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ABSTRACT:  

 

Broad-leaved dock (Rumex obtusifolius) is a fast growing and spreading weed and is one of the most common weeds in production 

grasslands in the Netherlands. The heavy occurrence, fast growth and negative environmental-agricultural impact makes Rumex a 

species important to control. Current control is done directly in the field by mechanical or chemical actuation methods as soon as the 

plants are found in situ by the farmer. In nature conservation areas control is much more difficult because spraying is not allowed. 

This reduces the amount of grass and  its quality. Rumex could be rapidly detected using high-resolution RGB images obtained from 

a UAV and optimize the plant control practices in wide nature conservation areas. In this paper, a novel approach for Rumex 

detection from orthomosaics obtained using a commercial available quadrotor (DJI Phantom 3 PRO) is proposed. The results 

obtained shown that Rumex can be detected up to 90% from a 6 mm/pixel ortho-mosaic generated from an aerial survey and using 

deep learning. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Grasslands have a positive environmental and economic impact.  

In case of agricultural grasslands, they promote the production 

of food through dairy farming and help to improve soil health. 

However, there are some injurious weeds that reduce the quality 

of the fodder and the amount of grass. One of those weeds is 

broad-leaved dock or Rumex obtusifolius as shown in Figure 1. 

Rumex is a weed that competes with grass for resources such as 

water, nutrients and light and thereby it reduces crop yield 

(Hiremath et al., 2013). It is not only competing with grass but 

is also poisonous when eaten by livestock in large amount. It is 

listed as an ‘injurious weed’ under the UK Weeds Act 1959 

(Weeds Act, 1959).  

 

 

Figure 1. Rumex (Rumex obtusifolius) with an approximated 

area of 200 cm2. 

Rumex is difficult to eradicate because of its deep roots and 

easily dispersed seeds. The roots of Rumex can reach up to 1.5 

meters into the ground and its seeds can travel through both 

wind and water. The structure of the seeds also makes that they 

cling easily to animals or machinery (Poison Diaries, 2013). 

 

Rumex control and management is typical done via chemical 

spraying. However, when spraying herbicides, not only the 

weeds, but also the surrounding crops or grasslands are sprayed 

and this has negative effects on the environment. Herbicides for 

example contribute to ground water pollution and they 

contribute to a selective bias of herbicide-resistant weeds 

(Kempenaar et at., 2007; Hiremath et al., 2013). There are 

several other methods that do not include the spraying of 

chemicals. These methods are for example crop rotation or 

thermal and biological control (van Evert et al., 2009; Bond & 

Grundy, 2001). Another method is the manual removal of 

weeds. All these methods are either time-consuming, expensive 

or labour intensive, so there is need of automatic detection 

approaches that will be less expensive, time efficient, and more 

reliable (van Evert et al., 2009; Bond & Grundy, 2001). 

 

Deep learning has proven to be an effective way of object 

detection in images for various applications such as autonomous 

driving and robotics (Huval et al., 2015; Goodfellow et al., 

2016). Also, in the field of detecting plant species, the use of 

deep convolutional neural networks has shown promising 

results. Dyrmann et al. (2016) used a deep convolutional 

network to detect 22 plant species and managed to do so with 

an accuracy of 86,5%. Ghazi et al. (2017) have examined the 

use of deep convolutional neural networks in detecting plant 

species captured in photographs. They aimed to find the 

difference in performance between transfer learning and 

building a model from scratch. Ghazi et al. (2017) examined 

different algorithms and concluded that the results of transfer 

learning are significantly better than the results of newly built 

models from scratch.  
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In this work a deep learning approach using Convolutional 

Neural Networks (CNN) and transfer learning, based on a pre-

trained deep convolutional networks model is applied to high-

resolution aerial imagery acquired from a Unmanned Aerial 

Vehicle (UAV) over wide grasslands to detect Rumex. 

Moreover, it attempts to introduce a more cost-effective, fast, 

and non-invasive method for detecting Rumex in high-

resolution images obtained with off-the-shelf UAV technology.  

 

 

2. RELATED WORK 

The most common challenges using deep learning in agriculture 

are the identification of weeds, land cover classification, plant 

recognition, fruit counting and crop type classification 

(Kamilaris & Prenafeta-Boldú, 2018).  

 

In the context of object detection or recognition (in agriculture) 

a deep learning model requires large volumes of training data, 

preferably thousands or more instances (Pan & Yang, 2010). 

Since this kind of input data is often not available, many 

researchers rely on the use of transfer learning (Lu et al., 2017; 

Lee et al., 2015; Christiansen et al., 2016). With transfer 

learning, an existing deep learning model, often trained on 

millions of images, is used a basis and is then retrained with a 

smaller dataset in order to fit the specific problem at hand (Pan 

& Yang, 2010). 

 

Although not with deep learning, there are also a number of 

articles regarding the detection of Rumex in grasslands. 

Gebhardt et al. (2006) used digital image processing to detect 

Rumex. They used image segmentation, local homogeneity 

calculation, a homogeneity threshold and morphological 

opening with detection rates from 71% to 95%. 

Misclassification rates were between 9% and 24% (Gebhardt et 

al., 2006). In a following research, Gebhardt and Kühbauch 

(2007) introduced a new algorithm for Rumex detection in 

mixed grasslands. Using local homogeneity and morphological 

operations, homogeneous regions were segmented. Additional 

texture and colour features were defined using stepwise 

discriminant analysis and maximum-likelihood classification. 

This resulted in an improved accuracy of up to 83% and Rumex 

detection rates of 93% (Gebhardt & Kühbauch, 2007). 

However, a drawback of this method is that the results were 

depending on the growth stage of the Rumex plants and relies 

on images taken by hand at close range. 

 

Even higher detection rates than those of Gebhardt and 

Kühbauch (2007) were obtained by Hiremath et al. (2013). By 

segmenting texture features based on Markov random fields, a 

detection rate of 97,8% for Rumex detection was achieved 

(Hiremath et al., 2013). For this method, the input data is set as 

image locations containing only a part of a Rumex plant, but 

without containing any background grassland. This kind of 

input data is less suitable for long-range imagery and is part of 

the reason for exploring an alternative approach in this research.  

 

Van Evert et al. (2010) created a ground-based robot to detect 

and control Rumex in grassland. This robot detects Rumex 

through a camera and real-time image processing. The image 

processing method is based on the differences in size, shape and 

colour between grassland and Rumex plants. During testing in a 

real world setting the robot managed to detect 93% (124 out of 

134) of the present Rumex plants and reported eight false 

positives (van Evert et al., 2010). Although the robot can cover 

one hectare in three hours’ detection based on UAV imagery 

might contribute to speeding up this process and with that offer 

new possibilities. 

Binch and Fox (2017) examined all currently available research 

on the detection of Rumex and compared them to each other by 

testing the methods on a new independent dataset under a large 

range of environmental conditions. In their examination, they 

found that the linear binary patterns method together with a 

support vector machine from Ahmed et al. (2013) scored the 

best with an accuracy of 83%. This is significantly lower than 

the accuracy when tested on the original dataset, but still a large 

amount of the Rumex was detected. What is noteworthy is that 

all articles discussed regarding the detection of Rumex rely on 

close range photography (Binch and Fox (2017)).  

 

During this research, UAV imagery will be used. Unlike close 

range cameras, UAV imagery allows for larger areas to be 

evaluated at once. If the processing time does not increase 

substantially, the evaluation of larger areas increases the speed 

of the process and thus allows for a cheaper and more effective 

use in large grassland areas as well as additional value for real 

time applications. If the performance is similar to that of close 

range cameras this can contribute to a faster and more widely 

used method for weed management in grassland. Finally, it is 

the first time that a study using deep learning for Rumex 

detection in high-resolution UAV imagery is provided. 

 

 

3. METHODOLOGY 

The methodology employed is based on transfer learning and a 

pre-trained CNN (AlexNet, explained in the coming sections). 

The implementation was based on four main steps as illustrated 

in Figure 2.  

 

 
Figure 2. Flowchart of the main steps taken to execute and 

validate the approach proposed. 

3.1 Data acquisition 

The small quad-rotor UAV used in this research was the 

Phantom PRO 3 with a 12-megapixel camera from an elevation 

of 10m and duration of flight was 3 min. The flights took place 

on 17th of April, 2018 at 11:00 am in the Salmorth reservoir 

(Germany) very close to the Rhine river shore. The exact 

location can be seen in Figure 3. The area selected is a 

grassland field used for livestock. The UAV surveyed a 

grassland area from 0.5 ha where several Rumex patches where 

identified in situ by experts and farmers.  
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Figure 3. Grassland field locate in the Salmorth reserve with 

Rumex infestation located along the river Rhine to the West of 

the city of Emmerich next to the Dutch-German border. 

3.2 Data post-processing and labelling 

The imagery obtained from the survey (54 images) was 

processed using Agisoft Photoscan and an orthophoto with a 

spatial resolution of 6 mm/pixel was generated. The image was 

afterwards, divided in four quadrants to be easier to inspect. 

Experts of Naturschutzzentrum im Kreis Kleve e.V. located 

Rumex plants in this imagery and labelled them. In total 631 

Rumex plants were found and labelled in the dataset. The 

resulting orthomosaic is shown in Figure 4.  

 

 
Figure 4. Orthomosaic generated from the aerial survey over the 

grassland area selected.  

 

3.3 Deep learning approach 

In this section, the transfer learning based deep learning 

approach and its validation metrics are explained.  

 

3.3.1 Alexnet CNN 

 

AlexNet is a pretrained convolutional neural network model 

that was trained on a dataset of 1.300.000 high resolution 

images and can recognize a thousand different objects in images 

(MathWorks, 2018). The original AlexNet network consists of 

eight layers, of which five are convolutional layers and three are 

fully connected layers (Vedaldi & Lenc, 2015). An overview of 

the AlexNet architecture is shown in Figure 5.  

 

 
Figure 5. Schematic overview of the AlexNet architecture 

(Shehata, 2016) 

The AlexNet architecture consists of roughly 650,000 neurons 

and 60 million parameters (Ghazi et al., 2017). By using the 

AlexNet model as a starting point, transfer learning can be 

applied, which allows for solving other object recognition or 

detection tasks effectively even with more limited datasets. 

AlexNet is an open source model and by using the Deep 

Learning Toolbox Model for AlexNet Network it can be 

imported into MatLab directly (MathWorks, 2018). 

 

3.3.2 Training data pre-processing 

 

The data needs to be prepared in such a way that is it 

compatible with the input expectations of the model.  The 

model, based on AlexNet, expects a set of images of size 

227x227x3. Based on the coordinates of the bounding boxes, all 

Rumex locations will be selected, cut out into a set of smaller 

images and rescaled to the desired input size. These images will 

be divided into Rumex and grasslands bounding boxes (without 

any or part of Rumex plant).  

 

These pictures are then divided into a training set and a testing 

set. The training set will be used to train the model. The testing 

set will be used to test how well the model performs. After that, 

the model robustness is improved by training it with partially 

occluded plants or plants displaced from the bounding box 

centre.  

 

3.3.3 Model training 

 

The AlexNet training options that can be selected are for 

example the batch size (the number of images used per 

iteration), the number of iterations, the learning rate, the 

momentum (how strongly a new iteration influences the result) 

or the number of epochs (how often the entire training dataset is 

used). There are a large number of options and combination that 

can be chosen from. The effectivity of which depends per case 

and is difficult to predict beforehand.  

 

For this research, the default options for the SGDM (stochastic 

gradient descent with momentum) optimizer is used as a starting 

point. From there on the options will be changed systematically 

to see how the changes influence the outcome. Based on this 

approach, the most suitable set of training options will be 

selected. By using cross-validation the model will be trained 

multiple times on different subsets of the training data in order 

to improve performance and reduce overfitting. 

 

The orthomosaic from Figure 4 was split in four quadrants to 

aid the image annotation task and processing. The training set 

was made up 628 Rumex plants, and 659 non Rumex plants, 

e.g., others species and pure grassaland. 

 

3.3.4 Validation metrics 
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The validation is done through the analysis of the accuracy, 

precision and recall. The accuracy is a measure which refers to 

the proportion of correct predictions. It can be defined as 

follows:   

 

  

     (1) 

 

Where TP = True Positives, TN = True Negatives, FP = False 

Positives, and FN = False Negatives. 

 

However, accuracy alone can give a wrong indication, for 

example when a certain group only consists of a few entries. 

Additionally, to accuracy there are more measures that validate 

the results of a model. Two of them are precision and recall. 

Precision states which proportion of positive identifications was 

correct (Kamilaris & Prenafeta-Boldú, 2018).  Precision is 

defined as follows: 

 

         (2) 

 

Recall refers to the proportion of actual positives that was 

detected (Kamilaris & Prenafeta-Boldú, 2018). Recall is defined 

as follows:  

 

           (3) 

 

These two measures can sometimes contradict to each other in 

values but are both important to evaluate. A measure which 

combines precision and recall is the F1 score. The F1 score is 

the weighted average of precision and recall and can be 

calculated as following (Joshi, 2016):  

 

   (4) 

 

However, because a false positive and a false negative have 

different impacts, precision and recall will also be evaluated 

separately in this research. 

 

 

4. EXPERIMENTS AND RESULTS 

In this section, we present the results regarding the experiments 

with three different Rumex datasets: 1) basic (plants centred in 

the training input images), 2) shifted (plants that are not centred 

in training input images), and 3) cut-off (plants that are partially 

seen on the image).  

 

These experiments aim of to give an insight of the performance 

of different input images that will be generated from a sliding 

window procedure over the orthomosaic, i.e. the orthomosaic is 

automatically scanned with a bounding image (227x227 pixels) 

from the size.  

 

4.1 Basic model  

The first model was trained with images that depict Rumex 

plants and grassland background. Figure 7 shows some input 

images examples. 

 

 

      
 

       
Figure 7. Standalone 227x227 pixels input pictures obtained 

from the orthomosaic generated from the UAV flight: a) Rumex 

centred (top-left), b) Grassland (top-right), c) Grassland and 

other plant species (bottom-left), and d) Rumex centred in an 

earlier stage (bottom-right).    

To train the model, a randomized selection of 75% of both 

groups has been used as training data. Using a randomized 

cross-validation, 30 validation rounds were performed. Based 

on the average of these 30 runs, a confusion matrix was created 

(Figure 8). 

 

Figure 8. Confusion Matrix – Classification with 75% training 

data for basic dataset. 

 

To account for the influence of the amount of training data, the 

same process was done using 80% of the data for training. 

Again 30 runs were performed, resulting in the confusion 

matrix shown in Figure 9. 

 

Figure 9: Confusion Matrix – Classification with 80% training 

data for basic dataset. 

Based on these confusion matrices the accuracy, precision, 

recall and F1-score of the models were calculated. These 

average values of these measures are shown in Table 1. 
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 75% training 80% training 

Accuracy 94,3% 94,0% 

Precision 96,9% 95,8% 

Recall 94,2% 94,8% 

F1-score 95,4% 95,1% 

Table 1. Validation measures with different shares of training 

data 

The results show that the differences between a training dataset 

of 75% and a set of 80% are not significant. The largest 

difference between the two sets lies in the precision. 

Remarkable is that a larger training dataset has a larger variance 

and a lower average score for precision. However, these 

differences are only minimal. Overall the model performs very 

well, with average values for all tests being above 94%. 

 

4.2 Shifting plant location 

In the initial model, the Rumex was always located in the centre 

of the image. To increase the robustness and it real application, 

another dataset is created in which the Rumex is not centred in 

the image and there are images with partly cut off plants. 

Several examples of centroid shift and partial plants on the 

image are shown in figure 10.  

 

   
 

      
Figure 10. Decentralized and partly cut off Rumex obtained 

from orthomosaic generated from the UAV flight: a) plant 

displaced from the centre (top-left), b) plant partially cut-off 

(top-right), c) plant displaced from the centre (bottom-left), and 

plant partially cut-off (bottom-right). 

The confusion matrices of using the previous model, trained on 

images with Rumex basic model (plant in the centre), on images 

with Rumex on a random location or partly cut off are shown in 

Figures 11 and 12. It is shown that the number of false positives 

stays very low, but the number of false negatives increases 

substantially. When the Rumex location is moved, only 63 out 

of 103 Rumex locations are found. When the Rumex is partly 

cut off only 23 out of 103 are found. 

Figure 11. Confusion Matrix – Classification of Rumex location 

moved using the basic trained model. 

Figure 12. Confusion Matrix - Classification of Rumex partly 

cut off using the basic trained model. 

The results of the models are summarized and compared in 

Table 2. The results shown that in all datasets, the model has a 

high score on precision. Meaning that locations that are 

classified as Rumex are most of the time correct. As expected, 

based on the confusion matrices, the recall score decreases 

drastically. Meaning that many actual Rumex locations are not 

found. 

 

 Rumex 

Center 

Rumex 

Moved 

Rumex  

Cut off 

Accuracy 94,3% 79,9% 60,9% 

Precision 96,9% 94,0% 88,4% 

Recall 94,2% 61,1% 22,3% 

F1-score 95,4% 74,1% 35,6% 

Table 2. Validation measures of the basic model 

To make the model more robust, it has been retrained using the 

images with shifted Rumex locations as input data. The same 

method has been used as for the initial model. The model was 

trained on 75% of the images and was validated by a 30-fold 

random cross-validation. The averaged results of the model with 

shifted Rumex locations are shown in the confusion matrix in 

Figure 13.  

Figure 13. Confusion Matrix – Classification using the shifted 

trained model. 

Figure 14 shows the confusion matrix for the model with 

images containing partly cut off Rumex as both training and 

validation data. 
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Figure 14. Confusion Matrix – Classification using the partly 

cut off trained model. 

The validation measures for these models were calculated and 

are compared to the measures of the initial model in Table 3. 

All validation measures decrease with a few percent per model. 

However, it is noteworthy that even in the model where Rumex 

is only present in the image partly, the model still performs 

well. 

 

 Rumex 

Central 

Rumex 

Moved 

Rumex  

Cut off 

Accuracy 94,3% 87,5% 83,8% 

Precision 96,9% 91,8% 87,9% 

Recall 94,2% 89,0% 88,9% 

F1-score 95,4% 89,9% 87,5% 

Table 3: Validation measures of the re-trained model 

The confusion matrix and validation measures for the final 

model, trained and tested on both moved and partly cut off 

Rumex plants, are shown in figure 15 and table 4. 

Figure 15. Confusion Matrix– Final model: Rumex moved and 

partly cut off 

 Final Model - Rumex Moved and Cut off 

Accuracy 91,9% 

Precision 91,7% 

Recall 91,3% 

F1-score 91,5% 

Table 4. Validation measures of the final model 

In the confusion matrix in figure 15 it can be seen that the 

number of false positives and false negatives is very similar. 

This results in similar values for precision and recall, which can 

be seen in table 4. Table 4 also shows that the overall validation 

measures for the final model, containing both moved and cut off 

Rumex plants, are higher than the measures of the previous 

models.  

 

4.3 Discussion 

The final model shows that the retrained CNN is capable of 

detecting over 90% of all Rumex weeds in the test images, with 

a relatively low number of false positives. This accuracy is 

higher compared to some of the previous works, such as, Binch 

and Fox (2017) and Gebhardt & Kühbauch (2006), where the 

overall detection rate is less than 85%.  

 

The work of Gebhardt & Kühbauch (2007), and Hiremath et al. 

(2013), performed better but the dataset used was obtained with 

close-range cameras and invasive data collection practices 

(human observers and ground robots). The proposed approach 

proposed is faster and provides a non-invasive way to collect 

data because plants are identified from an aerial high-resolution 

image obtained with small UAV. 

 

The input images were selected in such a way that the results 

can give an indication of the results of using a sliding window 

approach over a whole field. This procedure will enable to 

automate all the Rumex detection and positioning workflow. 

The proposed approach is also robust to images with partly cut 

off Rumex plants in the classification window. 

 

While interpreting the results, it should be enhanced that the 

images used have all been acquired under the same weather 

conditions and acquired from 10m elevation (surveying time 3 

min.). It will be interesting to study if the model is robust 

enough to work under different weather or light conditions, as 

well as, different flying heights.  

 

Next to that, the raw input images were used in this research. 

The only edits that were made were the cropping of Rumex 

locations from the orthomosaic and shifting the location. It 

might be interesting to see if increasing the size of the dataset 

using other methods of data augmentation can increase the 

quality of the model predictions. 

 

 

5. CONCLUSIONS 

This novel Rumex detection strategy based on transfer learning 

proves once again the adaptability of pre-trained deep 

convolutional networks for plant detection. However, in this 

study high-resolution images were acquired from UAVs instead 

of close-range images as has been shown in previous studies. 

 

It was shown that the classification results obtained are a good 

starting point for Rumex detection within high-resolution aerial 

images, i.e., orthomosaics, using transfer learning, and a deep 

learning network specifically AlexNet.   

 

In a next phase the training and testing dataset will be updated 

with images with increased heterogeneous characteristics, such 

as, spatial resolutions, light conditions, and other morphologic 

transformations.  

 

We are confident that this novel approach for Rumex detection 

using UAV technology will benefit grasslands management and 

livestock practices.   
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