 69

india_points 50.3 MB 14.7 MB 71

Table 1. Compression ratios of India GML files

Filename
Original

size

Compressed

size

Compressio

n percentage

Polygon

us_adm0 82.2 MB 19.2 MB 76.64

us_adm1 85.1 MB 20 MB 76.5

us_adm2 104 MB 24.2 MB 76.73

us_np_bounda

ries
55.1 MB 20.5 MB 62.8

us_cities 1.13 GB 242.9 MB 79

Linestring

us_stateroad 34.7 MB 9.1 MB 73.77

us_trans_road

segments
402 MB 87 MB 78.36

Point

us_places 48.8 MB 19.2 MB 60.65

Table 2. Compression ratios of USA GML files

The average compression percentages for the India and US

datasets are 78.64% and 73.05% respectively. This is better than

any compression model that we know of, including GQComp.

None of the compression models provide compression and

decompression speeds for comparison. However, we would like

to argue that our compression and decompression speeds would

be comparable to others as our model is equally complex in

comparison. When comparing with Zip, our model does better

in compression ratios but lags behind in speed because Zip is

ignorant of structure in data. An observation worth noticing is

that the compression ratios for polygon and linestring data are

relatively higher than that for point data. This was anticipated

because point data has very less amount of spatial data

compared to linestring and polygon data.

3.2 Conclusion and future work

The results presented in this work demonstrate the effects that

topology and structure of the coordinate data have on the

compression potential of a standard GML file. We were able to

reduce the original data to its one-fourth/one-fifth without any

loss of data. We also showed how GMZ can be used as a data

transfer format on WebGIS by making it browser readable

through a Firefox add-on. Hence, GMZ can gel with and serve

an entire pipeline of a WFS-like architecture.

Future work will mainly focus on implementing an interface for

querying and exploring what all spatial and non-spatial queries

can be performed on the data without decompressing the file.

We would also try to optimize it for speed. Another important

thing that we would like to deal with in future is providing

native support for GMZ in browser. One more challenge we

plan to address is to integrate GMZ as one of the file exchange

formats for web services like WFS. We anticipate that this will

not only be lighter on the data transmission (bandwidth) rates

but also improve some data processing capabilities due to its

smaller data size, reducing the memory footprint.

REFERENCES

Dai, Q., Zhang, S. and Wang, Z., 2009, October. GQComp: A

Query-Supported Compression Technique for GML.

In: Computer and Information Technology, 2009. CIT'09. Ninth

IEEE International Conference on (Vol. 1, pp. 311-317). IEEE.

Delta encoding. https://en.wikipedia.org/wiki/Delta_encoding.

(accessed 1 Mar, 2017)

GML simple features profile, 2011. Open Geospatial

Consortium.

http://portal.opengeospatial.org/files/?artifact_id=42729.

(accessed 15 August, 2016)

Guan, J. and Zhou, S., 2007, April. GPress: Towards effective

GML documents compresssion. In: Data Engineering, 2007.

ICDE 2007. IEEE 23rd International Conference on (pp. 1473-

1474). IEEE.

Harshita, N.N. & Rajan, K.S., 2010. Effective Topological and

Structural Compression of GML coordinate Data. In: Global

Spatial Data Infrastructure (GSDI 12). Singapore. GSDI 12.

Harshita, N.N., 2013. EFFECTIVE TOPOLOGICAL AND

STRUCTURAL COMPRESSION OF GML DATA (Doctoral

dissertation, International Institute of Information Technology

Hyderabad, India).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W4, 2017
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-2-W4-9-2017 | © Authors 2017. CC BY 4.0 License.

12

https://en.wikipedia.org/wiki/Delta_encoding
http://portal.opengeospatial.org/files/?artifact_id=42729

Li, Y., Imaizumi, T., Sakata, S., Sekiya, H. and Guan, J., 2008.

Spatial Data Compression Techniques for GML. In: Frontier of

Computer Science and Technology, 2008. FCST'08. Japan-

China Joint Workshop on (pp. 79-84). IEEE.

Wei, Q., & Guan, J., 2010. A GML compression approach

based on on-line semantic clustering. In: Geoinformatics, 2010

18th International Conference on. June 2010. IEEE.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W4, 2017
ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-IV-2-W4-9-2017 | © Authors 2017. CC BY 4.0 License.

13

	GMZ: A GML COMPRESSION MODEL FOR WEBGIS
	1. Introduction
	1.1 Motivation
	1.2 Literature survey
	1.3 Dataset

	2. main body
	2.1 Understanding the data
	2.1.1 Duplication: Coordinates can be duplicated when adjacent polygons share boundaries, when linestrings share end-points or random duplicity among features.
	2.1.2 Adjacency: Difference between adjacent coordinates can be very less when data is closely packed which is often the case in polygons and linestrings.
	2.1.3 Text-based: Each digit of a coordinate is stored as a byte, which ultimately bloats the size of data.

	2.2 Compression Model
	2.2.1 First pass (coordinate compression): In the first pass, the coordinate data is separated from the GML tree as XList to store X-coordinates and YList to store Y-coordinates. The following steps are performed on each List separately in order – dup...
	2.2.2 Second pass (structure and attribute compression): In the second pass, the structure tags are replaced by the corresponding encodings and attribute data is compressed. The properties of a feature have their own custom namespaces and tags. Noneth...

	2.3 Software tools

	3. conclusion
	3.1 Results
	3.2 Conclusion and future work

	References

