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ABSTRACT: 

Remote sensing techniques can be used to identify and classify vine properties such as row width, height, cover-fraction, 

missing segments and leaf area density, providing opportunities to visualise plant vigour as a spatial function of vineyard 

geography. This information may then be integrated into decision support tools to improve vineyard management practices. 

An algorithm for identifying vines from a sequence of overlapping aerial images and then estimating their properties is 

described. The image stacks were obtained from visible and long wave infrared cameras carried by an unmanned aerial 

vehicle (UAV). Structure from motion (SfM) was used to create 3D thermal and colourised point clouds, from which the 

underlying topography of the surface terrain was extracted. The surface topographic model was obtained using bounded 

data query nearest neighbour calculations, which were reduced to computationally manageable levels using Kd-trees that 

recursively partitioned the point clouds by progressively separating them into binary trees. This allowed the point clouds to 

be classified in terms of their hue, saturation, surface temperature and height relative to surface topography using Lloyd’s 

unsupervised k-means clustering. Individual samples were then associated using Gaussian probability density functions 

normalised by cluster statistics. The algorithm was evaluated against ground truth obtained using aerial data in terms of its 

accuracy and robustness using a combination of real world conditions that included high shadowing, poor contrast and UAV 

flight paths and camera settings that delivered sub-optimal SfM performance.  

1. INTRODUCTION

Many factors affect grapevine productivity: climate, 

weather, soil properties, topography, grape variety, 

management practices, and pests and diseases, with spatial 

variations of such factors within and between vineyards 

impacting both grape quality and yield (Hall et al., 2002). 

As a result, optimal management practices are highly 

desirable, with decisions that depend on precise situational 

awareness of crop state ideally based on information 

gathered safely, efficiently and non-destructively.  

In this context, remote sensing offers considerable 

opportunities, with visible (VIS), long wave infrared 

(LWIR) and near infrared (NIR) hyperspectral sensors all 

providing windows into the complex surface chemistry 

present in vineyards. Although potentially promising, 

satellite-based observations are not routinely exploited: 

imagery from several satellite systems is commercially 

available, but the spatial resolution of their VIS sensors (5 

– 30m) is inadequate for mapping small vineyards (Weiss

and Baret, 2017). Moreover, the superposition of signal

returns from vines and inter-row material within a single

pixel makes extraction of desired signatures difficult. Row

structure and topography of underlying terrain must also be

accounted for to avoid introduction of effects that depend

upon the directionality of observations or signal reflectance

(Zarco-Tejada et al., 2005, Meggio et al., 2008, López-

Lozano et al., 2009, Holben and Justice, 1980, Shepherd

and Dymond, 2003). Higher spatial resolution sensors (5 –

20cm) are therefore essential if the properties of inter-row

returns are not to contaminate vine signatures, which are of

prime importance to any decision support tool.

Furthermore, satellite orbital characteristics, together with 

sensor pose, drive temporal availability of such data sets, 

as does the prevalence of cloud cover. 

Alternative, more operationally flexible remote sensing 

options, such as aircraft and Unmanned Aerial Vehicles 

(UAVs), are also available; and—relative to their satellite 

counterparts—the proximity of such platforms to vines 

intrinsically improves the ground resolution of the sensors 

carried. Although operation of such platforms is generally 

weather-dependent, planning flights close to particular 

stages of plant development is straightforward and several 

authors have examined mapping crop vigour using such 

techniques (Johnson et al., 2001, Dobrowski et al., 2003, 

Smit et al., 2010, Fiorillo et al., 2012). In the past few years 

increased availability of UAVs has also added new 

opportunities to acquisition of high spatial resolution 

imagery. As a result, there have been many studies into the 

acquisition and exploitation of multi- or hyperspectral data 

sets to assess vine vigour (Hernández-Clemente et al., 

2012, Zarco-Tejada et al., 2013, Rey et al., 2013, Candiago 

et al., 2015), grape species (Lacar et al., 2001, Ferreiro-

Armán et al., 2006), and water and nitrogen stress (Zarco-

Tejada et al., 2012, Zarco-Tejada et al., 2013) against 

vegetation indices, such as the normalised difference 

vegetation index (Rouse et al., 1974). 

A key issue in all such characterisations is isolation of 

pixels belonging to the vine rows from those belonging to 

the spaces in between and elsewhere. Difference in spectral 

properties between these domains were first attempted by 

applying a threshold to vegetation indices computed from 
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multi-sensor images (Candiago et al., 2015, Puletti et al., 

2014). Other researchers have applied Fourier transforms 

to the red band of the red-green-blue (RGB) classification 

of images (Wassenaar et al., 2002, Chanussot et al., 2005, 

Delenne et al., 2010). Unfortunately, complex lighting 

conditions, such as poor contrast, shadow, and glare—as 

well as the need for spectral contrast between the green of 

vine rows and the presence of grass between rows—has 

limited the performance of such methods.  

 

To overcome such shortfalls, a photogrammetric technique 

known as Structure from Motion (SfM) (Longuet-Higgins, 

1981, Furukawa and Ponce, 2010, Hartley, 1997) is often 

used to obtain dense point clouds (DPC) from the 

overlapping nature of multiple VIS/RGB images obtained 

by a UAV. This has been applied to vineyards (Mathews 

and Jensen, 2013) and other crops (Bendig et al., 2013) to 

obtain 3D models of terrain and extract fractions of 

vegetation cover; and to estimate vineyard structure (Weiss 

and Baret, 2017). Unfortunately, while these approaches 

are able to discriminate between vines and grass between 

rows, existing algorithms are sensitive to even slight 

illumination variations common in real world settings. 

Additionally, in order to obtain good performance, current 

techniques need flight configurations and camera settings 

that are optimised (Weiss and Baret, 2017). 

 

In the final analysis, the value proposition for decision 

support tools based on remote sensing approaches derives 

not from the capabilities of any given technology or sensor 

per se, but from a system’s holistic potential to improve 

efficiencies and reduce fieldwork. In other words, when 

developing aids to support mapping and early 

identification of vineyard characteristics like disease, 

biophysical stress and equipment failures—for practical 

reasons—successful algorithms should not critically rely 

on specialist users who are expert in the design or operation 

of the relevant software, mathematical techniques or 

manipulation of information sets. Nor should algorithms 

make use of machine learning approaches that require 

training on unique or hard-to-obtain data sets. They should 

intrinsically cope with sub-optimal equipment 

configurations and reasonable performance degradation in 

the processing chain. Ideally, users should need to supply 

only a few intuitive parameters.  

 

This paper offers an algorithm that can be used for 

estimating the structural characteristics of vineyards from 

remotely sensed DPC. It requires input of only a single 

parameter, readily determined by an untrained operator. 

The algorithm does not require training on specific data 

sets and is insensitive to complex colour, contrast and 

lighting variations typically found in the real world. It also 

copes with noisy and imperfect point clouds generated by 

sub-optimal UAV flight and camera configurations, as well 

as the uneven spatial performance of SfM algorithms. It is 

evaluated under intentionally complex and sub-optimal 

conditions over a vineyard where green grass is sometimes 

present between vines. Its performance strongly suggests it 

is suitable for application in vineyard decision support 

tools.  

 

2. METHODOLOGY FOR CHARACTERISING 

VINEYARD MACROSTRUCTURE 

 

Simple UAV flight paths were executed with aerial 

observations of the test site made in both the RGB and 

LWIR components of the electromagnetic spectrum. 3D 

DPC were generated using SfM and the underlying 

topography of the surface terrain identified and excised. To 

enhance computational speed, a Kd-tree (Bentley, 1975) 

partitioned the DPC by recursively splitting it into binary 

clusters. This allowed a nearest neighbour search to be 

quickly executed using a bounded data query (Elseberg et 

al., 2012), from which the surface topography was 

statistically determined. This topographic model was then 

used to normalise the DPC to a reference surface, 

whereupon Lloyd’s classification algorithm (MacQueen, 

1967) was applied to a combination of height, hue, 

saturation and irradiance (the latter measured by the LWIR 

sensor). The clusters were associated using Gaussian 

probability density functions (PDFs). Finally, the macro-

structure and spatial properties of the vineyard (vine vs. 

inter-row, row height, width, cover fraction and missing 

row segments) were mapped as spatial functions of 

vineyard geography.  

 

An overview of the algorithm that computes vine structure 

is shown in Figure 1. As all mathematical techniques 

involved are well understood, wherever possible, only 

verbal descriptions of their function and references to 

source material is provided in this paper. This is simply to 

ensure concise narrative. 

 

 

Figure 1: Algorithmic overview of vine macrostructure 

characterisation algorithm. Red (dotted) and green 

(dashed) lines indicate processes executed sequentially on 

both VIS and LWIR imagery. The black (continuous) line 

indicates processes executed on the joint imagery 

 

Image Acquisition: Field experiments took place at the 

Jacob’s Creek vineyards in the Barossa Valley, South 

Australia on 8th February 2018 (Figure 2). Visibility was 

clear, the sky cloudless and air temperatures ranged from 

temperate (25°C) at about 9.00am to very hot (> 43°C) 

around 3pm local time. These conditions provide regions 

of dark shadowing, as well as zones of high irradiance and 

directionally dependent illumination and reflectance: a 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-103-2019 | © Authors 2019. CC BY 4.0 License.

 
104



 

 

combination of circumstances that challenge many image 

processing techniques. Moreover, by judicious selection of 

observation sets, the thermal conditions were able to offer 

both a challenging test set for the LWIR data and sound 

ground truth.  

 

A small (1.4kg), bespoke-manufactured quad-rotor UAV 

overflew the vineyard at a constant forward horizontal 

velocity of 10m/s and altitude of 120m in a sequence of 

opposing parallel lines, oriented along vine row direction 

(roughly SE-NW). This pattern, colloquially known as a 

‘lawn mower’, is shown in Figure 2 as set of continuous 

white lines. UAV position was determined using standard 

positioning service GPS (accuracy 3-5m), with altitude 

maintained using barometric pressure. Separation between 

each parallel path was about 70m. Images were collected 

at a rate of 10Hz, but—in order to deliver sub-optimal SfM 

performance—only one in ten images was used, i.e. an 

effective update rate of 1Hz. Sub-optimal SfM flight paths 

and camera settings were preferred because, while several 

UAV-SfM integrated/automated flight path planners exist, 

they typically require specialised user knowledge (i.e. skill 

sets outside those of a vineyard manager) and often result 

in time-consuming post processing computations; and the 

overarching aim is to avoid a need for users to become 

expert in the design of UAV flight paths and SfM 

optimisation. Thus, the trials demonstrate the algorithm’s 

robustness against imperfectly acquired real world data 

sets, and its insensitivity to noisy, imperfect and uneven 

performance of SfM.  

 

Figure 2: Orthomosaic view of the VIS dense point cloud 

superimposed onto a Google Earth extract of the Jacobs 

Creek site at 34° 34’ 04’’ South, 138° 56’ 00’’ East. The 

white lines depict the approximate ‘lawn mower’ flight. 

 

The UAV carried a gimbal-mounted Odroid digital camera 

(nominally oriented normal to the surface of the vineyard) 

with a 35mm lens. This translates to a roughly 60° field of 

view, providing about 85% and 50% overlap between 

images in the along- and across-track directions, 

respectively. This is sub-optimal for SfM but allows 

efficient coverage of the roughly 10Ha vineyard in about 3 

minutes. UAV and camera orientation was not recorded 

(and hence remained unused) by the SfM.  

 

The resolution of the camera provided a ground sampling 

distance of about 10cm. The vine canopies were 

approximately 1.5m high. They are not pruned and terrain 

undulates slightly over the roughly 10Ha area of the test 

site, varying by around 12m from lowest to highest points.  

 

The UAV also carried an ICI 8640P long wave infrared 

(LWIR) thermal imaging camera, which has a 640 x 480 

14-bit Vanadium Oxide radiometric imager, update rate of 

10fps, and accuracy of 1°C. The observed irradiances 

(Figure 3) are converted to surface brightness temperature 

using the standard techniques for estimating such 

properties (Usamentiaga et al., 2014), i.e. the surface 

temperatures are not corrected for emissivity < 1.0, 

reflected temperature or atmospheric transmissivity.  

 

As with the VIS imager, to ensure sub-optimal SfM 

performance, only every tenth image was used in the 

generation of DPC. Moreover, observations used in the 

generation of the DPC were taken at about 10.00am. This 

provides only modest contrast between leaf and ground 

irradiances and, as the sun has not yet reached its zenith, 

the vines create significant shadowing. Both circumstances 

are designed to challenge the vine segmentation algorithms 

operating on the data sensed by the LWIR payload. 

 

Figure 3: Orthomosaic view of the dense point cloud 

generated from LWIR thermal imaging camera 

superimposed onto a Google Earth extract of the Jacobs 

Creek site. The DPC is colour-coded according to the 

temperature scale on the right of the image 

 

Structure from motion (SfM) is the process of estimating 

the 3-D structure of a scene from a set of 2D images. It is 

used in many applications, such as robot navigation, 

autonomous driving, and augmented reality. SfM has been 

extensively described in the literature (Longuet-Higgins, 

1981, Furukawa and Ponce, 2010, Hartley, 1997).  

 

The process consists of two main components: camera 

motion estimation and DPC reconstruction. Initially, a 

sparse set of points are matched across the image stack to 

find correspondences. Such features are typically extracted 

using algorithms like SIFT (scale invariant feature 

transformation) (Lowe, 1999) and SURF (speeded up 

robust features) (Bay et al., 2008). The sequence of views 

are then iteratively processed to track a denser set of points 
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across the views so that the pose of the camera can be 

established for each image set and—after the relevant 

coordinate transforms have been accommodated—a dense 

3D reconstruction of the scene made. The process of 

estimating camera motion (and hence DPC) is generally 

improved if camera pose is recorded during image capture 

and applied during SfM computations, which in our case it 

was not. If a suitable selection of ground control points 

(GCP) are applied to the resulting DPC, absolute scale and 

orientation may also be determined. This was achieved 

through matching the reconstructed DPC to a Google Earth 

view of the same area. 

 

The VIS DPC of the vineyard generated by SfM in this way 

contains around 35 x 109 points, which are randomly, but 

approximately homogenously, arranged throughout the 

10Ha vineyard [Note: computation may be significantly 

enhanced, without great loss of accuracy, if the DPC is 

downsampled using interpolation based on grid averaging].  

 

The LWIR DPC was also generated using SfM, with the 

image stack colour-coded according to temperature. The 

lower resolution of the LWIR imager results in a noisier 

and more distorted DPC as—in addition to generating 

camera location and orientation—the SfM process also 

estimates distortion created by the camera lens, which is 

more difficult for an LWIR sensor (Nistér, 2005).  

 

We have used proprietary software (written in MATLAB), 

as well as Agisoft Photoscan and Reality Capture for the 

SfM computations.  

 

Compute model of surface terrain (nearest neighbour 

network using Kd-tree): As the underlying topography of 

the terrain varies in altitude by approximately 12m over the 

vineyard, in order to use height as a discriminator for vine 

vs. inter-row material (both of which can be similar in 

colour), the surface topography must first be identified and 

vine height computed relative to this. Furthermore, as SfM 

can be an imperfect, noisy technique, vineyards with more 

subtle topographic variations generally represent greater 

challenges for height identification algorithms. This is 

because noise or inaccuracies in the DPC represent larger 

errors in relative terms, presenting greater challenges for 

clustering and association algorithms later in the 

processing chain. Consequently, a vineyard with shallow 

undulations was selected as the test site (Figure 4, left).  

 

To ensure computational tractability, data is down-sampled 

by a factor of 100 and a Kd-tree (Zhou et al., 2008) used to 

partition the DPC by recursively splitting it into clusters. 

This allows a k-nearest neighbour (k-NN) search to be 

quickly evaluated on sub-blocks of the data using a query 

bounded by a circle of radius 5m. This in turn enables the 

approximate surface topography to be determined by 

finding the local minimum for each point queried in the k-

NN search. The influence of outliers is minimised using a 

technique devised by (Holland and Welsch, 1977).  

Figure 4: Variation of height for Jacob’s Creek test site 

(left) prior to removal of surface topography and (right) 

afterwards. Note change of scale for images 

 

After resampling back to original ground resolution using 

2D spline interpolation, with Golay filtering (Chen et al., 

2004) applied to reduce noise, the complex 3D reference 

ground plane is subtracted from the original DPC height 

data to normalise (‘flatten’) the point cloud (Figure 4 right). 

Points lower than 0m are set to this value. It is recognised 

that grass growing between the rows may result in an 

elevated reference plane, and thus lower estimates of vine 

heights in some regions of the vineyard.  

 

Cluster vineyard properties using Lloyd’s algorithm: In 

addition to normalising vineyard height, prior to clustering 

the colour properties of the VIS DPC are transformed from 

RGB to hue-saturation-value (HSV). The 2D circular scale 

of hue and saturation better enables colour properties to be 

associated than the linear RGB representation. The value 

component of the HSV scale is ignored as the degree of 

illumination can vary dramatically across a strongly sunlit 

vineyard. In the case of the LWIR sensor data, surface 

temperature is colour coded from minimum to maximum 

and thus clustered in terms of its HSV representation (with 

its value component again ignored).  

 

Lloyd’s algorithm, also known as k-means clustering, is 

then applied separately to the normalised height, irradiance 

and HS values of the two DPCs. Lloyd’s algorithm is an 

iterative, data-partitioning (sometimes also referred to as 

unsupervised machine learning) technique that 

assigns observations to one of k clusters defined by 

centroids, where k is chosen before the algorithm starts. 

We typically used k = 7 for each category, finding results 

to be largely insensitive to values higher than this.  

 

Lloyd’s algorithm operates as follows: (i) point-to-cluster-

centroid distances for all observations to each centroid are 

computed; (ii) each observation is associated to the cluster 

with the closest centroid [note: observations can be 

individually assigned to a different centroids if the 

reassignment decreases the sum of the within-cluster, sum-

of-squares point-to-cluster-centroid distances]; (iii) the 

mean of the observations in each cluster is computed to 

obtain k new centroid locations; (iv) steps (i) through (iii) 

are repeated until cluster assignments do not change, or the 

maximum number of iterations is reached. Figure 5 shows 

the outcome of the algorithm, colour-coded by cluster.  
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Figure 5: Outcome of Lloyd's classification, colour-coded 

(left) by HSV and (right) height (k = 7). Each colour 

represents elements of the DPC identified with each 

separate cluster. Each of the seven colours in the two 

images show points associated with each of the clusters. 

 

Associate clusters using Gaussian PDFs: It is clear from 

the above images that, on its own, k-means clustering does 

not successfully identify vineyard properties in terms of 

either height or colour. We thus apply a priori knowledge 

to the height data, assuming that vines are less than 2m tall. 

The results of the height clustering are therefore ordered 

from smallest to tallest and the most significant cluster with 

a Lloyd’s centroid less than 2m assumed to be that most 

likely to contain the bulk of the points containing vine 

foliage. Based on Bayesian association, the colour 

(irradiance) cluster most associated with this height cluster 

is then declared the most likely vine colour (irradiance). 

 

A series of Gaussian PDFs are then established such that 

𝑝(𝑣𝑉𝐼𝑆) = 𝑒−𝛼2/𝜇𝐻
2

 𝑒−𝛽2/𝜇𝐶
2

, where 𝑝(𝑣𝑉𝐼𝑆)  is the 

probability that any given VIS point is a vine, 𝛼 and 𝛽 are 

the point-to-centroid distances in the height and colour 

clusters, and 𝜇𝐻  and 𝜇𝐶  are the mean point-to-centroid 

distances obtained for the height and colour clusters 

declared in the previous paragraph. The process is then 

repeated for the LWIR DPC and 𝑝(𝑣𝐿𝑊𝐼𝑅) computed. 

  

The VIS and LWIR clusters, which are co-registered to the 

same coordinate system, are fused using a joint PDF, 

𝑝(𝑣𝐽𝑜𝑖𝑛𝑡) = 𝑝(𝑣𝑉𝐼𝑆) + 𝑝(𝑣𝐿𝑊𝐼𝑅)𝑒−(𝑋𝑉𝐼𝑆−𝑋𝐿𝑊𝐼𝑅)2/𝜎𝑑
2

, 

where 𝑋𝑉𝐼𝑆, 𝑋𝐿𝑊𝐼𝑅 are coordinates of the points identified 

as vines using the VIS and LWIR data sets, respectively, 

and 𝜎𝑑  the root mean square value of the vine width 

derived from the VIS data.  

 

A threshold, 𝑝(𝑣𝐽𝑜𝑖𝑛𝑡)
𝑇

, is set, such that joint probability 

estimates, 𝑝(𝑣𝐽𝑜𝑖𝑛𝑡) > 𝑝(𝑣𝐽𝑜𝑖𝑛𝑡)
𝑇

, are declared vine 

material. This is the only parameter that need be set by a 

user, and which is readily adjusted on the basis of 

objectively viewing the degree of contamination by the 

background, i.e. roads, trees, bushes, etc.  

 

3. ASSESSMENT OF SEGMENTATION 

PERFORMANCE 

The results of the approach when applied only to the VIS 

DPC are shown in Figure 6, with an expanded view 

(Region 1) of an area where an irrigation pipe has ruptured 

shown in Figure 6, right. This region has a combination of 

significant green inter-row material, much more vigorous 

vine growth, shadowing caused by extended vine growth, 

and varying hue from strong sunlight. Despite this, the 

algorithm has correctly identified only vine material.  

Figure 6: Result of vine identification algorithm using VIS 

data alone (left) and (right) close up view (Region 1). The 

same area is shown in Figure 8. 

Figure 7: Expanded view of the raw imagery (left) and 

DPC (right) of Region 2 (Figure 6) 

 

There are also patches of vineyard where the algorithm has 

failed to correctly identify vine material, e.g. Region 2. 

While the algorithm suggests a complete absence of vine 

material, a better interpretation is that the plant density has 

fallen below a threshold ground resolution required by the 

SfM. This is confirmed by examination of the raw imagery 

(Figure 7), which shows the sparsity to be largely due to 

poor performance of the SfM (noting it was intentionally 

provided imagery gathered under sub-optimal conditions 

to show performance under these circumstances). The 

image on the left of Figure 7 shows an expanded view of 

the raw VIS imagery observed onboard the UAV. This 

shows the vine material in this region, albeit thinner than 

in other areas of the vineyard. The image on the right of 

Figure 7 shows SfM output, where distortions in the 

resultant DPC have obscured the sparser vine material and 

resulted in a much flatter 3D structure than truly exists. As 

a result, these sparser segments of the vineyard have been 

identified as ground material. 

Figure 8: Result of vine identification algorithm based on 

LWIR data alone (left) for the entire vineyard and (right) 

for an expanded area (Region 1) 

 

The results of LWIR-only segmentation are shown in . As 

with VIS-only outcomes, due a combination of poor height 

determination by the SfM and slightly cooler surface 

   1 

  1 

Region 1 

 1 

  1 

Region 2 

Region 1 
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temperatures in the more densely vegetated areas, 

performance is imperfect in areas such as Region 1. 

 

Figure 9: Result of vine identification algorithm using 

VIS and LWIR data (left) and (right) expanded view of 

Region 1 

Figure 10: Superposition of vine segmentation and LWIR 

observations with a selection of regions that are expanded 

below for more detailed scrutiny of performance 

 

A more holistic validation of the segmentation algorithm 

was evaluated over the entire vineyard by contrasting the 

identified vine material against thermal imagery. The 

ground truth data was observed on a day for which air 

temperatures reached about 43°C. As ground brightness 

temperatures typically reach up to 60°C, but the vine leaves 

transpire (and their surface temperatures only reach about 

40°C), the vines are clearly visible against the background. 

Unfortunately, regions in which irrigation infrastructure 

has broken, areas shaded from the direct effects of the sun 

and areas with sparse vine density but irrigated also have 

surface brightness temperatures around 40°C. A data set 

observed close to local noon (when the sun was near its 

zenith) was selected (a) to minimise the effects of 

shadowing and maximise the effects of contrast and (b) 

because this was prior to the cycle of irrigation, minimising 

any evapotranspiration effects in sparse vine regions.  

 

The vine segmentation and ground truth DPCs were then 

co-registered and superimposed onto one another for visual 

examination (Figure 10). There are small registration 

errors apparent in the super-position, particularly in the 

along row direction. Nevertheless, it is clear, even from this 

busy image, that the vine segmentation algorithm has 

successfully identified only vines over the vast majority of 

the vineyard.  

Figure 11: Expanded views of “Region 1” in Figure 10 

(left) and the corresponding VIS DPC (right). In the left 

hand image the superimposed black dots indicate 

segments identified as vines, whereas yellow and red 

colouring below these dots indicate higher (likely 

between row material) and lower (likely vine material) 

ground temperatures, respectively 

Figure 12: Expanded views of “Region 3” (left) and 

“Region 4” (right) of Figure 10 

 

Closer inspection of an expanded region (Figure 11) 

confirms the technique’s capacity to discriminate between 

the dense vine foliage where irrigation has been damaged 

and grass is growing strongly between rows (Region 1, 

Figure 11). Similarly, the segmentation has successfully 

dealt with shadowing in both the VIS and LWIR data. 

Figure 12 (left) shows an expanded view of Region 2 from 

Figure 10: an area that appears to be only sparsely 

populated with vines based on the VIS DPC. Figure 12 

(right) shows another expanded view of a section of 

vineyard where the algorithm has had to deal with complex 

lighting and foliage density. 

 

Hough Transform: Using the identified vine locations, 

some useful parameters such as those identified by (Weiss 

and Baret, 2017) may now be computed, e.g. row width, 

height, spacing, cover fraction and missing segments. In 

order to do this, however, the exact orientation of the vine 

rows must first be identified. This can be achieved 

manually, by visually determining row orientation, or 

automatically, using a Hough transform (Ballard, 1981). 

This transform uses a parametric representation of a 

line, 𝜌 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃, where 𝜌 is the distance from 

the origin of the DPC to the line along a vector 

perpendicular to the line, and 𝜃 is the angle between the x-

axis and this vector. The Hough transform is used 

extensively in image processing to identify continuous 

Region 1 

  1 

Region 1 

  1 
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point sets that constitute lines in data. Consequently, as 

vine rows are typically arranged as a set of parallel lines, 

the method readily identifies row orientation.  

 

In general, however, a Hough Transform will not 

successfully determine orientation where vines are planted 

along iso-altitude curves. Under such circumstances 

rotation angles should be computed manually or the 

location of the vine rows computed as a function of 

vineyard geography using an alternative technique. One 

simple approach is to identify a small section of vine (in 

the along-row direction) at the left or right extreme of a 

vineyard, compute the across-row median and row 

separation, and perform the property identification 

calculations below for a short vine segment; and then 

repeat, having advanced to the next segment in the along-

row direction (note: this increases the computational cost 

of the procedure). 

 

Crop row width: Crop row width, 𝑊𝐶𝑖𝑗
= |𝑥𝑖 − 𝑥𝑀𝑗

|, may 

be computed for each point in the DPC (, upper) [Note: the 

calculations of row width associated with the vineyards 

NW and SE of the main 10Ha test site show erroneous 

values in . This is because the row centroids, 𝑥𝑀𝑗
, are 

computed for the 10Ha vineyard]. The elements of the DPC 

associated with each row may then be sorted into ascending 

order and along-row separation distances computed (, 

lower). The more significant breaks in the vine rows are 

clearly visible. The enlarged view of the data in the right 

hand image show gaps in the vines less readily visible in 

the entire DPC.  

Figure 13: Spatial distribution of vine row width (top) and 

missing row segments (bottom) over vineyard (enlarged 

views on are shown on right) 

 

4. CONCLUSIONS 

A technique for identifying vines and discriminating them 

from inter-row material was developed and tested. 

Although the algorithm can be used solely on dense point 

clouds generated from aerial RGB imagery obtained from 

a UAV, better results derive from a combination of RGB 

and LWIR sensed data. The technique was evaluated 

against aerial measurements and showed good 

performance, despite the test data being obtained under 

conditions that included harsh shadowing, poor contrast, 

and UAV flight paths and camera settings that delivered 

sub-optimal performance from the SfM. Unlike existing 

classification techniques, the approach in this paper is not 

critically reliant on specialist users who are expert in the 

algorithm’s design, mathematical techniques or 

manipulation of information: they need supply only a 

single, intuitive parameter. Moreover, the algorithm 

readily copes with degraded performance of upstream 

processing. Finally, the approach does not rely on 

supervised machine learning approaches that require 

training data sets. Characteristics such as canopy leaf area 

density and plant vigour can be readily evaluated as a 

function of vineyard geography, making the algorithm 

suitable for inclusion in decision support tools that aim to 

reduce fieldwork and improve vineyard management 

practices.  
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