
 

 

A SYSTEM FOR MONITORING OF UAV CAMERA ORIENTATION: DESIGN AND 

INITIAL ANALYSIS 

 

 

J. Tekavec 1, *, K. Oštir 1, A. Lisec 1, G. Štebe 1 

 
1 University of Ljubljana, Faculty of Civil and Geodetic Engineering, Ljubljana, Slovenia - (jernej.tekavec, kristof.ostir, anka.lisec, 

gasper.stebe)@fgg.uni-lj.si 

 

 

KEY WORDS: UAV, rolling shutter, vibration, MEMS, gyroscope 

 

 

ABSTRACT: 

 

Many unmanned aerial vehicles (UAV) that are used for aerial mapping are equipped with consumer-grade digital cameras, which 

use CMOS (Complementary metal–oxide–semiconductor) image sensors. Majority of these sensors capture images using an 

electronic rolling shutter, which can cause distortions on the image if either the camera or the captured objects are moving. This 

phenomenon is usually ignored in aerial mapping with UAVs in practice. However, there is a lack of published research papers that 

would prove the effect can be neglected. In this paper, we present the design of the system for monitoring UAV camera orientation. 

Furthermore, the calibration process to get correct and reliable readings is described. The initial analysis of the data is focused on 

assessing the accuracy that can be achieved using the proposed system. The main component of our system is a MEMS 

(Microelectromechanical system) gyroscope. It was selected for its low weight and size, low price and high sampling rates which are 

all very beneficial characteristics for a system, mounted on a UAV.  In a paper, a working prototype is presented that uses the 

selected MEMS gyroscope connected to a single-board computer. The presented initial analysis of collected data shows, that the 

system would be capable to indirectly detect the image distortions, caused by camera orientation changes during exposure, in the 

range of typical ground sample distance (GSD). 
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1. INTRODUCTION 

UAVs are becoming a widely used tool for spatial data 

acquisition. They are both replacing and supplementing 

traditional surveying techniques in many applications, as they 

shorten the acquisition time, reduce costs and even improve the 

accuracy of some products, like volumes of excavated materials. 

The UAVs gained popularity with the first affordable autopilots 

approximately ten years ago, allowing user-friendly piloting, 

good stability, and navigation along a pre-planned route. The 

UAVs are nowadays technically advanced and affordable 

platforms for spatial data acquisition. The software for 

photogrammetric processing of UAV imagery experienced 

similar evolution regarding accuracy, processing speed and 

computing load, point cloud processing, and feature extraction. 

The software combined with UAV as a platform, and a camera, 

provide a comprehensive package for efficient spatial data 

acquisition. Despite all this progress, a very important 

component of this package from the photogrammetric point of 

view was not considered – until recently, there has been no 

evident development of small and light metric cameras. 

Nowadays, a big majority of UAVs are equipped with 

consumer-grade cameras that use CMOS image sensor 

technology. CMOS image sensors are better than CCD (charge-

coupled device) image sensors in many aspects that are 

important for mass marketing, but not in the one, that is very 

important in photogrammetry – constant and stable image 

geometry. CMOS image sensors use an electronic rolling 

shutter that causes image distortions in case either the camera or 

the object is moving. Because UAV is far from being a stable 

platform in the air, research is needed to develop systems and 

methodologies for estimation, reduction, and correction of the 

errors, caused by the instability. 

 

The main motivation for our work was the amount of CMOS 

image sensor-based cameras usage on UAVs. The mentioned 

instability of the camera with a CMOS image sensor, mounted 

on the UAV causes the image distortions that can be clearly 

seen in Figure 1. The images were acquired with UAV on a 

windy day with poor CMOS image sensor camera stabilization 

and demonstrate, the extent of image distortions. 
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Figure 1. A subset from two sequent images taken from UAV 

with CMOS camera in windy conditions (our archive) 

 

2. REVIEW OF PAST RESEARCH ACTIVITIES 

Most of the research related to the investigation of rolling 

shutter effect has been done in the field of machine vision. 

Gryer et al. (2005) and Ringaby (2014) presented and described 

the mathematical background of rolling shutter image 

acquisition and its effect on the image.  

 

Ait-Aider et al. (2006) showed that rolling shutter effect in the 

image could be used for defining the object motion parameters. 

This, in turn, means that if we want to remove the distortions, 

caused by the rolling shutter effect, we must know how both the 

camera and all objects in the picture were moving when the 

image was taken. 

 

Various methods considering the rolling-shutter effect were 

proposed in Nicklin et al. (2007), Chun et al. (2008), Liang et 

al. (2008), Baker et al. (2010), Hedborg et al. (2011), 

Grundmann et al. (2014). Baker et al. (2010) and O’Sullivan et 

al. (2014) emphasized the importance of calibrating the time 

delay between each image row is captured. Most proposed 

methods are not focused on correcting a single image, but use 

images from videos, which is basically the time series of 

images. Karpenko et al. (2011) and Jia et al. (2012) used motion 

sensors for camera movement estimation, as this kind of sensors 

are becoming widely used in modern electronic devices. The 

focus of their and research is mitigation of so-called “jello 

effect” on the captured video. 

 

Recently Vautherin et al. (2016) published an article that 

focuses on the photogrammetric assessment of rolling shutter 

cameras in case they are used on UAV. They present the 

solution, where rolling shutter effect on the captured image is 

corrected for camera translations during exposure. The authors 

presented how rolling shutter affects not only images but also 

the results of the photogrammetric processing of these images. 

They focused on modeling and correcting camera translational 

movement. The results are significantly improved when they 

applied the proposed algorithm. The improvement of the result 

is correlated to UAV’s speed, as the rolling shutter effect 

increases with the speed. This proves the rolling shutter effect is 

significant in aerial mapping applications. The proposed 

solution is more appropriate for fixed wing UAVs. Multirotor 

UAVs, on the other hand, fly at lower speed but are much more 

prone to vibrations that cause fast camera orientation changes. 

 

3. RESEARCH METHODOLOGY 

As the effect of the rolling shutter image sensor rotation on the 

image is well known, the main contribution of this paper is the 

design of a system, capable of monitoring orientation changes 

during the exposure time. The aim of the research is not the 

correction of the image distortions, but to get the information 

about camera orientation changes during UAV flight. Using this 

information, it is possible to assess the magnitude of distortions 

that can occur on the captured images. 

 

First, the effects of different types of CMOS image sensor 

movement were studied and analysed. Figure 2 shows the 

effects of image sensor translation and rotation. To correct these 

distortions, the camera movement, object movement and also 

object distance from the camera should all be known, which 

makes it very challenging. 

 

Figure 2. Image captured from moving car (up) and by rotating 

the CMOS image sensor (bottom) (our archive) 

 

The key component of our system is a MEMS gyroscope. The 

sensor was first calibrated and then tested for noise and 

accuracy of its readings to check if it can deliver useful data for 

our application. Based on the selected gyroscope, other 

components were selected for the collection and storage of the 

sensor data, power supply and mounting on the UAV. 

 

4. SYSTEM DESIGN 

In photogrammetry, the typical analysis workflow is first taking 

pictures and then analysing and correcting them for various 

effects (optical aberrations etc.). We decided to use a different 

approach and try to measure the cause of the distortions at its 

source with the system, mounted on the UAV during its 

operation.  

 

The design of a system for monitoring of UAV camera 

orientation consisted of the following steps: 

 

- sensor selection, 

- testing sensor characteristics, 

- assembling and mounting the system on the UAV, 

- collecting and analysing the data from real UAV flight. 

 

4.1 Gyroscope sensor selection 

The initial parameters we considered in gyroscope sensor 

selection were sensor cost, availability, size and weight, 

sensitivity, sampling rate, and the declared accuracy. First, we 

limited the selection to MEMS gyroscopes as they are highly 

affordable. The size and weight enabled mounting directly on 

the camera without significantly changing its momentum 

characteristics i.e. not influencing the camera movement.  
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The biggest disadvantage of all affordable MEMS gyroscopes is 

that they have large angular drift over time, which limits or 

prevents their use in many applications. However, in our case, 

we largely avoided this problem, as the time interval, which we 

are interested in, is very short. The readout time of CMOS 

image sensors, used in cameras on UAVs is generally around 30 

milliseconds in most cases (Ringaby, 2014, O’Sullivan et al., 

2014, Vautherin et al., 2016). More advanced CMOS imaging 

sensors have readout times of 10 milliseconds (LaBelle, 2014) 

and less. However, the article addresses the consumer grade 

CMOS sensor cameras, that are nowadays being predominantly 

used in practice for UAV mapping purposes. 

 

We started with MPU 6050 sensor from InvenSenese that 

combines 3-axial accelerometer and 3-axial gyroscope. The 

declared maximum sample rate for the gyroscope is 8 kHz. 

Connected to Arduino microcontroller using I2C bus and 

i2cdevlib libraries (Rowberg, 2018) the maximum effective 

sampling rate we could achieve with logging the results was 

approximately 200 Hz, which is relatively low for given readout 

time of 30 milliseconds. The second choice for further research 

was the InvenSense MPU 9250, which supports faster SPI bus 

(compared to I2C bus) communication and can sample at the 

same sample rate of 8 kHz. After testing MPU 9250, connected 

over SPI bus, it became clear that the bottleneck is the speed of 

data logging. Our solution was reading data from the sensor into 

a biggest possible vector and when it is full, log the whole 

vector. Thus, the data logging is not decelerating the sampling 

rate but is interrupting the sampling at regular intervals. This 

could not be realized using Arduino microcontroller for its very 

limited space available for declared variables. Instead, we used 

Raspberry Pi 2 Model B and C++ libraries (Avkhimenia, 2018). 

This modification allowed us to allocate three vectors, each for 

one of the three axis readings that can store 500 000 variables. 

The sensor connection to Raspberry Pi is done using the SPI 

bus. The achieved sampling speed was between 2 and 4 kHz. 

This means we could get 60–120 samples per one image sensor 

readout time. 

 

4.2 Testing gyroscope characteristics 

Raw sensor readings represent scaled angular velocity. Their 

scale depends on the selected measurement range (full-scale 

range). To get the sensor orientation, the raw readings need to 

be scaled, corrected for offset and integrated over time. The 

integration of angular velocity causes the already mentioned 

drift of sensor orientation values.  

 

The scale of the raw readings can be obtained in sensor factory 

datasheet for each range. We selected the ± 250°/sec measuring 

range, with corresponding, factory determined scale factor of 

131. The offset for each axis is different and also changes over 

time. It is therefore recommended to perform offset calculation 

right before measurement. To do this, we implemented a basic 

correction algorithm, which requires the sensor to be as still as 

possible when executing. It collects raw readings for arbitrarily 

selected time of 5 seconds, calculates the mean value for each 

axis and stores it as the axis offset. More advanced algorithms 

for gyroscope bias determination and temperature 

compensations can be found in Aggarwal (2008), Fang (2013) 

and Anderson et al. (2015). 

 

4.2.1 Testing the sensor noise: The noise can be 

characterized as a random scattering of the readings. Within the 

noise range, no useful information can be extracted from the 

readings. The time interval we are interested in for noise 

calculation is the image sensor readout time, ranging from 10–

50 milliseconds for most CMOS image sensors. Given our 

sampling rate of 2–4 kHz, we determined the base frame of 120 

sequent values to calculate the standard deviation and value 

range. We mounted the sensor on a fixed and stable base and 

collected a sample of 40,000 readings for each axis. The raw 

readings were corrected for scale and offset and integrated over 

time to get the gyroscope sensor orientations for each axis. The 

frame of 120 values was moved through all values with one 

value step. For each step, the standard deviation σ, and value 

range r were calculated based on selected 120 values (Figure 3). 

 

 

Figure 3. σ and r for the first “frame” of 120 values  

 

Thus, we got 39,880 σ and r values based on 40,000 original 

values. Below in Table 1, the mean values for σ and r are 

presented for each axis and 3 separate tests. Table 2 contains the 

maximum σ and r among all 39,880 values, again for each axis. 

 

Axis X Y Z 

 σ [''] r [''] σ [''] r [''] σ [''] r [''] 

Test 1 1.1 3.8 1.3 4.7 1.1 3.8 

Test 2 1.0 3.6 1.2 4.5 1.1 3.8 

Test 3  1.1 3.9 1.3 4.5 1.1 3.8 

Table 1. The mean of σ and r for 3 separate tests 

 

Axis X Y Z 

 σ [''] r [''] σ [''] r [''] σ [''] r [''] 

Test 1 2.7 10.0 4.4 13.4 3.0 9.0 

Test 2 3.0 9.5 3.7 12.1 2.8 9.4 

Test 3  3.5 10.3 3.6 11.6 3.4 11.0 

Table 2. The maximum of σ and r for 3 separate tests 

 

From the tables above, we can see that all value ranges r are 

smaller than 15'', with most of them being smaller than 10''. If 

we put those values in the scope of UAV, knowing its altitude 

above ground, we can calculate what this noise means for 

detecting the image distortions, caused by the rotational 

movement of the image sensor. Based on the presented tests, we 

can assume, that we are able to detect rotations larger than 15'' 

within the time frame of 30-60 milliseconds. Assuming the 

altitude of UAV is 50 m, the distortions, caused by 20'' rotations 

during image sensor readout, result in 5 mm positional error on 

the ground (Figure 4). 
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Figure 4. Image distortions caused by 20'' image sensor rotation 

during sensor readout at 50 m altitude (svgsilh.com, 2019) 

 

4.2.2 Testing the sensor accuracy: In the second test, we 

assessed the accuracy of sensor orientation, calculated from 

sensor readings. To assess the accuracy, the “true” value should 

be known or measured. We fixed the sensor to the Leica TS30 

total station telescope, which features 0.5'' angular accuracy, 

enough to take its measurements for the reference (Figure 5). 

 

 

Figure 5. Leica TS 30 with gyroscope installed on the telescope 

 

Connected to Raspberry Pi, the instrument can accurately rotate 

for given angles without any contact needed. When performing 

the tests, the total station base was fixed and still. After 

collecting data for initial offset calculation, we sent commands 

for several 1° rotations to the total station (Figure 6). The time 

needed for instrument rotation was between 0.2 and 0.3 

seconds. 

 

It is practically impossible to mechanically align the sensor axes 

with total station axes. This means the sensor orientation change 

cannot be calculated directly from one axes readings. As can 

also be seen from in Figure 6, the total station rotation around 

one axis is reflected in rotation of all three gyroscope sensor 

axes.  

 

Figure 6. Leica TS 30 telescope orientations, calculated from 

gyroscope sensor readings 

 

By calculating the rotation matrix, the telescope rotation angle θ 

can be calculated from the equation for matrix trace calculation. 

 

                   (1)

 
 

                         

   (2) 

 

                  

   (3) 

 

             

 

  (4) 

 

                       

 
  (5) 

 

To reduce the influence of orientation drift and sensor noise, we 

manually selected 100 orientation values right before and after 

each rotation and used the mean of selected values. Table 3 

contains these means for the start and the finish of each rotation. 

The difference is then calculated using above equations and 

compared to the reference angle of 1° measured by total station. 

 

 Telescope 

orientation 

X [''] 

Telescope 

orientation 

Y [''] 

Telescope 

orientation 

Z [''] 

Difference 

to 1° 

[''] 

Before -51 -41 -23 
18 

After 3433 -340 757 

Before 3448 -384 772 
20 

After 6927 -691 1563 

Before 6927 -841 1590 
4 

After 10421 -1172 2375 

Before 10393 -1240 2385 
3 

After 13885 -1573 3186 

Table 3. Averaged telescope orientations and the difference 

between calculated θ and 1° for each rotation 

 

Knowing that we got orientation values with integration over 

time, any significant remaining scale error would be discovered 

in this test. Based on the tests we can conclude that the MPU 

9250 MEMS gyroscope sensor is suitable for monitoring the 

image sensor orientation during UAV flight. The next step is to 

assemble the system that can be mounted to UAV. 
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4.3 Assembling and mounting the system on the UAV 

The components of the system that need be mounted on the 

UAV are the Raspberry Pi computer, MPU 9250 sensor, and 

power supply. The UAV power supply can be used, but to 

achieve the system independence and avoid electrical 

disturbances, the additional power supply was chosen in our 

case. The Raspberry Pi placement can vary depending on the 

UAV structure layout. The cable for SPI connection runs from 

Raspberry Pi to the gyroscope that should be mounted to the 

gimbal or directly to the camera. This assures that the sensor is 

exposed to the same conditions as the image sensor in the 

camera (Figure 7). 

 

Figure 7. A gyroscope mounted on the gimbal (up) and 

Raspberry Pi with the power supply on the upper side of the 

Sky Hero 850 frame (bottom) 

 

4.4 Collecting UAV flight data and initial analysis 

We selected a medium heavy UAV for the test purposes, which 

has enough lifting power for additional components. It is based 

on SkyHero 850 X8 frame. For lighter and less powerful UAVs, 

the system’s weight and size should be optimised.  

 

We collected 500.000 gyroscope sensor readings during UAV 

flight, which results in 151 seconds of flight time. The sensor 

readings for initial offsets calculation were collected right 

before the flight with UAV motors not spinning to reduce 

vibrations. The temperature during the flight was around 20°C 

with windspeed not exceeding 5 km/h. 

 

After the flight, the readings were transferred from Raspberry Pi 

to the PC for the analysis. The initial offsets were calculated for 

all three gyroscope axes as the average value of the readings 

collected for 5 seconds. These offsets were deducted from 

original sensor readings. Time delay between each subsequent 

pair of readings was calculated from the timestamps collected 

for each sensor reading. Using time delay and sensor readings 

corrected for the offsets (bias), the sensor orientations were 

calculated for each axis. 

 

We analysed the orientation changes from the perspective of the 

distortion that they cause, measured on the ground, on images 

taken from 50 m altitude from the ground (Figure 4). The aim of 

this analysis is to get the percentage of the (analysed) flight 

time, when the camera orientation changes cause image 

distortions greater than the selected value. We selected two 

values for the analysis, 5 cm and 10 cm respectively. The 

calculation of orientation changes requires selection of the time 

frame within which the changes are calculated (similar as for 

sensor noise estimation), which has to correspond to the COMS 

image sensor readout time. We selected 10 ms and 20 ms time 

frame for the analysis. With the achieved gyroscope sampling 

rate of 4 kHz this translates to the selection of 40 and 80 

subsequent sensor readings. 

 

For each “window” of 40 and 80 subsequent readings, the value 

range was calculated. It represents the maximum orientation 

change of the camera within the selected time frame. At 50 m 

altitude, the orientation change, needed for 5 cm ground 

measured distortion of the image, is approx. 205''. For 10 cm 

distortion, the orientation change should be approx. 410'' (see 

Figure 4). We added 20'' to both threshold values, to account for 

the sensor noise, which has been tested to be lower than 20'' 

during the presented research. If orientation change for any of 

the axis was exceeding the threshold value, the time frame was 

flagged. The table 4 summarizes the results by showing the 

percentage of the flagged time frames. 

 

 
 Time frame 

  Distortion 10 ms 20 ms 

 5 cm 25% 56% 

10 cm 11% 25% 

Table 4. The percentage of the flight when the orientation 

changes exceeded the threshold value for at least one axis 

 

5. DISCUSSION 

The system offers various implementations, of which the basic 

one was selected for initial tests. Its aim is to give an overview 

of the camera short-term orientation changes during the flight. 

Knowing the approx. readout time of the used CMOS image 

sensor one can calculate the percentage of the flight time, when 

the orientation changes exceeded the threshold values. While 

the latter does not offer any possibility to improve the images 

nor the results, it offers an estimate of conditions in which the 

camera was capturing images.  

 

The more advanced implementation could use logging of the 

camera trigger signal from autopilot, to get an estimate of when 

the image was taken. To synchronise with gyroscope, the trigger 

signal should be logged using the same system clock as used for 

logging the gyroscope readings. The calculation of orientation 

changes can be narrowed down to short time intervals when 

each of the images was captured. Using this information, it is 

possible to exclude the images captured in the conditions that 

cause the distortions that exceed the selected limit. To further 

narrow down the time interval if image capture, the trigger 

signal from the camera can be used, normallya used for flash 

synchronisation.  
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The third possible implementation could provide information to 

correct the images for the errors caused by orientation changes. 

This task is very challenging from many aspects. The time 

interval of the image readout would have to be very precisely 

determined together with precisely logging its start. The 

frequency of gyroscope sampling and logging would have to be 

increased. The gyroscope sensor errors would have to be 

determined more accurately (Stebler et al., 2014) and rigorously 

tested. Despite doing everything listed above only a part of 

rolling shutter effect, caused by orientation changes, could 

theoretically be removed. To meet all presented requirements, 

the orientation monitoring system would have to be tightly 

integrated with the camera, not being a separate stand-alone 

system, which is out of the scope of this article. 

 

The proposed system could leverage the two available SPI bus 

connections on Raspberry Pi to connect two separate gyroscope 

sensors. This opens possibilities to improve the quality of 

measurements by fusing the data from both sensors. 

 

Initial analysis of the data, collected during UAV flight suggests 

that the angular velocity of the camera, causing changes in 

orientation, exceeded the distortion limit in a considerable part 

of the flight. To simplify the analysis, the calculations were 

performed separately for each axis instead of using equations 

(1) – (5) to calculate the rotation angle θ and checking if θ 

exceeds the threshold value. By checking each axis separately, 

we stayed at the safe side as θ is always larger than its 

components α, β and γ.  

 

6. CONCLUSIONS 

The article proposes a system for monitoring UAV camera 

orientation during the flight comprised of affordable 

components. The focus is on the methodology of the system 

design together with noise and accuracy tests that confirm its 

applicability. Both static sensor noise and short-term rotation 

determination accuracy are below 20'', which corresponds to 

approximately 5 mm distortion error at 50 m flight altitude. 

Very short readout times of CMOS image sensors make the 

most problematic limitation of MEMS gyroscope – its drift – 

practically insignificant.  

 

The system can be applied in the UAV design phase, to 

determine, if the used combination of UAV and gimbal can 

provide a stable platform for the camera. Separate analysis of 

gyroscope readings for each axis can identify which axis has to 

be additionally stabilised.  

 

The best approach in UAV mapping is to completely avoid the 

rolling shutter effect by using global shutter image sensors. 

Also, some newer and more advanced CMOS sensors have 

shorter readout times than presented in the article, thus reducing 

the image distortions. However, the article’s focus is on the 

consumer grade CMOS cameras, nowadays predominantly used 

on UAVs for mapping purposes. The added value of the 

proposed system is not to enable image correction, but to 

provide information if the camera was stable enough during the 

flight and there are no significant distortions on the captured 

images.  
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