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ABSTRACT:

In open pit mining it is essential for processing and production scheduling to receive fast and accurate information about the frag-

mentation of a muck pile after a blast. In this work, we propose a novel machine-learning method that characterizes the muck pile

directly from UAV images. In contrast to state-of-the-art approaches, that require heavy user interaction, expert knowledge and careful

threshold settings, our method works fully automatically. We compute segmentation masks, bounding boxes and confidence values for

each individual fragment in the muck pile on multiple scales to generate a globally consistent segmentation. Additionally, we recorded

lab and real-world images to generate our own dataset for training the network. Our method shows very promising quantitative and

qualitative results in all our experiments. Further, the results clearly indicate that our method generalizes to previously unseen data.

1. INTRODUCTION

Open pit mine and quarry blasts result in a wide-spread muck pile

containing thousands of individual stone fragments. The results

of a production blast may be described in terms of the fragmen-

tation and the geometric properties of the individual fragments,

such as shape, angularity or roundness. Fast information about

the muck pile properties are essential for production scheduling

and further industrial processing and additionally this informa-

tion can be used to optimize blasting patterns of future blasts.

In mining, a widely used and well-known representation of muck

pile characteristics is as cumulative size distribution (CDF, or

sieving curve), which gives a complete description of the frag-

mentation. The CDF represents the ”fraction of mass P passing

a screen with a given mesh size x” and P (x) is in the range of

0-100% (see Fig. 1 (3)). From a practical point of view one may

describe a number of relevant quantities, whereas the x50 value to

measure the average fragmentation is the most important (Schu-

bert, 1989). It describes the mesh size x50 through which half of

the muck-pile passes.

To compute CDF curve, it is necessary to determine the size of

each individual fragment, which is why sieving constitutes the

only or at least most common ”true fragment size distribution”,

if the process itself is done error free. Since the determination

of the characteristics of a modern production blast by means of

screening analysis is neither practical nor economically feasible,

image-based methods such as WipFrag, FragScan, Split-Desktop,

Power-Sieve, IPACS, TUCIPS, CIAS and GoldSize have become

increasingly popular in recent years. However, the definition of

image based fragment size is different to screening analysis and

the results of existing solutions are strongly depending on user

intervention, expert knowledge and the form of image acquisi-

tion (Latham et al., 2003, Tscharf et al., 2018). With regards to

image acquisition, modern unmanned aerial vehicles (UAVs) are

capable of recording images of a wide blast area within minutes at

very high resolution (see Fig. 1 (1)). Especially in hazardous min-

ing environments they help to overcome geometric constraints

and avoid visibility problems.

Figure 1. (1) A drone records images after a blast, then (2) our

method segments individual fragments from these images to (3)

automatically generate the CDF or sieving curve.

From these UAV recordings the individual fragments have to be

identified (see Fig. 1 (2)). In computer vision, this task is typi-

cally referred to as instance segmentation, where all objects have

to be correctly detected and precisely segmented. It is a combi-

nation of objection detection, where individual objects have to be

classified and localized, and semantic segmentation, where each

pixel is classified into a fixed set of categories without distin-

guishing between individual instances.

With traditional delineation methods such as edge detectors or su-

perpixel segmentation (see Fig. 2 (a) and (b)), it is difficult to find

the borders between fragments and a non-trivial post-processing

step is necessary to distinguish between individual fragments and

background. Additionally, shading and partial or complete over-

lapping pose a major problem.

In recent years, nearly all fields of computer vision have rapidly

progressed due to heavy use machine-learning methods with deep

convolutions neural networks (CNNs) (Krizhevsky et al., 2012,

LeCun et al., 1989) being the most popular. The main advantage

of machine-learning methods is that given enough training data,

they can cope with the high variability in realistic scenes without

relying on user intervention or scene-specific thresholds. Several

approaches to tackle the challenge of instance segmentation have

been proposed in the last years, but the most promising is Mask

R-CNN from (He et al., 2017), which simultaneously predicts

a bounding box, a confidence value and a precise segmentation

mask, while running relatively fast on a GPU.
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Figure 2. (a) Edge delineation does not detect closed boundaries,

while (b) superpixel segmentation often splits larger fragments

into smaller ones. (c) Our method successfully segments

individual fragments.

In this work, we propose a novel method for muck pile character-

ization based on the segmentation of individual stone fragments

from UAV images after a mine blast (see Fig. 1). Our method

builds upon Mask R-CNN and works fully automatically with-

out any manual threshold settings or user intervention. The main

contributions can be summarized as follows:

• Creation of a lab and a real-world UAV dataset

• A multi-scale instance segmentation algorithm

• A method to fuse all segmentations into one globally con-

sistent one.

• Computation of the fragment sizes and CDF curve

• Extensive qualitative and quantitative experiments

• Comparison to a state-of-the-art commercial software

2. RELATED WORK

We will first discuss commercially available image-based muck

pile characterization software and then continue with a review of

machine-learning based instance segmentation methods.

2.1 Digital Image analysis for determination of CDF

To determine the fragment size distribution of a full-scale produc-

tion blast (some tens of thousands of tons of material) through

sieving is an exceedingly time consuming and expensive task.

Therefore it is not surprising that photographs emerged as an al-

ternative, even though there are - on top of representation errors

- several new tasks to cope with: (1) What do the images show?

(flat lying blocks in contrast to the consideration of the small-

est, mostly set up cross section with the screening analysis). (2)

How to evaluate the 2D fragment size distribution in the image

and how to transform it into volume or masses of fragments? (3)

How large are the finest particles to be detected? (4) How to treat

large blocks that are covered or lie only partly in the image?

Many commercial solutions like WipFrag, PowerSieve or Split-

Desktop try to solve these tasks using classical image processing

approaches for particle delineation, but accuracy, reproducibility

and robustness is not always clear (Sanchidrián et al., 2009, Thur-

ley, 2014). Basically all are showing two common weaknesses:

First the inability to robustly resolve more than 1-1,5 orders of

magnitude in fragment size, which is a serious problem espe-

cially for blasted muck piles, where the fragments cover at least 3

orders of magnitude. And second the tendency to give steeper or

more uniform fragmentation curves than sieving, which is mainly

due to errors in the extraction of individual fragments. Large par-

ticles tend to ”disintegrate” into several parts and smaller ones

are ”merged” into larger ones, even in systems that do not em-

ploy edge detection techniques for segmentation (see Fig. 7 and

Fig. 8).

Investigations on the accuracy of image-based methods show that

while image analysis methods function relatively well in the range

of large grain sizes (error < 30%), reliable results cannot be

achieved in the fine range (Sanchidrián et al., 2009). ”Fines cor-

rection” increases the quality of the results as it is shown by

(Maerz and Zhou, 2000), who present three methods which are

implemented in WipFrag system: (1) ”Analytical correction”,

which compensates for missing fines by considering the smaller

probability of a finer fragment being detected in a sampling plane.

(2) ”Zoom-Merge correction”, which involves acquiring numer-

ous images at different resolution levels and merging them in the

final analysis. (3) ”Rosin-Rammler Empirical Calibration Cor-

rection”, which follows the assumption that for a given comminu-

tion process the shape of the distribution is more or less constant,

whereas the parameters of the distribution function (e.g. Rosin-

Rammler curve (Schubert, 1989)) can be determined either by

screening in real scale or using model studies. Split-Desktop does

fines correction, by estimating the remaining finer material below

a certain fines cutoff that depends on the resolution of the image.

The shape of the curve below this cutoff is determined by the

distribution of the particles above the cutoff. Split-Desktop uti-

lizes the best fit of either a Schumann or Rosin-Rammler equa-

tion to represent the distribution of fines below the automatically

computed fines cutoff point (Split Engineering LLC, 2016). Fur-

ther, SplitDesktop does not distinguish between fore- and back-

ground but rather assumes that all visible surfaces are fragments

(see Fig. 7 and 8)

In summary, all existing solutions need some kind of previous

knowledge about the underlying distribution function or at least

strong user interaction defining the relevant threshold values or

editing the automated delineations. The achievable results are

therefore strongly dependent on the experience of the user, and

are only conditionally suited to characterize blasted muck piles.

2.2 Instance Segmentation

One of the most challenging tasks in computer vision is instance

segmentation, which requires detection and localization of indi-

vidual objects, while also precisely segmenting each instance.

In the past years, region-based CNNs (Girshick et al., 2014, Gir-

shick, 2015) for object bounding box detection have been at the

core of many instance segmentation methods. The main idea is to

keep a manageable number of candidate object regions and pro-

cess them individually with a CNN. DeepMask (Pinheiro et al.,

2015) and SharpMask (Pinheiro et al., 2016) learn to predict seg-

ment proposals that are then classified by Fast R-CNN (Girshick,

2015). (Dai et al., 2016) apply a similar concept in their three-

step multi-stage cascade system. They (i) generate bounding box

proposals (ii) that are then segmented and (iii) finally classified.

All these approaches are difficult to train and slow due to their

complex structure.

(Yi Li and Wei, 2017) introduced the ”fully convolutional in-

stance segmentation” FCIS, where they combine segment pro-

posals and objection detection to fully convolutionally predict a
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Figure 3. The network first predicts region proposals for an input

image. Then for each region, a separate BB and binary

segmentation mask is predicted. The network consists of a

backbone for feature extraction and a fully convolutional head

part.

set of position-sensitive output channels. These channels simulta-

neously address object classes, bounding boxes and masks. How-

ever, FCIS has problems with overlapping instances since these

instances ”compete” for the final segmentation.

The state-of-the-art algorithm in this field is Mask R-CNN pro-

posed by (He et al., 2017). In this work, we build upon Mask R-

CNN since it is faster than DeepMask, more flexible and simpler

than the approach by (Dai et al., 2016) and does not show errors

for overlapping instances Since Mask R-CNN is an integral part

of our method, we will explain it in detail in Section 3.1.

3. IMAGE-BASED MUCK PILE CHARACTERIZATION

We present a novel fully automatic method to address the chal-

lenge of image-based muck pile characterization. Figure 1 shows

an overview of our method, where we (1) process an input im-

age, (2) segment individual stone fragments and (3) determine

the smallest diameter of each fragment to compute the CDF or

sieving curve. At the core of our method is a modified version of

Mask R-CNN to detect the individual fragments. In this chapter,

we will first introduce the network architecture and show how to

train the network and then we will describe the other parts of our

method.

3.1 Network Architecture

The basis of our method is the state-of-the-art instance segmenta-

tion Mask R-CNN (He et al., 2017). One major difference is that

instead of 81 classes we only predict two classes: fragment and

background. Similar to its predecessor Faster R-CNN (Girshick,

2015), Mask R-CNN is also a two stage algorithm that initially

proposes candidate object bounding boxes (BB) with a Region

Proposal Network (see Fig. 3).

In contrast to Faster R-CNN, Mask R-CNN additionally predicts

separate binary segmentation masks by applying a fully convo-

lutional network (FCN) to each region proposal. As depicted in

Figure 3, Mask R-CNN algorithm can be divided into two dif-

ferent parts: (i) the backbone architecture that is responsible for

feature extraction over an entire image and (ii) the head part for

BB recognition and mask prediction. Figure 3 shows an overview

of the network architecture, where we first extract a feature map

from the input image and predict region proposals for which we

then separately predict BB and segmentation mask. Even though

Mask R-CNN is a meta algorithm and does not depend on a spe-

cific architecture, we follow the suggestion of the authors and

use a Feature Pyramid Network (FPN) (Lin et al., 2017) as back-

bone and ResNet 101 (He et al., 2016) as head. One of the main

Figure 4. (a, b) UAV recordings from an open pit mine at El

Ajibe, Spain, at a height of 30 m. The recording setup in the lab

with (d) and without (c) a muck pile.

benefits of Mask R-CNN is that it decouples mask and class/BB

prediction, since it predicts a binary mask for each class indepen-

dently, avoiding the problem of competing classes or instances

that other methods such as FCIS suffer from.

3.2 Network Training

A large amount of training data is what drives modern machine-

learning methods and like all supervised methods, also ours re-

lies on a vast amount of training data. However, the annotation of

thousands of images is a tedious and very time-consuming task

and training a complete network from scratch takes many days

up to weeks even on multiple GPUs. Therefore, a CNN is typi-

cally initialized with pre-trained weights to provide a good start-

ing point and then it is fine-tuned for a specific task. To the best

of our knowledge, for muck pile characterization no annotated

dataset is available. Thus, we create our own dataset consisting

of recordings from a lab setup, where the CDF of the muck pile

is known, as well as many UAV recordings from a real open pit

mine.

3.2.1 Dataset Recording We started by recording the whole

blasting cycle of production rounds with a DJI Matrice 600 at

an open pit mine at El Ajibe, Spain. The DJI Matrice 600 was

equipped with Sony 7R camera with 25mm fixed lens and a reso-

lution of 42,4Mp to capture nadir images with an overlap of 90%

at a flying altitude of 16 and 30m (see Fig. 4 (a) and (b)). In

a total, we performed 23 UAV flights and recorded around 400

images per flight.

Especially in the development phase and for evaluation of our

system, ground truth information on the characteristics of the

muck pile is of high importance. As it is not possible to do

screening analysis of the whole muck pile in real scale, we de-

signed a lab scale experiment with known fragment size distri-

bution, which is suited for training the network as well as for

evaluation of the results. Figure 4 (c) shows the recording setup

for the lab scale experiments.

In the lab, we use rock material from a real mine blast to set

up several synthetic muck-piles with different fragment sizes and

compositions at a scale of 1:25 (see Fig. 4 (d)). In total, we tested

four different fragmentation distributions: uniform fragmenta-

tion (Dist 1), fine material (Dist 2), coarse (Dist 3) and a dust

and boulders fragmentation (Dist 4), where each distribution was
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arranged in at least four different ways. We record several im-

ages of each arrangement from multiple perspectives under dif-

ferent lighting conditions to simulate the different angles seen by

a drone. Since the CDF of each distribution is known, it serves as

ground truth for the experiments presented in Section 4.1.

3.2.2 Dataset Preparation We generate training images for

the network by annotating around 1000 individual fragments with

the VIA annotation tool (Dutta et al., 2016). Due to the limited

camera resolution, we do not annotate fragments under 10 mm

since the exact boundaries of very such small fragments are dif-

ficult to distinguish even for a human. However, we address this

issue at later stage with a multi-scale segmentation process (see

Sec. 3.3).

State-of-the-art CNNs have millions of different parameters and

fine-tuning requires a proportional high amount of ground truth

data. Since annotating fragments is a tedious and time-consuming

task, in practice it is not possible to provide ground truth labels

for millions of individual fragments. Thus, we follow the com-

mon practice and enlarge the dataset by a factor of 10 through

standard augmentation techniques such as mirroring, rotating and

cropping followed by up-/down-scaling during training. The aug-

mentations are generated on-the-fly during training and do not

require memory on the hard drive or other pre-processing steps.

3.2.3 Training Procedure We initialize the network with the

pre-trained weights from Mask R-CNN trained on several thou-

sand images of the MS COCO dataset (Lin et al., 2014) and focus

only on fine-tuning the network. We minimize a loss L:

L = Lcls + Lbb + Lmask, (1)

where Lcls and Lbb are the BB and class loss identical to (Gir-

shick, 2015) and Lmask is the binary cross-entropy loss. Since

we only fine-tune the network, we refer the interested reader to (He

et al., 2017) for details about training from scratch.

We use a multi-step training procedure, where we first fine-tune

only the head architecture for 5 epochs and then fine-tune both,

head and backbone over 10 epochs. We crop a total of 4323

patches from various distributions and split them into a training

and a validation set at a ratio of 95% to 5%. Note that each

cropped patch must contain at least one fragment. We then train

the network with a learning rate of l = 0.0001, a non-max sup-

pression threshold of 0.2 and a minimum confidence value for a

segmentation to be accepted of 0.45.

3.3 Fragment Instance Segmentation

Our method segments individual fragments in an image and si-

multaneously predicts a confidence score, a bounding box and

binary segmentation mask. The maximum image resolution rnet

that can be passed through the network is limited by the available

GPU memory and in our case is rnet = [1024×1024]. UAV im-

ages are typically in the range of 30 and 40 megapixels and too

large to be processed in one pass. Thus, we crop different patches

of size rnet with an overlap of rnet

2
from the image and process

them individually. The borders of the cropped patches are also

problematic, since they often contain only parts of a fragment. In

order to avoid partly segmented fragments that would comprise

the computed CDF, we remove objects whose BB are closer than

10 px to the border of patch. For the final segmentation, we do

not consider objects with a confidence score lower than 0.45.

As mentioned in Section 3.2.2, the training data lacks annotation

of small fragments.We address this problem with a multi-scale

segmentation approach that is capable to detect such small frag-

ments. All the segmentations are then fused into a final global

segmentation.

3.3.1 Multi-Scale Processing Instead of processing only im-

age patches with resolution rnet, we crop patches with a lower

resolution rpatch, e.g. rpatch = rnet

2
, and bilinearly upsample

the patch to rnet for processing. For the lower resolution patches,

we keep an overlap of
rpatch

2
. The results are then scaled back to

the original resolution and fused into the global segmentation.

Figure 6 shows the difference between the number of segmented

fragments at a patch size of rpatch = 1024×1024 when process-

ing only a single-scale, which corresponds to a scaling factor of

F = [1] compared to multi-scale processing at half 2 and 3 dif-

ferent scale levels. It is clearly visible that the multi-segmentation

approach is capable of segmenting smaller fragments even though

no annotations are present in the dataset. The number of indi-

vidual fragments also greatly increases, enabling a much more

reliable computation of the CDF.

3.4 Segmentation Fusion

Each patch consists of many individual fragment segmentations

that are typically present also in other patches. A globally consis-

tent segmentation is essential for an accurate computation of the

CDF.

We propose a method to fuse multiple segmentations over vari-

ous scale levels into one globally consistent segmentation mask.

We always keep a set of global segmentation masks S, their cor-

responding confidence values and BBs. We fuse the set of seg-

mentation masks Sp, corresponding confidence values and BBs

of every patch individually into the global segmentation. For the

individual masks Sp,i ∈ Sp of a patch, we compute the overlap

with S as:

Oij = Sp,i ∩ Sj ∀ Sj ∈ S. (2)

Since overlaps are expensive to compute, we avoid unnecessary

computations and focus only on the masks with overlapping BBs.

However, overlapping BBs do not guarantee an overlap of the

segmentation masks, e.g. the BB of the green fragment in Fig. 6

is much larger than the actual mask. If there is no overlap with S,

we simply add Sp,i to the global segmentation S. Otherwise, we

compute the relative overlap pi and pj for each mask in pixels as:

pi =
Oij

|Si|
, pj =

Oij

|Sj |
(3)

where |Si| and |Sj | represent the segmented area of the masks.

Depending on pi and pj , our proposed fusion method distin-

guishes between the following two cases:

1. pi < ΘS and pj < ΘS , i.e. a very small overlap, we again

add the segmentation to the global mask S.

2. pi >= ΘS and pj >= ΘS , i.e. probably the same detec-

tion, we keep the one with the highest confidence.

3. All other cases, e.g. a small fragment on top of another,

currently do not contribute to the global segmentation

During our experiments, we found that a value of θS = 50% is a

suitable choice.
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Figure 5. Comparison of the multi-scale segmentation on Dist 4 with 1, 2 and 3 scale levels indicated by the scale factors

F = [1, 0.5, 0.25], which correspond to resolutions of rpatch = [1024× 1024], [512× 512], [256× 256].

3.5 Fragment Size Distribution Computation

In Section 1, we introduced the CDF, which visualizes the distri-

bution as a single curve and is far more compact and more easily

conceivable than an image of segmented fragments. Sieving is

done in several steps by allowing the material to pass through a

series of sieves of progressively smaller mesh size and weighing

the amount of material that is stopped by each sieve as a fraction

of the whole mass. The curve is then computed as cumulative

sum of each bin and presented in a graph of percent passing ver-

sus the sieve size in logarithmic scale (see Fig. 7). For the sieving

curve, only the smallest possible width of a fragment is relevant.

In order to generate a sieving curve out of segmented image data,

we propose two different ways to compute the minimum diame-

ter of each individual fragment: (i) approximation as a circle and

(ii) approximation as an ellipse.

Figure 6. (a) the approximation of the area of the fragment as

circle and computing the diameter, where especially elongated

objects are misrepresented. In comparison, (b) shows that a

fitted ellipse represents elongated objects more accurately.

Approximation as a Circle: Many fragments have a circular

shape and it is intuitive to approximate them as circle. The small-

est diameter dcircle of a fragment with size A is then given as:

dcircle = 2

√

A

π
. (4)

Figure 6 (a) shows the computed circular shape of two fragments.

However, for the fragment size distribution, only the smallest di-

ameter is relevant and in the circular approximation elongated ob-

jects appear wider than they actually are, e.g. the green fragment

in Figure 6 (a). In general, the approximation as circle results in

the computed fragment sizes being larger than they actually are,

which shifts the CDF curve to the right.

Approximate as an Ellipse: We tackle this problem by fitting

an ellipse instead of a circle around the fragment, which describes

elongated objects much more accurately (see Fig. 6(b)). To fit an

ellipse, we first compute the contours similar to (Suzuki et al.,

1985) and then apply the direct ellipse fitting algorithm proposed

x50 Dist 1 Dist 2 Dist 3 Dist 4

Method A1 A2 A1 A2 A1 A2 A1 A2

GT 14 - 20 6 - 10 31.5 - 40 6 - 10

SD 18.4 19.3 7.5 8.9 36.1 31.7 20.8 14.8

Circle 42.6 44.5 22.0 22.0 45.9 51.2 57.4 59.6

Ellipse 36.4 32.7 18.2 17.9 37.8 41.6 49.5 52.0

MSCir 29.0 28.2 16.7 17.1 41.8 48.73 9.8 9.7

MSEll 24.8 23.5 13.6 14.2 34.8 39.1 8.0 8.1

Table 1. Comparison of the computed x50 values in [mm] on

two arrangements A1 and A2 of four different distributions.

Values within the GT range are in bold.

by (Fitzgibbon et al., 1999). The smallest diameter of the frag-

ment defines its size can be computed from the two ellipse axes

a1 and a2 as:

dellipse = min(a1, a2). (5)

In the results section we show that this method does not have a

bias towards over-estimating the fragment sizes.

3.6 Implementation

Training and inference run on a desktop PC with an Intel Core

i7-4790 @ 3.60 GHz x 8 cores with 32 Gb of main memory and

an Nvidia GeForce GTX 970 graphics card with 4 Gb RAM. We

extend the Matterport implementation1 of Mask-RCNN. As third-

party libraries, we utilize Keras, Tensorflow, Python, Cuda and

the pyCocoTools.

4. RESULTS AND DISCUSSION

In this section, we compare the commercial Split-Desktop (SD)

(Split Engineering LLC, 2016) software to four different versions

of our method:

• Single scale with circle approximation (Ours-Circle)

• Single scale with ellipse approximation (Ours-Ellipse)

• Multi-scale with circle approximation (Ours-CircleMS)

• Multi-scale with ellipse approximation (Ours-EllipseMS)

The single scale approaches run with a resolution of rpatch =
[1024 × 1024], while the multi-scale approaches run at 3 levels

with resolutions of [1024× 1024], [512× 512] and [256× 256].
The comparison with the commercial and state-of-the-art solu-

tion Split-Desktop was carried out as blind comparison on the

same images but without previous knowledge about the underly-

ing distribution function. The delineation was qualitatively ad-

justed by using the ”level of delineation” slider, but not manually

1https://github.com/matterport/Mask RCNN
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Figure 7. Qualitative results of our MSEllipse method compared to SD for all four distributions and arrangements.

edited to ensure a fair comparison as manual editing is not done

in our automated approach. Additionally the ”boulder detection”

was used, which optimizes results with special regard to not split

larger fragments. Finally the fines factor, which is a powerful

user controlled parameter strongly affecting the results, was ad-

justed separately for every image. It represents the percentage of

blue pixels, which are considered as fines, as those pixels could

represent both outlines of particles and fines.

We show quantitative results on the lab dataset with known CDF

in the form of the x50 value, which is representing the average

fragmentation, i.e.the mesh size through which half of the muck

pile passes. Additionally, we present qualitative results on our lab

dataset and one real-world UAV recordings of both our method

and SD.

4.1 Evaluation on the Lab Dataset

In this section, we present the quantitative and qualitative results

on the lab dataset. From each of the 4 distributions, we select

2 different arrangements A1 and A2 that the network has never

seen during training. Qualitatively, we evaluate the x50 value and

compare it to the ground truth (GT). While our method and SD

can compute an exact x50 value, from the ground truth screening

analysis we only know a certain range in which the x50 lies, i.e.

the mesh size till which 50% passed. For the sieving analysis, we

use mesh sizes [3.15, 6, 10, 14, 20, 25, 40, 50, 63] mm. Table 1

shows the computed x50 methods of the GT, SD and our methods

with the x50 values that are in the range of the GT in bold. As

a conversion factor to from pixel to metres, we apply a scale of

40 px = 1 cm. Split-Desktop shows good results especially when

all the fragment sizes are present in the image, e.g. Dist 1, Dist

2, but has problems with segmentation of the background when

only a few larger fragments are present Dist 3). Our method es-

timates the x50 value too large for Dist 2 and Dist 3 since some

small fragments are missing in the segmentation, which in turn

increases the x50 value. Especially in the region 3.5 mm our

method does not detect many fragments and also the multi-scale

approach does not solve this problem. There are two main rea-

sons for this problem, first, the small stones were never annotated

and are not in the training set, second, in the multi-scale approach,

up-scaling smooths the image, which in turn removes boundary

indicators the network requires.

Figure 7 depicts the qualitative results of the MSEll method and

Split-Desktop. Regarding our method, the results clearly indicate

that the multi-scale approaches are more accurate than the sin-

gle scale approaches and also that the ellipse fitting is superior to

the circle approximation. The single scale methods only perform

well for Dist 3 since this distribution contains solely large frag-

ments. In the difficult dust and boulder Dist 4 the single scale ap-

proaches completely fail as they are not able to segment the small

fragments. For Dist 1 and Dist 3, Split-Desktop over-segments

the fragments and interprets the background as large fragments.

This behavior is not consistent since the background is mostly

filtered in Dist 2. In contrast, our method successfully distin-

guishes between back- and foreground. The dust and boulder

distribution Dist 4 is probably the most challenging in the experi-

ments since it contains many small fragments and and only a few

large ones. Split Desktop regularly merges smaller fragments into

larger ones. Dist 4 shows that our method can successfully detect

many individual fragments even if their sizes differ by one or two

orders of magnitude.

Figure 9 shows the computed CDF for the distributions Dist 3

and Dist 4 of all the methods. For Dist 3 all methods show good

results, while for the difficult Dist 4 our MSEllipse method is

closest to the ground truth, while SD estimates a wrong, uniform

distribution.

4.2 Evaluation on Drone Recordings

In this section we present qualitative result on UAV images from

a real world open pit mine after a blast at El Ajibe, Spain. We run

MSEllipse method on UAV recordings from 4 different flights,

two at a height of 16 m and and two at a height of 30 m. Since

one UAV image has a resolution of 42 MP, for this evaluation

we crop patches with a resolution of [2048 × 2048] and again

run on three different scale levels [1024 × 1024], [512 × 512]
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Figure 8. Qualitative results of four UAV flights after a real-world mine blast at 16 m and 30 m. Our MSEllipse method compared to

Split-Desktop. While both work well on the first three flights, especially for Flight 2 at 30 m SD misclassifies the background as

fragments.

Figure 9. The CDF the distributions Dist 3 and Dist 4 of all the methods. While all methods show promising results for Dist 3, our

MSEllipse method is closest to the GT for Dist 4.

and [256 × 256]. Figure 8 shows the qualitative comparison to

Split-Desktop.

While both systems show good results for Flight 1 and Flight 2 -

16m, the advantage of our method becomes apparent for Flight 2

- 30 m. Fig. 8 and the zoom clearly show that Split-Desktop in-

terprets the free areas as large fragments. In contrast, our method

is able to successfully distinguish between fragments and back-

ground.

The UAV experiments indicate that the lab experiments at a smaller

scale indeed can be used to generate training data. Our method

has neither seen any outdoor nor UAV images during training but

the experiments demonstrate that it generalizes well to outdoor

scenes. Also note that our method generalizes to other cameras,

since the camera in the lab setup is different from the one in the

UAV.

5. CONCLUSION

In this work, we presented a novel machine-learning based muck

pile characterization method. While many commercially avail-

able tools rely on heavy user interaction and require experience,

our method works fully automatically. We trained our method

on a lab dataset and demonstrated that it generalizes well to pre-

viously unseen lab scenes. Further, we show that our method

also works very well in UAV recordings taken after a real-world

mining blast, which additionally demonstrates its generalization

capabilities.

The next steps are the annotation of smaller fragments in the lab

dataset and also the annotation of the UAV recordings to improve

the accuracy. We also want to address the challenge of partially

occluded fragments. Since we have a complete segmentation of

each fragment, we want to analyze other properties such as the

shape of the individual fragments (roundness or ratios between

the axes).
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