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ABSTRACT: 

 

The autonomous vehicles, such as wheeled robots and drones, efficiently contribute in the search and rescue operations. Specially for 

indoor environments, these autonomous vehicles rely on simultaneous localization and mapping approach (SLAM) to construct a 

map for the unknown environment and simultaneously to estimate the vehicle’s position inside this map. The result of the scan 

matching process, which is a key step in many of SLAM approaches, has a fundamental role of the accuracy of the map construction. 

Typically, local and global scan matching approaches, that utilize laser scan rangefinder, suffer from accumulated errors as both 

approaches are sensitive to previous history. The reference key frame (RKF) algorithm reduces errors accumulation as it decreases 

the dependency on the accuracy of the previous history. However, the RKF algorithm still suffers; as most of the SLAM approaches, 

from scale shrinking problem during scanning corridors that exceed the maximum detection range of the laser scan rangefinder. The 

shrinking in long corridors comes from the unsuccessful estimation of the longitudinal movement from the implemented RKF 

algorithm and the unavailability of this information from external source as well. This paper proposes an improvement for the RKF 

algorithm. This is achieved by integrating the outcomes of the optical flow with the RKF algorithm using extended Kalman filter 

(EKF) to overcome the shrinking problem. The performance of the proposed algorithm is compared with the RKF, iterative closest 

point (ICP), and Hector SLAM in corridors that exceed the maximum detection range of the laser scan rangefinder. 

 

 

1. INTRODUCTION 

The autonomous vehicles, such as wheeled robot and drones, 

efficiently participate in search and rescue operations. These 

vehicles save humans lives by performing the hazardous 

missions and tasks. Typically for indoor missions, navigation of 

these vehicles, in unknown environments, is addressed by the 

simultaneous localization and mapping approach (SLAM) 

(Santos et al., 2013). This is accomplished by constructing a 

map for the unknown environment and simultaneously 

estimating the vehicle’s position inside this map (Thrun and 

Leonard, 2008) (Bresson et al., 2017) and (Aulinas et al., 

2008). SLAM approaches that utilize laser rangefinders depend 

on a scan matching method of the successive scans (Mohamed 

et al., 2016). The scan matching process is a key step in the 

SLAM approaches. This process can adopt a local or global 

scan matching (Diosi and Kleeman, 2005) and (Bosse and Zlot, 

2008). The result of the scan matching process has a 

fundamental role of the accuracy of the map construction. Both 

local and global scan matching approaches suffer from 

accumulated errors because both approaches are affected by the 

matching errors that occur in previous scans (Hess et al., 2016). 

Various examples, such as iterative closest point (ICL) (Besl 

and McKay, 1992), iterative matching range point (IMRP) (Lu 

and Milios, 1994), iterative dual correspondence (IDC) (Lu and 

Milios, 1994), polar scan matching (PSM) (Diosi and Kleeman, 

2005), iterative closest line (ICL) (Alshawa, 2007), and Hector 

SLAM (Kohlbrecher et al., 2011), represent local and global 

scan matching methods and algorithms. All these methods and 

algorithms suffer from error accumulation over time. 

On the other hand, reference key frame (RKF) algorithm 

proposed 2D real-time scan matching algorithm that depends 

on a sole sensor, laser scan rangefinder, and does not require 

external aided sensors (Mohamed et al., 2017). The RKF 

algorithm attempts to mitigate the accumulated errors that 

contaminate the local and global scan matching. The RKF 

algorithm reduces the dependency on the accuracy of the 

previous result of the scan matching process. This is achieved 

by computing the transformation matrix parameters with 

respect to the previous key frame instead of the previous scan 

as discussed later in Section 2. 

However, laser scan matching process in long corridors, that 

exceed the maximum detection range of the laser scan 

rangefinder, is a challenging task for vehicle’s navigation 

within unknown environment (Diosi and Kleeman, 2005). The 

orientation and the lateral movement of the vehicle can be 

estimated from the scan matching process, while the estimation 

of the longitudinal movement is challenging as there is no clue 

for the forward movement. Although the RKF algorithm 

mitigates the accumulated errors, the algorithm suffers from 

scale shrinking problem during long corridors. This is due to 

the shortage of detection of two non-parallel lines as required 

by the algorithm. As a result, the RKF algorithm depends on 

the ICP algorithm alone during the non-parallel lines-outage 

period. Thus, the shrinking in some corridors comes from the 

unsuccessful estimation of the longitudinal movement from the 

implemented ICP algorithm and the unavailability of this 

information from external source as well. This paper proposes 

an improved version of the RKF algorithm (IRKF) to overcome 

the shrinking problem. This is achieved by integrating the 

outcomes of the optical flow with the RKF algorithm using 

extended Kalman filter (EKF). 

This paper is organized as follows: Section 2 summarizes the 

RKF algorithm. Section 3 illustrates an overview of the 

integrated navigational system. The used methodology is 
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demonstrated in Section 4. The experimental results are 

presented in Section 5 and finally the conclusion is given in 

Section 6. 

2. REFERENCE KEY FRAME ALGORITHM (RKF) 

BACKGROUND  

(Mohamed et al., 2017) proposed the reference key frame 

(RKF) algorithm. This algorithm depends on extracting lines 

from the laser scanner point cloud. Then, two non-parallel lines 

are elected from the extracted lines to be the mapping reference 

lines. The scan matching process is performed with the current 

reference lines and their matching lines in each successive scan. 

As a result of the vehicle’s movement, new two non-parallel 

lines are elected when the previous reference lines are not 

detected anymore. Hence, transformation parameters between 

the previous and current reference lines are computed to 

preserve the mapping continuity. Thus, the scan matching 

process is performed with the kernel reference lines during the 

entire mission. This process is carried out as long as non-

parallel lines are detected. In case of lines outage, the ICP 

algorithm is conducted as a point-to-point scan matching 

technique. In addition to the computation of the transformation 

parameters of the entire map, the transformation parameters 

during the ICP period are computed separately. This is 

performed to preserve continuity for the new reference lines, 

once detected, with the entire map. The algorithm switches back 

to the RKF algorithm once linear features are detected as shown 

in Figure 1. 

 

Figure 1. Alternating structure of the RKF algorithm. 

 

3. OVERVIEW OF THE INTEGRATED 

NAVIGATIONAL SYSTEM 

Orientation-compensated translational velocities in metric scale 

are provided using optical flow sensor called PX4FLOW 

(Honegger et al., 2013). These velocity values aid the proposed 

IRKF algorithm to estimate the longitudinal movement of the 

unmanned aerial vehicle (UAV) especially in the long corridors. 

Therefore, the laser scan rangefinder and optical flow sensors 

are fused in an integrated navigational system of the UAV. As a 

result, the estimated 2D position and heading of the UAV from 

the laser scan rangefinder are fused with the velocities 

computed from the optical flow sensor by EKF to provide 2D 

navigational solution of the UAV and the bias of the optical 

flow sensor as shown in Figure 2. 

 

 
Figure 2. System architecture diagram of the estimation of the 

2D navigational solution 

 

3.1 UAV Hardware System Architecture 

A quadcopter of X-configuration is utilized during the test 

experiments. The proposed hardware architecture consists of 

two main sub-systems, namely navigation and autopilot sub-

systems as shown in Figure 3. The navigation sub-system 

includes low-cost 2D laser scan rangefinder (LS), optical flow 

sensor (OF) accompanied with sonar, and mini PC, while the 

autopilot subsystem comprises NAVIO 2 autopilot and laser 

rangefinder (LRF) attached to raspberry pi 2 B embedded 

system board. 

 

Figure 3. The two main sub-systems. 

 

3.1.1 Navigation sub-system: The utilized low-cost laser 

scan rangefinder is RPLIDAR 360°. This sensor is developed 

by RoboPeak and produces 2D point cloud data. The maximum 

detection range is 6m, and the field of view is 360°. The 

employed optical flow sensor is PX4FLOW (pixhawk). The 

PX4FLOW comprises imaging sensor (camera), ultrasonic 

rangefinder (sonar), and low-cost MEMS 3-axes gyro. An ARM 

Cortex M4 processor is also mounted on the sensor board in 

order to process the optical flow approach at a subsampled 

resolution of 64x64 pixels. The optical flow sensor provides 2D 

velocities with respect to the body frame (Honegger et al., 

2013). The optical flow measurements are computed between 

the consecutive image frames. The sum of absolute differences 

(SAD) algorithm is utilized to find the similarity between two 

blocks of the same size (Niitsuma and Maruyama, 2010). The 

data acquisition is implemented in the mini PC. 

 

3.1.2 Autopilot sub-system: The NAVIO 2 autopilot board 

is equipped with dual IMU (MPU9250 9DOF and LSM9DS1 

9DOF), magnetometer, barometer (MS5611), U-blox M8N 

GPS/Glonass/Beidou receiver. This autopilot board requires 

external embedded system, for instance Raspberry Pi, for code 

execution and development. The altitude of the UAV is 

estimated using PulsedLight laser rangefinder. This laser 

rangefinder sensor is composed of a single laser beam with 

maximum detection range of 40 m. 

 

4. METHODOLOGY 

4.1 Data Fusion by Extended Kalman Filter (EKF) 

Extended Kalman Filter (EKF) (Gelb, 1974) have been 

employed to integrate sensory information from laser scan 
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rangefinder and optical flow sensor, to provide an improved 2D 

navigational solution over using individual sensor information. 

The EKF describes the kinematic model of the UAV using the 

following first order state equation: 

ẋ = Fx + Gw 

 

(1) 

 

where x = state estimate vector 

 F = dynamic matrix 

 G = noise distribution matrix 

 w = process noise vector 

The two terms on the right-hand side in Equation (1) 

respectively define the dynamic model and the stochastic 

model. The dynamic model describes how states develop over 

time, while the stochastic model defines the uncertainty in the 

dynamic model. In this research work, eight states are 

estimated, as presented in Equation (2); each state is 

represented with respect to the mapping frame. 

𝑥 = [𝑃𝑥 , 𝑃𝑦 , 𝑉𝑥 , 𝑉𝑦 , 𝑎𝑥, 𝑎𝑦, 𝜃, 𝑏𝑖𝑎𝑠𝑂𝐹  ]𝑇 (2) 

 

where 𝑃𝑥 = position of the UAV in the x direction 

 𝑃𝑦 = position of the UAV in the y direction 

 𝑉𝑥 = velocity of the UAV in the x direction 

 𝑉𝑦 = velocity of the UAV in the y direction 

 𝑎𝑥 = acceleration of the UAV in the x direction 

 𝑎𝑦 = acceleration of the UAV in the y direction 

 𝜃 = heading of the UAV 

 𝑏𝑖𝑎𝑠𝑂𝐹 = bias of the optical flow sensor 

 

[
 
 
 
 
 
 
 
 
 

𝑃̇𝑥

𝑃̇𝑦

𝑉̇𝑥
𝑉̇𝑦
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𝜃̇
𝑏𝑖𝑎𝑠̇ 𝑂𝐹]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0
0
0
0
0
0

0
0
0
0
0
0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

𝑃𝑥

𝑃𝑦

𝑉𝑥
𝑉𝑦
𝑎𝑥

𝑎𝑦

𝜃
𝑏𝑖𝑎𝑠𝑂𝐹]

 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0
0
1
0
0
0

0
0
0
1
0
0

0 0
0 0
0 0
0 0
1 0
0 1]

 
 
 
 
 
 
 

 𝑤 

(3) 

 

 

Therefore, the corresponding discrete-time linear system can be 

expressed as follows: 

 

𝑥𝑘 = 𝛷𝑘,𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑤𝑘−1 (4) 

 

where 𝑥𝑘 = estimated state vector 

 𝛷𝑘,𝑘−1 = transition matrix 

 𝐺𝑘−1 = noise distribution matrix 

 𝑤𝑘−1 = unit variance white Gaussian noise 

 𝑘 = current epoch 

 

The transition matrix from time 𝑡0 to 𝑡 is given as (𝛷(𝑡, 𝑡0)) 

(Brown and Hwang, 2012) and by ignoring the high order 

terms, the transition matrix can be defined as: 

 

𝛷 =

[
 
 
 
 
 
 
 
1 0 ∆𝑡 0 0 0 0 0
0 1 0 ∆𝑡 0 0 0 0
0
0
0
0
0
0

0
0
0
0
0
0

1 0 ∆𝑡 0 0 0
0 1 0 ∆𝑡 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1 ]

 
 
 
 
 
 
 

8𝑥8

 (5) 

 

The laser scan rangefinder and the optical flow sensors are 

utilized as external observations (i.e. updates) for the system. 

The discrete form of the measurement equation that describes 

the relationship between the observations and the estimated 

state vector is defined as: 

 

𝑍𝑘 = 𝐻𝑘𝑥𝑘 + 𝛿𝑛𝑘 (6) 

 

where 𝑍 = observations vector 

 𝐻 = design matrix 

 𝑋 = estimated state vector 

 𝛿𝑛 = observations noise 

 𝑘 = current epoch 

 

Figure 4 depicts the work flow diagram of the EKF algorithm. 

The navigation system has two updates. The first update 

measurements (𝑃𝑥, 𝑃𝑦 , 𝜃) are provided by the RKF algorithm 

using the laser scan rangefinder, while the second update 

measurements (𝑉𝑥 , 𝑉𝑦) are provided by the optical flow sensor. 

Since the utilized RKF algorithm alternates between two 

algorithms; namely RKF and ICP algorithms, the covariance 

matrix of the measurement noise (𝑅𝑅𝐾𝐹 , 𝑅𝐼𝐶𝑃) changes 

according to the selected algorithm. Moreover, both algorithms 

have the same design matrix 𝐻𝐿𝑅𝐹. The optical flow update 

design matrix (𝐻𝑂𝐹) and covariance matrix of the measurement 

noise (𝑅𝑂𝐹) are given in Equations (32, 34). Otherwise, the 

navigation system is idle until receiving updates. The inputs of 

the EKF such as transition matrix, covariance matrix of the 

system noise, covariance matrix of the measurement noise, 

design matrices for both updates, and the measurements vectors, 

should be prepared as described in the next sub-sections. 

 
Figure 4. EKF work flow diagram. 

4.2 Computation During Laser Scan Rangefinder (LS) 

Update 

The estimated position and heading from the RKF algorithm are 

used as an external observation of improved accuracy. The 

position and heading are estimated in the mapping frame, then 
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the RKF algorithm observations (𝑍𝐿𝑅𝐹) are used as updates 

according to: 

(𝑍𝐿𝑅𝐹)𝑘 = [
𝑃𝑥

𝑃𝑦

𝜃

]

3𝑥1

 (7) 

 

where 𝑃𝑥 = estimated position from the LS in the x direction 

 𝑃𝑦 = estimated position from the LS in the y direction 

 𝜃 = estimated heading from the LS 

 

Whereas, the corresponding design matrix during laser scan 

rangefinder update is given as: 

 

𝐻𝐿𝑅𝐹 = [
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0

]

3𝑥8

 (8) 

 

where 𝐻𝐿𝑅𝐹 = design matrix of the LS 

 

4.2.1 Covariance Matrix of RKF algorithm: As mentioned 

before, the proposed RKF algorithm comprises two methods, 

namely RKF and ICP algorithms. According to the experiments 

results in (Mohamed et al., 2017), the RKF algorithm exhibits 

more robustness than the ICP algorithm. Therefore, each 

method has its corresponding covariance matrix of the 

measurement noise (𝑅). Since the RKF algorithm shows lower 

uncertainty in measurements, the RMSE between the successive 

scans, after performing the scan matching process, are used to 

parameterize the covariance matrix of the measurement noise 

(𝑅𝑅𝐾𝐹). 

(𝑅𝑅𝐾𝐹)𝑘 = [
𝑅𝑀𝑆𝐸 0 0

0 𝑅𝑀𝑆𝐸 0
0 0 𝑅𝑀𝑆𝐸

]

3𝑥3

 (9) 

 

where 𝑅𝑅𝐾𝐹 = covariance matrix of the measurement noise of  

   the RKF algorithm 

 𝑅𝑀𝑆𝐸 = root mean square error between successive scans 

4.2.2 Covariance Matrix of ICP algorithm: The ICP 

algorithm is employed during the unavailability of two non-

parallel lines, for instance in corridors, or lines outage 

environment. In contrast, the ICP algorithm shows high 

uncertainty in measurements especially in the longitudinal 

direction and low uncertainty in measurements elsewhere. This 

is due to, in contrary to feature-to-feature scan matching, the 

point-to-point scan matching is prone to outlier association 

(Aghamohammadi and Taghirad, 2007). 

Furthermore, the lack of evidence that supports the longitudinal 

movement negatively affects the certainty of the measurements. 

As a result, for the localization, the new positions of the UAV 

appear to be stationary, which is not the real situation. Thus, the 

next point clouds are approximately accumulated at the same 

position, causing shrinking in the corridor, until a new evidence 

of the forward direction is caught. In order to assist in tackling 

the shrinking problem of the long corridor, the Eigenvalues and 

Eigenvectors of one of the two parallel lines (i.e., corridor) are 

used to compute the covariance matrix of the line after 

transforming the Eigenvectors from the body frame to the 

mapping frame. The computed covariance matrix is lent to the 

covariance matrix of the position measurement noise as shown 

in Figure 5. In this figure, the yellow rectangle represents the 

unchanged position of the UAV (i.e., shrinking area), while the 

blue dashed oval represents the lent covariance matrix. The 

implemented trajectory of the UAV is represented by the red 

dashed line. Figure 5 also demonstrates that the corridor is not 

necessarily aligned with the mapping frame axes. Thus, the 

covariance matrix of the position measurement noise is fully 

populated as given in Equation (24). 

 

Figure 5. Confidence ellipse in corridors. 

The covariance matrix of the position measurement noise is 

computed using the Eigenvalue and Eigenvector equation as 

follows: 

 

𝐴𝑣1 = 𝜆1𝑣1 (10) 

 

𝐴𝑣2 = 𝜆2𝑣2 (11) 

𝐴 = [
𝑎 𝑐
𝑐 𝑏

] (12) 

𝑣1 = [
𝑣11

𝑣21
] (13) 

𝑣2 = [
𝑣12

𝑣22
] (14) 

𝑣11𝑎 + 𝑣21𝑐 = 𝜆1𝑣11 (15) 

𝑣11𝑐 + 𝑣21𝑏 = 𝜆1𝑣21 (16) 

𝑣12𝑎 + 𝑣22𝑐 = 𝜆2𝑣12 (17) 

𝑣12𝑐 + 𝑣22𝑏 = 𝜆2𝑣22 (18) 

 

Solving Equations (19), (20), and (21) yields: 

 

𝑐 =
𝜆2𝑣12 − 𝜆1𝑣12

(𝑣22 −
𝑣21𝑣12

𝑣11
)
 (19) 

 

𝑎 =
𝜆1𝑣11 − 𝑣21𝑐

𝑣11
 (20) 

𝑏 =
𝜆1𝑣21 − 𝑣11𝑐

𝑣21
 (21) 

𝜆1 = 𝑅𝑀𝑆𝐸 ∗ 𝑠𝑐𝑎𝑙𝑒 (22) 

𝜆2 = 𝑅𝑀𝑆𝐸 (23) 

where 𝑣1 = the corresponding Eigenvector of the largest  

     Eigenvalue 

 𝑣2 = the corresponding Eigenvector of the smallest  

     Eigenvalue 

 𝜆1 =   the largest Eigenvalue corresponds to the  

     longitudinal movement (high uncertainty) 

 𝜆2 = the smallest Eigenvalue corresponds to the lateral  

    movement (low uncertainty) 

 𝐴 =  the covariance matrix 

 

Therefore, the covariance matrix of the measurement noise is 

given as: 

 

(𝑅𝐼𝐶𝑃)𝑘 = [
𝑎 𝑐 0
𝑐 𝑏 0
0 0 𝑅𝑀𝑆𝐸 ∗ 𝑠𝑐𝑎𝑙𝑒

]

3𝑥3

 (24) 
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where 𝑅𝐼𝐶𝑃 = covariance matrix of the measurement noise of  

   the ICP algorithm 

 𝑅𝑀𝑆𝐸 = root mean square error between successive scans 

From Equation (28), the scale of the heading variance is 

manually tuned according to the environment due to the high 

uncertainty of the scan matching result from the ICP algorithm. 

4.3 Computation During Optical Flow (OF) Update 

On the other hand, the computed velocities from the optical 

flow sensor are used as second external observation. Since the 

velocities are computed in the body frame, the optical flow 

observations are transformed to the mapping frame using the 

computed transformation matrix from the RKF algorithm. 

Thereafter, the transformed velocities are used as updates 

according to: 

𝑣𝑥
′ = 𝑣𝑥 + 𝑏𝑖𝑎𝑠𝑂𝐹 (25) 

 

𝑣𝑦
′ = 𝑣𝑦 + 𝑏𝑖𝑎𝑠𝑂𝐹 (26) 

(𝑍𝑂𝐹)𝑘 = [
𝑣𝑥

′

𝑣𝑦
′ ]

2𝑥1

 
(27) 

where 𝑣𝑥
′  = computed velocity by the OF in the x direction 

 𝑣𝑦
′  = computed position by the OF in the y direction 

 𝑣𝑥 = the OF sensor’s true velocity in the x direction 

 𝑣𝑦 = the OF sensor’s true velocity in the y direction 

 𝑏𝑖𝑎𝑠𝑂𝐹 = bias of the OF sensor 

 𝑍𝑂𝐹 = observations of the OF 

 

Whereas, the corresponding design matrix during optical flow 

sensor update is given as: 

 

𝐻𝑂𝐹 = [
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1

]
2𝑥8

 

 

(28) 

 

where 𝐻𝑂𝐹 = design matrix of the optical flow 

 

4.3.1 Covariance Matrix of Optical Flow (OF): In addition 

to the provided velocities of the optical flow sensor, the quality 

of the velocities is provided with each observation as well. The 

quality strength is encapsulated in one byte; the quality value 

ranges from 0 to 255. The highest quality is 255 and the quality 

reduces until reach 0. Therefore, the corresponding covariance 

matrix of the measurement noise is computed as follows: 

 

𝑟𝑂𝐹 = (256 − 𝑞𝑢𝑎𝑙𝑖𝑡𝑦) ∗ (𝑠𝑐𝑎𝑙𝑒/255) (29) 

(𝑅𝑂𝐹)𝑘 = [
𝑟𝑂𝐹 0
0 𝑟𝑂𝐹

]
2𝑥2

 

 

(30) 

 

where 𝑅𝑂𝐹 = covariance matrix of the measurement noise of  

   the OF 

 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = the received quality from the sensor 

 𝑠𝑐𝑎𝑙𝑒 = variance adjustment 

 

5. EXPERIMENTAL RESULTS 

A comparison has been performed to study the performance of 

the proposed algorithm amongst various algorithms, such as 

ICP algorithm, Hector SLAM, corner registration, and RKF 

algorithm, in corridors that exceed the maximum detection 

range of the laser scan rangefinder, 6m. The dataset is gathered 

at the University of Calgary CCIT building. All the 

experimental figures are to scale representation. The actual 

length of the corridor is 25 m. 

The mapping and position results of the ICP algorithm are 

illustrated in Figure 6. The blue points represent the constructed 

map, while the red asterisks represent the vehicle’s trajectory. 

The ICP algorithm suffers from the shrinking problem because 

of the lack of evidence for longitudinal movement. Furthermore, 

the impact of the accumulated errors leads up to inclination in 

the corridor. The ICP algorithm estimates 70% of the actual 

length. 

 

Figure 6. Mapping and position results of the ICP algorithm. 

Three level multi-resolution map representations, using grid cell 

dimensions 20, 10, and 5 cm, have been utilized to evaluate 

Hector SLAM approach. Figure 7 shows the mapping and 

position results using Hector SLAM of resolution 5 cm. The 

blue points represent the constructed map, while the red 

asterisks represent the vehicle’s trajectory. It also suffers from 

the same problem and for the same reason. The Hector SLAM 

method estimates 65.2% of the actual length. 

 

Figure 7. Mapping and position results of the Hector SLAM. 

Figure 8 depicts the mapping and position results for the RKF 

algorithm. The blue points represent the constructed map, while 

the red asterisks represent the vehicle’s trajectory. Although the 
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RKF algorithm exhibits improvement in the corridor scale, it 

also suffers from the shrinking problem. The improvement 

comes from the idea of matching of two non-parallel lines (i.e. 

reference frame), the black arrows show the places that the RKF 

algorithm gets the second line with the main line of the corridor. 

The RKF algorithm estimates 75.2% of the actual length. 

 

Figure 8. Mapping and position results of the RKF algorithm. 

Figure 9 shows the mapping and position results for the 

proposed IRKF algorithm. The blue points represent the 

constructed map, while the red asterisks represent the vehicle’s 

trajectory. It is obvious that the shrinking problem does not 

occur in the vertical corridor since the optical flow sensor aids 

the proposed IRKF algorithm by providing measurements of the 

longitudinal movement especially in the corridor. Furthermore, 

the certainty of the laser scan rangefinder update has also been 

maintained for the lateral direction only. The proposed 

algorithm estimates 99.2% of the actual length. 

 

Figure 9. Mapping and position results of the proposed IRKF 

algorithm. 

 

Table 1 illustrates the estimated length and the corresponding 

error of the proposed algorithm amongst various methods such 

as ICP algorithm corner registration, Hector SLAM method, and 

RKF algorithm. 

Method ICP 
Corner 

Registration 

Hector 

SLAM 
RKF 

Proposed 

Algorithm 

Estimated 

Length 

[m] 

17.5 17.6 16.3 18.8 24.8 

Error [m] 7.5 7.4 8.7 6.2 0.2 
 

Table 1. Estimated length of the corridor using different 

methods. 

6. CONCLUSION 

In long corridors that exceeds the maximum detection range of 

the laser scan rangefinder, the probability of detecting non-

parallel lines is typically low. Thus, the RKF algorithm suffers 

from scale shrinking problem during scanning such corridors. 

The shrinking in long corridors comes from the lack of 

evidence in the forward direction and the unavailability of this 

information from external source as well. Consequently, the 

next detected point clouds are approximately accumulated at 

the same position during the outage of two non-parallel lines. 

Once a forward clue is detected by the laser scan rangefinder, 

the estimated position of the UAV starts to move forward 

again. Thus, this outage period causes a shrink in the corridor 

structure and therefore affects the entire dimensions of the map. 

Therefore, extra source such as optical flow sensor is added to 

the navigational system. The optical flow sensor provides 

orientation compensated velocities in the x and y directions in 

the body frame. After transforming the compensated velocities 

to the mapping frame, EKF algorithm is used to fuse the 

computed velocities with the estimated 2D position and the 

heading of the UAV from the RKF algorithm using laser scan 

rangefinder. The computed velocities aid in estimating the 

position of UAV especially during navigation in the long 

corridors. Therefore, the integration between the RKF 

algorithm and the observations of the optical flow sensor 

overcomes the shrinking problem. The percentage of the 

estimation error of the proposed algorithm is 0.8%, while the 

estimation error of the ICP algorithm, corner registration, 

Hector SLAM, and RKF are 30%, 29.6%, 34.8%, 24.8% 

respectively. 
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