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ABSTRACT: 

 

Feature matching is a fundamental technical issue in many applications of photogrammetry and remote sensing. Although recently 

developed local feature detectors and descriptors have contributed to the advancement of point matching, challenges remain with 

regard to urban area images that are characterized by large discrepancies in viewing angles. In this paper, we define a concept of 

local geometrical structure (LGS) and propose a novel feature matching method by exploring the LGS of interest points to 

specifically address difficult situations in matching points on wide-baseline urban area images. In this study, we first detect interest 

points from images using a popular detector and compute the LGS of each interest point. Then, the interest points are classified into 

three categories on the basis of LGS. Thereafter, a hierarchical matching framework that is robust to image viewpoint change is 

proposed to compute correspondences, in which different feature region computation methods, description methods, and matching 

strategies are designed for various types of interest points according to their LGS properties. Finally, random sample consensus 

algorithm based on fundamental matrix is applied to eliminate outliers. The proposed method can generate similar feature descriptors 

for corresponding interest points under large viewpoint variation even in discontinuous areas that benefit from the LGS-based 

adaptive feature region construction. Experimental results demonstrate that the proposed method provides significant improvements 

in correct match number and matching precision compared with other traditional matching methods for urban area wide-baseline 

images. 
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1. INTRODUCTION 

Image matching, which refers to the task of establishing 

correspondences between images with overlapping areas, is a 

fundamental issue in many photogrammetry and computer 

vision applications. In general, existing image matching 

methods can be grouped into two categories: area-based and 

feature-based methods (Gruen, 2012). Area-based methods 

often detect interest points on the source image and find the 

corresponding pixel in a search area on the target image. In the 

correspondence search stage, the intensity values in a 

rectangular window are simply adopted to describe the central 

pixel. Area-based methods can perform effectively in traditional 

aerial imagery because the small pitch and roll angles and 

relatively stable flight height of the aerial platform do not cause 

obvious geometrical differences between aerial images. Among 

area-based methods, image correlation is widely used because it 

is simple and easy to implement. Normalized cross-correlation 

was proposed to improve the robustness of cross-correlation to 

linear intensity variation (Ackermann, 1984; Lhuillier and Quan, 

2002). The matching performance can be improved further by 

combining several matching strategies, e.g., least squares 

matching (Gruen and Akca, 2005). Although area-based 

methods can achieve sub-pixel level accuracy and even better, 

they are sensitive to image nonlinear intensity change and 

geometric deformation (Gruen, 2012), thus, these methods are 

unable to match wide-baseline urban area images with 

viewpoint change and parallax discontinuity. 

 

Feature-based methods are more robust to image variation than 

area-based methods by constructing robust feature descriptors. 

Feature-based methods generally consist of three steps: feature 

detection, description, and matching. In the past several decades, 

numerous methods have been proposed for one of the steps or 

the entire procedure. Scale-invariant feature transform (SIFT) 

algorithm (Lowe, 2004) is one of the most popular methods due 

to its robustness to image rotation and scale change. With the 

success of the SIFT method, feature-based methods have been 

widely studied to address image geometric distortion and 

intensity changes. Some affine-invariant region detectors have 

been proposed to address image affine transformation (Matas et 

al., 2004; Mikolajczyk et al., 2005). The matching performance 

on images with viewpoint change was improved based on these 

affine-invariant features. However, fewer features can be 

detected than interest point detectors and the robustness to 

image viewpoint change is still limited. Other methods obtain 

better matching results by simulating image affine or projective 

space and performing feature matching in the simulated space 

(Morel and Yu, 2009; Yu et al., 2012). ASIFT is one of the 

best-known methods to deal with image viewpoint variation 

(Morel and Yu, 2009). It simulates the original image to cover 

the entire affine space in the beginning. Then, SIFT is adopted 

to detect and match features in the simulated affine space. 

ASIFT can find matches from the images even under significant 

viewpoint change. However, the high complexity limits the 

industrial application of ASIFT. 
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In the field of photogrammetry, high-precision position and 

orientation system (POS) data are typically used as auxiliary 

information to coarsely correct images and eliminate image 

geometric distortion caused by viewpoint change before feature 

matching. Then, a traditional feature matching method, such as 

SIFT, is adopted to find correspondences (Hu et al., 2015; Roth 

et al., 2017). Although this strategy helps improve the matching 

performance, the local geometric distortion is difficult to fit by 

the global transformation. The number of correct matches can 

be increased through sub-region-based matching (Sun et al., 

2014; Ai et al., 2015) by dividing the input image into several 

sub-regions and matching features in the sub-regions. If high-

precision POS data are unavailable in certain applications, then 

an initial matching can be conducted to obtain several matches 

to calculate a roughly geometric transformation between the 

images, and then images can be corrected and traditional feature 

matching method is adopted to generate correspondences; this 

method is called ISIFT in the present paper (Jiang and Jiang, 

2017). The aforementioned methods can improve the matching 

performance through image correction, but several problems 

remain. First, image correction can only alleviate the geometric 

distortion of the plane scene to a certain extent. It is difficult to 

compute feature regions with similar image content between 

corresponding points that are located in areas with 

discontinuous parallax. Second, the methods using initial 

matching to correct images significantly depend on the 

performance of initial matching. Obtaining reliable initial 

matches between urban wide-baseline images is difficult using 

the existing feature matching methods (Figure 1). 

 

     
 

(a) 

 

 
 

(b) 

 

Figure 1. An example of viewpoint change and parallax 

discontinuity between wide-baseline images in urban area. (a) 

shows a pair of oblique images. The two crosses denote a pair 

of correspondence. The red circle around each point denotes the 

feature region determined based on SIFT (Lowe, 2004). (b) 

shows the SIFT descriptors of the two points and the 

corresponding Euclidean distance (ED). The feature descriptors 

are dissimilar and difficult to match correctly. 

 

Despite the progress in dealing with geometric distortions 

between images, the matching of wide-baseline images in urban 

area remains a problem. Feature matching for this type of 

images is becoming an unavoidable problem with the 

development of unmanned aerial vehicle, oblique 

photogrammetry, and mobile mapping technologies. Therefore, 

developing robust feature matching methods is crucial to ensure 

reliable correspondence in such images. 

 

In this study, a new method is proposed to match interest points 

on wide-baseline images in urban areas on the basis of the 

following observations: 1) if the feature region computation is 

guided by the local geometrical structure (LGS) of each interest 

point, the computed feature regions will be robust to image 

viewpoint change; thus, the feature descriptors generated from 

these feature regions would have a greater likelihood of success 

in matching even in a discontinuous area; and 2) man-made 

objects are the main objects of urban area imagery and a large 

number of straight lines can be detected in addition to interest 

points. The main contributions of this study are threefold. First, 

we define a concept of LGS by exploring the geometric 

relationship between interest point and straight lines in the 

neighborhood of interest point. LGS distinguishes interest 

points as different categories (G1, G2, and G3) and guides the 

design of special matching methods for various types of interest 

points instead of using a common matching method for all types 

of interest points, thereby contributing to an improvement in the 

matching performance. Second, we propose two structure 

adaptive methods on the basis of LGS to construct viewpoint-

invariant feature regions for interest points in G1 and G2, 

respectively. The proposed feature region construction methods 

help generate feature regions with consistent image content for 

corresponding points, thereby enabling the production of 

similar feature descriptors for corresponding interest points 

under serious geometric distortion and parallax discontinuity. 

Finally, we propose a matching expansion method in which 

affine invariants are introduced as geometric constraints and 

combined with feature descriptors similarity to increase the 

number of correct matches. 

         

2. METHODOLOGY 

This section details the proposed interest point matching 

method. We first define the concept of LGS and classify interest 

points into three groups. Then, an LGS-based structure adaptive 

feature (SAF) called LGS-SAF is developed, and the nearest 

neighbor distance ratio (NNDR) matching strategy (Lowe, 2004) 

is improved to match LGS-SAFs. Many initial matches are 

obtained in this stage and the epipolar geometry between 

images is estimated through random sample consensus 

(RANSAC) algorithm (Fischler and Bolles, 1981). As LGS-

SAF can only be built for the interest points in group G1 (as 

discussed in Section 2.2), in the next two stages, we 

respectively propose an epipolar geometry-based method called 

EG-SAF to construct SAF and match the interest points in 

group G2 and the unmatched interest points in group G1, as 

well as a matching expansion method to match the interest 

points that have not been matched in the previous stages. The 

workflow of the proposed matching method is summarized in 

Figure 2. 
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Figure 2. Workflow of the proposed matching method. The blue 

boxed steps are the key steps of our workflow. 

 

2.1 LGS definition and interest point classification 

Man-made objects are the major type of objects on urban area 

images. Thus, numerous interest points and straight lines can be 

detected. Straight lines effectively describe the structure of 

objects. This paper proposes an LGS-based interest point 

matching method to address viewpoint change by exploring the 

geometrical relationship between interest points and straight 

lines. We define the concept of LGS for interest point as 

follows: for an interest point 
ip , we first set a local window 

iR  

that is centered on 
ip  and has a size of m m  pixels, where m  

is a user-defined parameter. The straight lines that have at least 

one point on the line dropping in 
iR  are selected. If parallel 

straight lines exist among these selected lines, only the longest 

one is retained. Thus, a straight line set  1 2, , ,i nLS l l l  is 

generated for interest point 
ip , where n  is the number of 

retained straight lines. For each straight line 
j il LS , if one of 

its endpoints drops in 
iR , then the direction from the endpoint 

closer to 
ip  to another endpoint is regarded as the direction of 

jl , labeled as 
j . If both endpoints are out of 

iR , then 
jl  is 

split into two new straight lines from the projection point of 

point 
ip  on 

jl  and two opposite directions are respectively 

assigned to each of the two new straight lines. 
iLS  is updated 

with the split. Finally, corresponding to each straight line 

j il LS , a vector starting from the interest point 
ip  with the 

direction 
j  and with the modulus jl  is determined, where 

jl  denotes the length of 
jl . On the basis of all vectors, the 

LGS of interest point ip  is defined as 

 

    
1

, ,
N

i i j j
j

LGS p p l 


                           (1) 

 

where N  is the number of vectors, and jl  and 
j  are the 

modulus and direction of the j-th vector. 

 

On the basis of LGS, all interest points are classified into three 

groups (G1, G2, and G3). G1: If the LGS of an interest point 

has at least two vectors and salient point can be found in the 

directions of at least two vectors, then this interest point is 

classified into group G1. To find salient point in the direction of 

a vector 
jv , we define an impact zone (indicated by the dashed 

box in Figure 3) for 
jv . The parameter s  is set to control the 

size of the impact zone. If a straight line exists with at least one 

point on the line dropping in the impact zone, and the 

intersection of the straight line and the vector is also in the 

impact zone, then this intersection is regarded as one salient 

point in the direction (Li and Yao, 2017). If more than one 

straight line satisfies the constraint, then more than one salient 

point is found in this direction. G2: If the LGS of an interest 

point has at least two vectors, but the number of vectors in 

which the salient point can be found is less than two, then this 

interest point is classified into group G2. G3: If the LGS of an 

interest point has less than two vectors, then this interest point 

is classified into group G3. 

 

 
 

Figure 3. Salient point computation in the direction of one 

vector of LGS. The red cross denotes an interest point 
ip . The 

purple arrow denotes a vector 
jv  of the LGS of 

ip . The green 

line is a straight line dropping in the impact zone of 
jv . The 

yellow solid dot is a salient point in the direction of 
jv . 

 

2.2 LGS-SAF computation and matching for interest points 

in group G1 

The matching of interest points in group G1 is a key step in the 

proposed matching framework. It not only produces some point 

matches but also affects the following matching procedure. An 

LGS-SAF matching method is proposed to ensure the reliability 

of the matching of interest points in group G1.  

 

2.2.1 Viewpoint robust LGS-SAF computation: For an 

interest point in group G1, salient points in the directions of at 

least two LGS vectors can be found according to the definition 

of G1. In the beginning, the vectors that have salient points in 

their directions are selected. If the number of selected vectors is 

greater than two, for every two selected vectors with a vectorial 

angle at 30°-150°, one salient point is selected from each vector 

and combined with the interest point to determine a 

parallelogram, i.e., the support region (image region normalized 

to feature region) of the interest point (Figure 4(a)). If the 

number of selected vectors is equal to two, then one salient 

point is selected from each vector and combined with the 

interest point to determine a support region. Meanwhile, two 

virtual points that are symmetrical to the salient points are 

selected and combined with the interest point to form another 

support region (Figure 4(b)). To improve the matching rate in 

the aforementioned support region determination, if more than 

one salient point exists in one direction, then every salient point 

is adopted to determine support region separately. 
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Figure 4 shows two examples of support region computation for 

interest points in G1. In Figure 4(a), the number of LGS vectors 

is equal to three. Among the three vectors, no salient point has 

been found in the direction of vector 1v , and two salient points, 

(
2p  and 

3p ) have been found in the 2v  and 3v  directions, 

respectively. Therefore, salient points 
2p  and 

3p  are combined 

with the interest point to determine a support region (cyan 

dotted area). In Figure 4(b), there are only two LGS vectors. 
1p  

and 
2p  are the salient points found in the 1v  and 2v  directions, 

respectively. These two salient points and the interest point 

determine a support region (orange dotted area). In addition, the 

symmetrical points of 
1p  and 

2p  are adopted as virtual salient 

points and combined with the interest point to form another 

support region (cyan dotted area). 

 

p2

p3

v1

v2

v3

            

p2

p1

q1

q2

v1

v2

 
 

(a)                                         (b) 

 

Figure 4. Support region computation for interest point in G1. 

(a) an example of more than two LGS vectors, and (b) an 

example of only two LGS vectors. 

 

According to the support region computation method, some 

interest points have more than one support region. In this case, 

the interest point is regarded as several interest points and each 

one corresponds to a support region inspired by the main 

orientation assignment in the SIFT method (Lowe, 2004). 

 

To compute feature descriptor conveniently, the irregular 

support region is normalized to a square feature region. The 

normalized feature region size is fixed as 
r rT T  for every 

interest point. In the normalization, the interest point is fixed at 

the lower left corner of the normalized feature region. Another 

vertex on the same diagonal line with the interest point in the 

support region corresponds to the upper right corner of the 

normalized feature region. A vector from the interest point to 

the diagonal point is formed respectively in the support region 

and normalized feature region. Then, the corresponding 

relationship of the two pairs of vertices on another diagonal line 

is determined according to the side of the vector where the 

vertex is located. A homography matrix between the support 

region and the normalized feature region is estimated through 

the four pairs of vertices. The normalization is performed based 

on the homography matrix. 

 

This normalization method has three advantages. First, the fixed 

feature region size makes the feature region invariant to image 

scale change. Second, the method is rotation invariant by fixing 

the normalized location of the four vertices of the support 

region. Third, the normalization contributes to distinguish the 

interest points that share the same support region, e.g., the 

corners of the same building roof. 

 

As SIFT descriptor, the normalized feature region is divided 

into 4 4 16   sub-regions. A histogram of gradient orientation 

(8 orientations) is computed in each sub-region and then 

accumulated to form a 128-dimensional descriptor. Finally, a 

normalization step is performed to improve the illumination 

robustness of the descriptor. Considering that image rotation 

has already been eliminated in the feature region normalization, 

we do not compute the main orientation for the feature and do 

not perform gradient orientation normalization in the descriptor 

construction. 

 

2.2.2 Improved NNDR matching for LGS-SAF: Feature 

matching can be performed by using the existing matching 

methods, e.g., NNDR. For each source feature (feature on the 

source image), the NNDR method is to find the two target 

features (features on the target image) that have the smallest 

Euclidean distance with the source feature. If the ratio between 

the smallest distance over the second smallest distance is 

smaller than a threshold, then the target feature corresponding 

to the smallest distance is regarded as a match of the source 

feature. The NNDR method works effectively when combined 

with SIFT-like methods. However, for the LGS-SAFs proposed 

in this paper, the NNDR method usually fails because the two 

target features with the two smallest distance values may 

correspond to the same interest point because one interest point 

may generate more than one feature region and descriptor 

according to the proposed LGS-SAF computation method. In 

this situation, satisfying the ratio constraint in the NNDR 

method is difficult. Thus, the corresponding interest points 

cannot be matched (Figure 5). To overcome this problem, an 

improved NNDR (called I-NNDR) strategy is proposed to 

match LGS-SAFs as follows: 

 

First, the Euclidean distance between all source feature 

descriptors and target feature descriptors are computed. For a 

source feature, the target feature with the smallest distance 

mind  is found. Then, a distance threshold 
mind ratioT d T  is 

computed, where 
ratioT  is the ratio threshold in the NNDR 

method. Finally, all target features with distance values smaller 

than 
dT  are selected. If all the selected features correspond to 

the same interest point, then this interest point is considered as 

the match point of the source feature. 
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Figure 5. Comparison of NNDR and I-NNDR matching 

methods 

 

In Figure 5, ip  is an interest point on the source image. 1L  and 

2L  are two straight lines forming the LGS of ip . Straight line 

1l  drops in the impact zone of 1L  and generates an intersection 

B . Straight line 2l  drops in the impact zone of 2L  and 

generates an intersection A . Thus, parallelogram ip ACB  is a 

support region of interest point ip . Interest point iq  on the 

target image is the corresponding point of ip . Straight lines 1K  

and 2K  are the corresponding lines of 1L  and 2L , respectively, 
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which form the LGS of 
iq . Straight lines 

1k  and 
3k  drop in 

the impact zone of 
1K  and generate two intersections E  and 

G . Specifically, 
1k  is the corresponding line of 

1l . Straight 

line 
2k , the corresponding line of 

2l , drops in the impact zone 

of 
2K  and generates an intersection D . Thus, two 

parallelograms 
iq DFE  and 

iq DHG  are formed as support 

regions of 
iq . Then, two feature descriptors are computed for 

iq . If the textures in these two regions are similar (which is 

often the case with urban area images), the computed feature 

descriptors are highly similar. Then, the two feature descriptors 

may generate the two smallest distance values in the NNDR 

method. The distance ratio may be close to 1 and does not 

satisfy the ratio constraint in NNDR. Consequently, interest 

points 
ip  and 

iq  cannot be matched successfully. In 

comparison, they can be matched successfully by using the I-

NNDR method because both of the two distance values that are 

smaller than 
dT  correspond to 

iq . 

 

After feature matching, the RANSAC algorithm is performed to 

eliminate outliers and estimate the fundamental matrix F  

between the source and target images. 

 

2.3 EG-SAF computation and matching for interest points in 

G2 

According to the definition of G2 and the construction of LGS-

SAF, we cannot compute LGS-SAFs for interest points in G2. 

In this section, an epipolar geometry-based structure adaptive 

feature (called EG-SAF) matching method is proposed to deal 

with interest points in G2. The interest point set of G2 is 

updated before matching by adding the interest points in G1 

that were not matched in the previous step. The EG-SAF is 

computed as follows (Figure 6): 

 

First, for an interest point ip  on the source image, a support 

region is formed by every two LGS vectors. As shown in Figure 

6(a), the endpoints 1s  and 2s  of the two branches are 

combined with ip  to determine a parallelogram as the support 

region of interest point ip . Second, the epipolar lines pie , 1se , 

and 2se  corresponding to points ip , 1s , and 2s  are computed 

according to pi ie Fp , 1 1se Fs , and 2 2se Fs , 

respectively, where F  is the fundamental matrix between the 

source image and target image that was estimated in the 

previous step. Third, a candidate match set 
e

iC  of interest point 

ip  is found from the interest points in G2 on the target image 

based on a distance constraint between point and the epipolar 

line pie : if the distance between a point to pie  is smaller than a 

threshold eT , then this point is regarded as one candidate. 

Otherwise, it is eliminated as outlier. Then, for each candidate 
e

j iq C , every two of its LGS vectors are selected, and the 

intersections 1sQ  and 2sQ  of the LGS vectors and epipolar 

lines 1se  and 2se  are computed. Points 1sQ , 2sQ  and the 

candidate point jq  are adopted to form a support region. As the 

corresponding relationship between the LGS vectors of ip  and 

the LGS vectors of jq  is unknown before matching, the two 

cases shown in Figures 6(b) and 6(c) should be considered to 

avoid mismatching caused by wrong corresponding relationship 

of LGS vectors. Thereafter, the feature region normalization and 

descriptor computation methods proposed in Section 2.2 are 

adopted to compute descriptor for EG-SAF. Finally, the I-

NNDR strategy and RANSAC algorithm are conducted to find 

matches. 
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(a)                            (b)                            (c) 

 

Figure 6. Computation of support region of EG-SAF. (a) 

support region of interest point on source image, (b) a case of 

support region of candidate point on target image, and (c) 

another case of support region of candidate point on target 

image. 

 

Theoretically, the support region can be determined directly by 

points 1sQ , 2sQ , and jq . However, in practice, errors in 

fundamental matrix and epipolar line estimation are inevitable, 

which makes the intersections 1sQ  and 2sQ  unreliable. To 

solve this problem, we find a salient point in the neighborhood 

of each intersection to replace the intersection and form a 

support region. The neighborhood is set along the direction of 

the LGS vector with width 2 eT . The saliency of each pixel in 

the neighborhood is computed as Equation (2) and the pixel 

with the largest saliency value is regarded as the salient point. 

 

       l r

k average k average kS g I G N I G N           (2) 

 

where  kS g  denotes the saliency of pixel kg ,  l

kG N  and 

 r

kG N  are the sets of N pixels on the left and right sides of 

pixel kg , and  averageI  is a function to compute the average 

of pixel grayscale values. 

 

2.4 Matching expansion 

In this section, we design a matching expansion to address the 

interest points in G3 and the unmatched interest points in the 

updated G2. In the beginning, a clustering step is performed to 

check whether an interest point drops in the support region of a 

matched interest point or not. If an interest point does not drop 

in the support region of any matched interest point, then this 

interest point is saved into a set outS . Otherwise, it is saved into 

set inS . For an interest point inX S , its support region is 

determined on the basis of the support region of the matched 

interest point which it drops in. As shown in Figure 7,  ,i ip q  

is a pair of matched interest points. The blue parallelograms are 

the support regions of the two points. X  is an interest point in 
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set inS . All interest points dropping in the support region of 
iq  

are regarded as the candidate matches. Two salient points are 

determined and combined with the interest point to form a 

support region as the support region construction in LGS-SAF 

and EG-SAF. The salient points are determined according to the 

following rules: if line segment XA  is shorter than line 

segment XB , then point B  is regarded as the first salient 

point; otherwise, point A  is regarded as the first salient point; 

if line segment XC  is shorter than line segment XD , then 

point D  is regarded as the second salient point; otherwise, 

point C  is regarded as the second salient point. After the two 

salient points on the source image are determined, the salient 

points on the target image can be determined according to the 

corresponding relationship ( A E , B F , C G , 

D H ). Then, the support regions and feature descriptors of 

X  and its candidate points can be computed by using the 

method proposed in Section 2.2. 
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D
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qi
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Figure 7. Matching expansion 

 

Besides using the feature descriptor similarity as photometric 

constraint, affine invariants are also computed to be geometric 

constraints in our method. As the support region in LGS-SAF or 

EG-SAF is determined on the basis of a pair of close straight 

lines, all pixels in the same support region are approximately 

coplanar. Based on this assumption, the ratio XA XB  is an 

affine invariant, where XA  and XB  denote the length of line 

segments XA  and XB , respectively. Therefore, if candidate 

point Y  is the correct match of point X , then two equations, 

XA XB YE YF  and XC XD YG YH , are 

obtained. Considering both the photometric and geometric 

constraints, we compute the similarity between the source 

feature and each candidate as Equation (3). If a candidate 

produces the highest similarity and the similarity value is larger 

than a threshold simT , then this candidate will be regarded as 

the match of the source feature. 

 

 

   

   

0, 1

, 0, 1

,X YDesc Desc

if abs XA XB YE YF

Sim X Y if abs XC XD YG YH

e otherwise





 

    


     



   (3) 

 

where   is an affine invariant threshold, XDesc  denotes the 

feature descriptor of point X , and YDesc  denotes the feature 

descriptor of candidate Y . 

 

The homography transformation between the source image and 

target image is estimated through the RANSAC algorithm based 

on all the matches obtained in the previous steps. The interest 

points in set outS  are matched as follows: 

 

First, a feature region with size 
r rT T  is determined for each 

interest point on the source image. Second, a parallelogram 

support region is determined and normalized to a 
r rT T  

feature region for each interest point on the target image. The 

shape and size of all parallelogram support regions on the target 

image are the same, which are generated by mapping the 

r rT T  square with the homography transformation. Then, 

feature descriptors are computed for the interest points on the 

source and target images. Finally, feature matching is performed 

by using the NNDR strategy and epipolar constraint. After 

matching the interest points in outS , a step of outlier 

elimination is conducted on the matches generated from all the 

previous matching procedures by using the RANSAC algorithm 

to produce the final matches.     

                                         

3. EXPERIMENTAL RESULTS AND ANALYSIS 

3.1 Experimental datasets 

In this study, six pairs of images in typical scenes (Figure 8) are 

selected to evaluate the robustness of the proposed method on 

various objects. The information of the experimental datasets, 

e.g., imagery system (IS), relative flight height (RFH), and 

ground sample distance (GSD), is provided in Table 1. 

 

No. IS RFH GSD 
Image size 

(Unit: pixel) 

1 IQ180 800 m 8 cm 1000×1000 

2 IQ180 800 m 8 cm 1000×1000 

3 Nikon D810 300 m 6 cm 1024×1024 

4 SWDC-5 600 m 8 cm 1000×1000 

5 SWDC-5 600 m 8 cm 1200×1200 

6 SWDC-5 600 m 8 cm 1200×1200 

 

Table 1. Details of experimental datasets 

 

    
 

(a) pair 1                                 (b) pair 2 

 

    
 

(c) pair 3                                 (d) pair 4 

 

    
 

(e) pair 5                                 (f) pair 6 

 

Figure 8. Experimental datasets 
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3.2 Matching performance evaluation 

We compare our approach with six state-of-the-art feature 

matching methods: HarAff (Harris-Affine detector (Mikolajczyk 

and Schmid, 2004) combined with SIFT descriptor and NNDR 

matching strategy), HesAff (Hessian-Affine detector 

(Mikolajczyk and Schmid, 2004) combined with SIFT 

descriptor and NNDR matching strategy), MSER (MSER 

detector (Matas et al., 2004) combined with SIFT descriptor and 

NNDR matching strategy), SIFT (Lowe, 2004), ASIFT (Morel 

and Yu, 2009), and ISIFT method (Jiang and Jiang, 2017). The 

parameters of all comparative methods are set as recommended 

in the literature. In the proposed method, we adopt the Harris 

detector (Harris and Stephens, 1988) to detect interest points 

and the LSD algorithm (Von Gioi et al., 2010) to detect straight 

lines, and we fix the parameters 11 11m m   , 20s  , 

65 65r rT T   , 20eT  , 5N  , 0.3  , and 

0.65simT   for all experiments. 

 

3.2.1 Quantitative comparison: Two widely used indicators, 

number of correct matches (NCM) and matching precision 

(MP), are adopted to evaluate the performance of the proposed 

method. NCM is computed manually. MP is the percentage of 

correct matches out of all produced matches. Figure 9 shows the 

quantitative comparisons, where Figures 9(a) and 9(b) plot the 

NCM and MP values, respectively. Figure 9(a) shows that 

HarAff, HesAff, MSER, and SIFT can only obtain a small 

number of matches on all pairs, indicating that these four 

methods are sensitive to viewpoint change, especially in urban 

areas. Compared with the four methods, ASIFT and ISIFT 

improve the robustness to image viewpoint variation by 

designing different matching strategies. Among these strategies, 

ASIFT eliminates geometric distortion between images by 

simulating the image affine space and achieves improved 

performance. Particularly in image pair 2, the depth variation is 

not so significant that the affine space simulated by ASIFT can 

fit the local geometrical distortion. Thus, ASIFT achieves the 

best performance. However, on image pairs 4, 5, and 6 where 

the scene depth changes greatly, many local areas are not 

covered by the simulated affine space because the simulated 

affine space is discontinuous. Therefore, ASIFT obtains fewer 

matches on the three pairs of images. In addition, the feature 

region computation method in ASIFT encounters difficulty in 

generating similar feature regions for correspondence located in 

areas where the parallax is discontinuous. ISIFT is also based 

on the idea of image simulation and rough correction. However, 

ISIFT only simulates the entire image once. When the image 

scene depth changes greatly, the geometric transformation 

obtained by ISIFT can only correct parts of the image. 

Therefore, the performance improvement in ISIFT is limited. In 

addition, ISIFT relies on the performance of initial matching. 

As shown in Figure 9(a), in image pair 5, accurately estimating 

the geometric transformation between the images based on 

initial matches is difficult. Thus, ISIFT fails in the iteration. 

 

Compared with the aforementioned method, the proposed 

method achieves the best performance in terms of NCM on all 

pairs of images except image pair 2. The main reason is that the 

proposed method can adaptively compute feature regions with 

consistent image content for correspondence according to the 

local geometrical structure of interest points. Whether the 

interest points are located in a planar or discontinuous area, the 

feature regions of corresponding points obtained by the 

proposed method have high similarity and are easily 

recognizable in the matching process. In addition, the matching 

expansion in the proposed method contributes toward obtaining 

additional matches. Figure 9(b) shows that the proposed method 

achieves the best performance in terms of MP. 

 

 
 

(a) Performance in terms of NCM 

 

 
 

(b) Performance in terms of MP 

 

Figure 9. Quantitative comparisons 

 

3.2.2 Qualitative comparison: In this subsection, we compare 

only the proposed method with ASIFT because the quantitative 

comparisons show that ASIFT achieves better performance than 

the other methods. Figures 10-12 present the matching results 

of ASIFT and the proposed method on image pairs 4, 5, and 6. 

Matches are linked with yellow lines. 

 

   
 

(a) ASIFT                                (b) Proposed 

 

Figure 10. Matching results of ASIFT and the proposed method 

on image pair 4 

 

   
 

(a) ASIFT                                (b) Proposed 

 

Figure 11. Matching results of ASIFT and the proposed method 

on image pair 5 

 

   
 

(a) ASIFT                                (b) Proposed 

 

Figure 12. Matching results of ASIFT and the proposed method 

on image pair 6 
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In image pair 4 (Figure 10), most of the matches obtained by 

ASIFT are located on the ground. Almost all the interest points 

near the corners and edges of buildings have not been matched 

successfully. The reason is that the significant viewpoint and 

scene depth variation make the image content in the feature 

regions of corresponding interest points in the image area with 

discontinuous parallax dissimilar. Although ASIFT can alleviate 

the geometrical distortion to a certain extent by simulating 

affine space, the similarity of the image content in the regular 

feature regions centered on interest points is still low. In image 

pair 5 (Figure 11), ASIFT only obtained a small number of 

matches and almost all of the interest points on buildings failed 

to match. The reason is that the structure of buildings in image 

pair 5 is more complicated than that in image pair 4, and the 

discrete affine space simulated by ASIFT is difficult to correctly 

fit the geometrical distortion between corresponding local 

image areas. In image pair 6 (Figure 12), the intersection angle 

is more than 90°, and ASIFT obtains only a small number of 

matches, which are mostly false. 

 

Compared with ASIFT, the proposed method obtains better 

results on all three pairs of images. For example, in the enlarged 

sub-images in Figures 10-12, the proposed method can 

successfully produce several correct matches, whereas ASIFT 

fails in these areas. The reason is that the feature region, which 

is calculated adaptively according to the local structure of 

interest points in the proposed method, is robust to image 

viewpoint variation. This condition makes the feature 

descriptors of corresponding interest points highly similar. The 

quantitative and qualitative experiments demonstrate that the 

proposed method can solve the matching problem of wide-

baseline images in urban areas. 

 

4. CONCLUSION 

In this study, a novel interest point matching method for wide-

baseline images in urban areas is proposed. A concept of LGS is 

defined to guide the matching procedure. On the basis of LGS, 

interest points are classified into various categories and matched 

by designing suitable strategies instead of using a uniform 

matching strategy for all interest points. The experimental 

results demonstrate that the proposed method performs better 

than other state-of-the-art feature matching methods for wide-

baseline images with significant viewpoint change in urban 

areas. However, the proposed LGS-based method highly 

depends on the image content, which indicates that the 

proposed method is effective for structured images. A possible 

future work is to improve the construction of LGS and make the 

proposed method perform well in structured and textured areas. 
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