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ABSTRACT: 

Geography markup language (GML) is an XML specification for expressing geographical features. Defined by Open Geospatial 

Consortium (OGC), it is widely used for storage and transmission of maps over the Internet. XML schemas provide the convenience 

to define custom features profiles in GML for specific needs as seen in widely popular cityGML, simple features profile, coverage, 

etc. Simple features profile (SFP) is a simpler subset of GML profile with support for point, line and polygon geometries. SFP has 

been constructed to make sure it covers most commonly used GML geometries. Web Feature Service (WFS) serves query results in 

SFP by default. But it falls short of being an ideal choice due to its high verbosity and size-heavy nature, which provides immense 

scope for compression. GMZ is a lossless compression model developed to work for SFP compliant GML files. Our experiments 

indicate GMZ achieves reasonably good compression ratios and can be useful in WebGIS based applications. 

1. INTRODUCTION

1.1 Motivation 

GML proves to be a great modelling language for geospatial 

web due to its advent from XML, a de-facto standard for web, 

which has the advantages of being human readable, browser 

friendly, extensible, editable and queryable. It also comes 

bundled with the two unavoidable drawbacks of XML – 

verbosity and being text based. XML, as we know is highly 

verbose in its nature. It is stored as Unicode text forbidding 

GML to leverage storing coordinates (which make up 

significant content of a GML document) as floating-point 

numbers or some combination of integers that can potentially 

take significantly less space compared to storing coordinates as 

strings. This bloats the size of GML documents and makes it 

fall short of being the most favourable choice for current usage 

patterns that are mostly Internet based. Consequently, we are 

forced to think of ways to make GML more efficient without 

the need to do away with the advantages that it comes with. 

The rapidly multiplying Internet users put a lot of pressure on 

Internet services. Smart phones provide enough processing 

power to users, making mobile GIS feasible. But storage and 

bandwidth still suffer. Compression is an obvious choice in this 

direction. With conventional text compression algorithms such 

as LZ77, Huffman coding, Burrows- 

Wheeler transform, PPM, etc. already in place, we are inclined 

to use them everywhere. But these compression algorithms are 

unbiased towards structure that exists in data and therefore, 

cannot leverage this towards achieving better compression 

ratios. Consquently, they produce inferior compression ratios 

compared to models aimed at XML compression. GML is even 

more well-structured and predictable indicating that developing 

GML specific compression models to get better compression 

ratios make sense. However, we refrain from developing a 

compression model for the whole of GML. Rather, this work is 

restricted to anything that falls into GML’s Simple Features 

Profile (GML simple features profile, 2011) because of its high 

use on the internet through WFS. It’s a good first step at 

realizing what future compression models should be able to 

achieve. 

1.2 Literature survey 

Majority of current work on GML compression has focused 

mostly on just the storage efficiency of data. GPress (Guan and 

Zhou, 2007) and some other compression models (LI et al, 2008; 

Weiand Guan, 2010) are based on three principles: separating 

spatial data, attribute data and file structure and storing in 

different containers; applying delta encoding on floating point 

coordinates and finding semantic similarity between attributes. 

Based on the same idea, GQComp (Dai et al, 2009) uses a 

custom encoding for coordinates, makes provision for spatial 

and attribute data querying through the combination of feature-

structure tree and R* tree spatial indexing; and achieves good 

compression. Another compression technique called Gtree 

(Harshita and Rajan, 2010; Harshita, 2013) restricted to work 

for only polygon data, uses a tree based structure for managing 

the coordinate data.  

One common issue with most techniques is that they use delta 

encoding for coordinate compression which leads to loss of 

precision when calculating the delta. This can lead to errors, 

slivers, disjoint ends that are highly undesirable. GQComp uses 

a lossless custom encoding for coordinates and so far, produces 

best compression ratios. But its query subsystem doesn’t make 

sense as loading the entire data in-memory puts too much 

pressure on already ladden modern day systems. It is equivalent 

to decompressing the entire document and then performing 

query on it. 

Our technique is loosely based on Gtree, specifically designed 

to work with SFP. We are using a custom encoding which is a 

mix of delta encoding and dictionary encoding to compress 

coordinate data. Apart from the fact that it’s lossless and 

produces good compression ratios, our model has provision for 

query in compressed state. Though the query subsystem is still 

under development and out of scope of this paper, we would 

like to emphasize that our model provides access to individual 

features by decompressing them in isolation. This is an essential 

requirement for querying and in favour of our claim. 
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1.3 Dataset 

Due to the unavailability of compiled SFP compliant GML 3 

datasets, it has largely been prepared by making GML files SFP 

compliant or by converting shapefiles into SFP compliant GML 

files. QGIS has been used for the conversion process. We have 

prepared GML files for 2 countries – India and USA. The India 

files were downloaded from mapcruzin.com, a provider of 

region wise shapefiles, and then converted to GML. The USA 

GML files were downloaded from data.gov, the data portal of 

the government of US, and then made SFP compliant. The 

dataset is combination of point, line and polygon GML files. 

The file size ranges from 20 MB to around 1 GB with most files 

under 100 MB.  

 

2. MAIN BODY 

2.1 Understanding the data 

GML is based on an abstract model of geography given by 

OGC which defines the world in terms of features where each 

feature has a set of properties. Properties can be grouped into 

two categories – spatial property, which is the geometry that 

stores the coordinate data of the feature (point, line or polygon) 

and non-spatial property, which is the non-spatial description of 

the feature. A feature is the smallest meaningful unit of GML. It 

can have any number of spatial and non-spatial properties. 

Referring to the GML snippet below, feature Road has 1 spatial 

property and 3 non-spatial properties. All features with the same 

name compulsorily have the same set of properties. Since, 

spatial properties are fairly complex compared to non-spatial 

properties, they have their own GML substructure which is 

identified using the gml namespace. They are described using a 

subset of geometry types such as Point, LineString, Curve, 

Polygon, Surface, etc. The usage of these geometry types is 

explained in detail in the SFP specification document. Non-

spatial properties are restricted to have any structure, a notion 

imposed by SFP owing to the fact that databases are not 

designed to handle nested data.  

 

This simplification of data into segments - spatial, non-spatial 

and XML tree structure - groups symantically similar data, 

which inturn facilitates almost isolated and targeted 

compression on these data segments. Since GML is 

predominantly coordinate data like any map data, our focus will 

be on coordinate data compression with provision for non-

spatial data compression and XML structure encoding. Here is a 

list of characteristics of GML based on which our compression 

model is based. These characteristics will be referenced in the 

next section: 

 

2.1.1 Duplication: Coordinates can be duplicated when 

adjacent polygons share boundaries, when linestrings share end-

points or random duplicity among features. 

 

2.1.2 Adjacency: Difference between adjacent coordinates 

can be very less when data is closely packed which is often the 

case in polygons and linestrings.   

 

2.1.3 Text-based: Each digit of a coordinate is stored as a 

byte, which ultimately bloats the size of data. 

  

2.2 Compression Model 

The algorithm is a 2-step process and involves 2 passes over the 

document. The steps are explained in detail: 

 

 

Figure 2. Compression model pipeline 

<gml:featureMembers> 

    <ogr:Road> 

        <ogr:GEOM> 

            <gml:lineString> 

                <gml:posList>34.987644195556605 -

105.217300415038963 

                   34.987632751464808 -105.217117309570227 

                   34.987617492675746 -105.216644287109261 

                </gml:posList> 

            </gml:lineString> 

        </ogr:geom> 

        <ogr:ID>87687</ogr:ID> 

        <ogr:NAME>I 40</ogr:NAME> 

        <ogr:TYPE>Interstate</ogr:TYPE> 

    </ogr:Road> 

    <ogr:Road> 

        <ogr:GEOM> 

            <gml:lineString> 

                <gml:posList>36.809299468994105 -

107.915138244628807 

                   36.808723449707003 -107.91530609130848 

                   36.808464050292926 -107.915161132812386 

                </gml:posList> 

            </gml:lineString> 

        </ogr:geom> 

        <ogr:ID>87688</ogr:ID> 

        <ogr:NAME>NM 575</ogr:NAME> 

        <ogr:TYPE>State Highway</ogr:TYPE> 

    </ogr:Road> 

</gml:featureMembers> 

 

Figure 1. GML snippet 
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2.2.1 First pass (coordinate compression): In the first pass, 

the coordinate data is separated from the GML tree as XList to 

store X-coordinates and YList to store Y-coordinates. The 

following steps are performed on each List separately in order – 

duplicate removal, sorting and index building.  

 

Duplicate removal is done to eliminate data redundancy that we 

identified in point 2.1.1. This is followed by sorting. The 

intuition behind sorting can be understood in relation with delta 

encoding. Delta encoding is a way of storing or 

transmitting data in the form of differences (deltas) between 

sequential data rather than complete files; more generally this is 

known as data differencing (Delta encoding). It is well suited to 

work with sorted data because sorting brings coordinates with 

least difference adjacent to each other, which produces 

minimum values of delta. This is in conjunction with point 2.1.2. 

The next step is creation of coordinate dictionaries, XMap and 

YMap, used for storing the coordinate and its reference as its 

key-value pair. This reference is just the array index of XList for 

X-coordinate or YList for Y-coordinate. These indices will be 

used in place of the original coordinate during the structure 

compression step. 

 

The coordinate compression function, coordCompressor takes a 

coordinate list at a time and applies a custom encoding on it. A 

coordinate is broken down into its integral and decimal parts. 

The integral parts of successive coordinates exhibit very high 

repeatability, and therefore, will be stored almost negligibly, 

only when a new integral part is encountered. Integral part 

ranges from -90 to 90 for latitude and -180 to 180 for longitude. 

Hence, it can be stored by a signed 2-byte short int datatype. On 

the other hand, the decimal parts of successive coordinates 

exhibit high proximity, i.e., mathematical difference between 

consecutive decimal parts is significantly smaller compared to 

the decimal parts themselves. The delta of the two consecutive 

decimal parts is what is stored. It can be stored using any of the 

unsigned integer datatypes - byte, short int, int or long long int - 

depending on its size. This is different from many compression 

models, which directly apply delta compression on the entire 

coordinate leading to lossy compression. There is also some 

metadata that needs to go along with each coordinate – flag to 

indicate if a new integral part is encountered, length of the 

decimal part and datatype used for storing delta. We have 

managed to store all this metadata in just one byte. These 

operations are applied on each coordinate and help solve the 

issue identified in point 2.1.3. 

 

2.2.2 Second pass (structure and attribute compression): 

In the second pass, the structure tags are replaced by the 

corresponding encodings and attribute data is compressed. The 

properties of a feature have their own custom namespaces and 

tags. Nonetheless, they remain the same for all features sharing 

the same name. Therefore, we store these property names just 

once per unique feature name. We traverse the feature tree and 

identify if the property is spatial or non-spatial.  

 

Spatial properties are made up of one of the 12 geometry types 

and 10 subtypes provided in SFP. These geometry types are 

tightly structured due to strict usage specification. These 22 tags 

have been given a value from 0-21. The tags are replaced by 

their encoding while traversing the spatial property. Two tags – 

pos and posList – are the innermost tags in a geometry tree 

structure and enclose coordinates for a feature’s geometry. We 

now find the references or indices of these coordinates from 

XMap and YMap and replace them with their indices. The value 

of these indices will be of the order of millions when we have 

let’s say, millions of coordinates. To prevent storing such high 

values, we store just the delta of indices of successive 

coordinates. The idea is that coordinates in a feature tend to be 

very close numerically. Therefore, their position in coordinate 

List will be close leading to a small value of delta. In our 

experience, we could notice that this delta could be stored in 

single signed byte most often. 

Figure 3. GML geometry tags available in SFP 

 

Relative to the amount of coordinates, attributes often make up 

a small part of GML. Developing sophisticated compression 

technique at the cost of increased complexity is not worthwhile 

considering the change in overall compression ratios 

contributed by attribute compression. We start with identifying 

the type – integer, float or string. Integer and float types are 

stored as integers and floats, respectively. String types show 

some amount of duplication across features. They are evaluated 

for feasibility of dictionary encoding and stored accordingly. 

 

2.3 Software tools 

In a typical client-server architecture such as WFS, the server is 

the producer and provider of GML, and therefore, needs 

compression support primarily. On the other hand, the client 

(web browser) is the consumer of GML, and therefore, needs 

decompression and visualization support. Depending on the 

need, we have created separate tools for server and client. 

 
Figure 4. Rendered GMZ in Firefox using an add-on 

 

0 - Point      13 – Arc 

1 – MultiPoint   14 – Circle 

2 – LineString   15 – CircleByCenterPoint 

3 – MultiLineString  16 - LineStringSegment 

4 – Curve   17 – LinearRing  

5 – MultiCurve   18 – Ring  

6 – Polygon   19 – exterior 

7 – MultiPolygon  20 - interior 

8 – Surface   21 – pos  

9 – MultiSurface  22 – posList 

10 – Geometry  

11 – MultiGeometry  
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The compression model has been developed as a python script, 

with options for compression and decompression given a GML 

file. The C version of ElementTree known as the cElementTree, 

which is faster and uses less memory, is being used for parsing 

XML tree structure. We have constructed functions to handle 

each geometry type supported in SFP. The compressed data is 

stored in python’s bytearray, which is dumbed in a binary file at 

the end. A compressed binary file is finally returned. 

 

GML, being XML based, has the advantage of being browser 

readable. It can be parsed natively and rendered in the browser 

itself. GMZ has no such advantage. To make it browser 

readable, a lean, cross-platform, client-side and easily 

installable solution in the form of a Firefox add-on has been 

implemented to perform decompression and visualization. The 

files are rendered as SVG in the browser tab.  

 

3. CONCLUSION 

3.1 Results 

Filename 
Original 

size 

Compressed 

size 

Compression 

percentage 

Polygon 

India_adm0 20.1 MB 4.8 MB 76 

india_adm1 31.1 MB 7.9 MB 74.6 

india_adm2 42.1 MB 10.5 MB 75.06 

india_landuse 47.2 MB 7 MB 85.17 

india_building

s 
76.8 MB 6.8 MB 91.1 

india_natural 70.3 MB 14.4 MB 79.5 

Linestring 

india_railways 22.7 MB 3.5 MB 84.6 

india_waterwa

ys 
67.7 MB 17.9 MB 73.56 

india_roads 840 MB 122 MB 85.5 

Point 

india_places 22.6 MB 7 MB 69 

india_points 50.3 MB 14.7 MB 71 

Table 1. Compression ratios of India GML files 

 

Filename 
Original 

size 

Compressed 

size 

Compressio

n percentage 

Polygon 

us_adm0 82.2 MB 19.2 MB 76.64 

us_adm1 85.1 MB 20 MB 76.5 

us_adm2 104 MB 24.2 MB 76.73 

us_np_bounda

ries 
55.1 MB 20.5 MB 62.8 

us_cities 1.13 GB 242.9 MB 79 

Linestring 

us_stateroad 34.7 MB 9.1 MB 73.77 

us_trans_road

segments 
402 MB 87 MB 78.36 

Point 

us_places 48.8 MB 19.2 MB 60.65 

Table 2. Compression ratios of USA GML files 

 

The average compression percentages for the India and US 

datasets are 78.64% and 73.05% respectively. This is better than 

any compression model that we know of, including GQComp. 

None of the compression models provide compression and 

decompression speeds for comparison. However, we would like 

to argue that our compression and decompression speeds would 

be comparable to others as our model is equally complex in 

comparison. When comparing with Zip, our model does better 

in compression ratios but lags behind in speed because Zip is 

ignorant of structure in data. An observation worth noticing is 

that the compression ratios for polygon and linestring data are 

relatively higher than that for point data. This was anticipated 

because point data has very less amount of spatial data 

compared to linestring and polygon data.  

 

3.2 Conclusion and future work 

The results presented in this work demonstrate the effects that 

topology and structure of the coordinate data have on the 

compression potential of a standard GML file. We were able to 

reduce the original data to its one-fourth/one-fifth without any 

loss of data. We also showed how GMZ can be used as a data 

transfer format on WebGIS by making it browser readable 

through a Firefox add-on. Hence, GMZ can gel with and serve 

an entire pipeline of a WFS-like architecture. 

 

Future work will mainly focus on implementing an interface for 

querying and exploring what all spatial and non-spatial queries 

can be performed on the data without decompressing the file. 

We would also try to optimize it for speed. Another important 

thing that we would like to deal with in future is providing 

native support for GMZ in browser. One more challenge we 

plan to address is to integrate GMZ as one of the file exchange 

formats for web services like WFS. We anticipate that this will 

not only be lighter on the data transmission (bandwidth) rates 

but also improve some data processing capabilities due to its 

smaller data size, reducing the memory footprint.  
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