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ABSTRACT:

The Iterative Closest Point algorithm (ICP) is a standard tool for registration of a source to a target point cloud. In this paper,

ICP in point-to-plane mode is adopted to city models that are defined in CityGML. With this new point-to-model version of the

algorithm, a coarsely registered photogrammetric point cloud can be matched with buildings’ polygons to provide, e.g., a basis

for automated 3D facade modeling. In each iteration step, source points are projected to these polygons to find correspondences.

Then an optimization problem is solved to find an affine transformation that maps source points to their correspondences as close

as possible. Whereas standard ICP variants do not perform scaling, our algorithm is capable of isotropic scaling. This is necessary

because photogrammetric point clouds obtained by the structure from motion algorithm typically are scaled randomly. Two test

scenarios indicate that the presented algorithm is faster than ICP in point-to-plane mode on sampled city models.

1. INTRODUCTION

3D city models are used for several simulation and planning

purposes. The XML based description language CityGML, see

(Gröger et al., 2012), has become standard for exchanging se-

mantic city models. In the past, most contributions focused on

finding correct roof topologies since most models were gener-

ated from airborne laser scanning data. For example, such LI-

DAR point clouds are freely available from the state cadastral

office of our country (open data initiative). Resulting 3D mod-

els are given in a level of detail (LoD) 2, i.e., they consist of roof

and wall polygons but do not show further details like windows

or doors. To obtain facade information, other data sources than

airborne laser scanning point clouds have to be used. Whereas

access to oblique areal photos or mobile mapping data might be

expensive, video sequences of buildings are available at nearly

no cost. Using the “structure from motion” algorithm on video

frames, one obtains colored 3D point clouds. However, often

positioning data is not available or not sufficiently precise. To

do a precise registration of only coarsely positioned photogram-

metric point clouds, one can match them, for example, with

available airborne laser scanning point clouds or with already

available 3D models. We discuss a new algorithm to directly fit

point clouds with CityGML models (cf. Figure 1).

Figure 1. Photogrammetric point cloud aligned with a

CityGML model. Facade textures consist of orthogonally

projected points.

There are several feature- and non-feature based approaches to
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register a source point cloud P ⊂ R
3 with target cloud Q ⊂ R

3.

For example, the algorithm in (Makadia et al., 2006) determines

rotation angles by using Fourier methods on surface orientation

histograms. One can also determine curvature values, edges,

corner points, planes etc. as features for matching (cf. (Cheng

et al., 2018) and literature cited there).

The Iterative Closest Point algorithm (ICP) (Chen , Medioni,

1992, Besl , McKay, 1992) is the standard non-feature-based al-

gorithm to iteratively register point cloud P with Q. Basically,

it is a greedy algorithm. In each iteration, it determines the near-

est neighbor in Q of each source point in P with regard to its

Euclidian distance (ICP in point-to-point mode). Then it solves

a least-squares optimization problem to obtain a transform that

maps the points to its nearest neighbors in a best possible sense.

This transform is applied to all source points. Then the next

iteration starts. Over the years, many variants of ICP evolved,

see (Rusinkiewicz , Levoy, 2001) and the literature cited there.

In (Goebbels , Pohle-Fröhlich, 2018), a feature based aligning

procedure is compared with several ICP variants that are im-

plemented in Point Cloud Library (version 1.8.0). To this end,

target point clouds were generated by sampling CityGML data.

Whereas ICP in classical point-to-point mode did not perform

well, ICP in point-to-plane mode (see (Holz et al., 2015) and

tutorials1) converged much faster. In point-to-plane mode, dis-

tances are not measured between source and target points but

between source points and planes defined by estimated local

normal vectors of target points (see (Chen , Medioni, 1992)).

Looking at intermediate steps, the source point cloud appears to

slide along planes until it matches with the target point cloud.

A similar approach is the Normal Distribution Transform (Mag-

nusson et al., 2009). It optimizes the probability of a point to

be in the right place by matching it with superimposed den-

sity functions of the normal distribution instead of planes. Such

matching of points with surfaces motivates us to modify ICP in

point-to-plane mode to directly consider polygonal plane seg-

ments of target CityGML models. By using information about

planes, there is no need to estimate normal vectors based on

1http://pointclouds.org/ documentation/tutorials
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nearest neighbor points. Also, we consider an isotropic scaling

factor. This should result both in faster convergence and higher

precision. Classical ICP variants are not capable of scaling, but

there are extensions for isotropic (Zinßer et al., 2005) and even

for anisotropic scaling, see (Du et al., 2007). Scaling might al-

low a point cloud to contract to a single point. This cannot hap-

pen if one uses ICP to match two point clouds and if one also

uses an injective correspondence between a (large) subset of the

source and the target point cloud. But it definitely can happen

if multiple correspondences to a target point are allowed or if

one projects points to planes. Thus, we have to avoid this phe-

nomenon. Whereas the algorithm in (Zinßer et al., 2005) allows

arbitrary scaling factors, small factors are excluded in (Du et al.,

2007) by an additional restriction. We also limit a scaling factor

σ to be in a small interval around 1 by implementing separate

alternating optimization procedures for rotation and translation

on the one side and for scaling on the other side.

The paper is organized as follows. The next section deals with

preparing data. Then the algorithm is described in the main sec-

tion. After that, a section deals with experimental results. The

two latter sections contains our main contributions: a new vari-

ant of ICP based on orthogonal projections to the city model and

performance optimization based on the optimization method,

replacement of CityGML polygons by bounding rectangles and

reduction of the number of multiplications.

2. PRE-PROCESSING

We expect point clouds to be coarsely registered with the UTM

coordinate system that is also used within CityGML models. A

significant fraction of points should be not farther away from

corresponding positions of the city model than the used thresh-

old distance (5 m in our tests).

Photogrammetric point clouds of city scenes consist of build-

ing points but also of background points mostly representing

ground and vegetation. We only consider points on the perime-

ter of buildings. The set of these points changes from one to the

next iteration. However, this mostly excludes ground. Build-

ings and facades might be occluded by vegetation. Therefore,

we initially remove all points with a dominant green color. Typ-

ically, computation of corresponding points is the most time

consuming step of ICP, cf. (Rusinkiewicz , Levoy, 2001). Sev-

eral strategies are available to further reduce the number of

points for speedup. When matching with CityGML models,

i.e., with planar polygonal areas, only such points are relevant

that are approximately placed on a plane which also matches

a larger number of other points. Thus, one can use RANSAC

to determine the largest planes. If a point is not close to one of

these planes, it can be removed. However, such a reduction step

is time consuming, too (cf. (Goebbels , Pohle-Fröhlich, 2018)).

Compared with the number of points (millions), we project onto

only a few thousand polygons. Thus, a reduction strategy is not

required.

3. THE ALGORITHM

In each outer iteration step of the algorithm, the task is to find

and apply a linear transformation matrix T = T~a ∈ R
4×4 that

maps source points ~s, given in (normalized) homogenous coor-

dinates, to their corresponding points ~d, also noted in homoge-

nous coordinates, best possible or at least better than without

the transform. To find such a transform, an optimization prob-

lem has to be solved. This is done using inner iterations.

3.1 Corresponding Points

In each outer iteration step, we have to identify correspond-

ing points first. In a preprocessing step, we identify bounding

rectangles for each wall and each roof polygon that have to be

planar in CityGML. Each rectangle lies on the same plane as

its polygon and encloses it. Typically, walls have left and right

boundaries that are orthogonal to the ground. Thus, small en-

closing bounding rectangles can be determined easily. When

dealing with roof polygons, we compute the principal compo-

nent direction of their projection to the x-y-plane. We use this

direction to orientate the rectangle. To this end, we equidis-

tantly sample 2D points of the polygonal curve’s projection.

Ten sample values per meter appear to be consistent with pre-

cision of city models. Then we compute the center of gravity

of 2D points and an eigenvector belonging to the largest eigen-

value of these point’s covariance matrix. The eigenvector points

towards the principle direction. In the x-y-plane, we define a

2D bounding box around the center of gravity by considering

the largest distances of points to the lines through the center of

gravity defined by the eigenvector and by a vector orthogonal to

the eigenvector. To obtain the 3D bounding rectangle, we add

z-coordinates according to the plane’s equation.

For each bounding rectangle, we determine all source points ~s
within a threshold distance τ (τ = 5m for results of Section

4). This can be done efficiently by organizing the source point

cloud in a quadtree or octree. Whereas x- and y coordinates

typically cover a wide range of values, z-coordinates (height

values) only lie within a small interval. Thus, organizing only

x- and y-values is sufficient for dealing with most city models.

We project each point ~s orthogonally to the plane defined by

the bounding rectangle, getting a candidate nearest point ~c. If

the polygon’s bounding rectangle has vertices ~p1, ~p2, ~p3, and

~p4 = ~p1 + (~p2 − ~p1) + (~p3 − ~p1) with linear independent edge

vectors (~p2 − ~p1) and (~p3 − ~p1) then by setting

µ1 :=
< ~p2 − ~p1, ~s− ~p1 >

‖~p2 − ~p1‖2
, µ2 :=

< ~p3 − ~p1, ~s− ~p1 >

‖~p3 − ~p1‖2

the candidate point is

~c = ~p1 +
µ1

‖~p2 − ~p1‖2
(~p2 − ~p1) +

µ2

‖~p3 − ~p1‖2
(~p3 − ~p1). (1)

Here < ·, · > denotes the standard inner product in R
4, and

‖ · ‖2 is the Euclidian length of a vector.

If µ1 > ‖~p2 − ~p1‖2, µ1 < 0, µ2 > ‖~p3 − ~p1‖2, or µ2 < 0
then ~c lies outside the bounding rectangle. In that case we do

not consider ~s if µ1 > ‖~p2 − ~p1‖2 + τ , µ1 < −τ , µ2 > ‖~p3 −
~p1‖2+τ , or µ2 < −τ . Otherwise, if ~c lies outside the bounding

rectangle but is closer to its boundary, we choose point ~c on

the boundary of the rectangle by replacing µ1 or µ2 in (1) by

µ1 = ‖~p2 − ~p1‖2, µ1 = 0, µ2 = ‖~p3 − ~p1‖2, or µ2 = 0.

If ~c is the first point associated with ~s or if ~c is nearer to ~s in

Euclidian distance than a previously associated point ~d then we

update the candidate target point ~d for ~s with ~c. If after iterating

through all bounding rectangles no feasible candidate ~d exists

for a point ~s then we exclude ~s from further computations dur-

ing current iteration.

Most wall and many roof polygons are rectangles that exactly

fit with their bounding rectangle. If roof polygons have a dif-

ferent shape then bounding boxes are oriented according to a
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Figure 2. Distance transform: Grey values in the right

picture represent the distance to the polygon shown in the

left image. Within the polygon, the distance is zero

(black).

principal component direction of their vertices. Thus, the rect-

angle’s area not covered by the polygon is small. However, one

can further improve the computation of corresponding points

by taking the real shapes of polygons into account. As an op-

tion, our algorithm is able to consider these shapes instead of

their bounding rectangles. This leads to some additional com-

putational costs. One has to determine if a point is inside or

outside a polygon, for example by using a scan line algorithm.

For an outside point, one also has to find a nearest point on

the polygon’s edges. But, for example, the nearest point on a

polygon’s border might not be positioned on the edge between

the two nearest vertices, see Figure 3. Thus, one has to con-

Figure 3. The black point has to be projected to the edge

with vertices that are farthest away.

sider distances to all vertices and to all orthogonal projections

to edge lines if they lie on the edges. We use an alternative

raster image approach that would also work for arbitrary planar

shapes: For each bounding rectangle the algorithm generates an

image showing its polygonal area. CityGML polygons do have

one outer boundary but are also allowed to have several inner

boundaries that define holes. Then for each pixel outside the

polygon, a shortest distance to the polygon is computed (dis-

tance transform) and stored in a matrix, see Figure 2. Such a

distance map of a bounding rectangle is generated when a point

is projected to the rectangle for the first time. With this lazy

instantiation, we only compute distance maps that are really

needed. If ~c corresponds with an inner pixel of the polygon,

~c can be used without modification. But if ~c lies on a pixel out-

side the polygon, then one can follow the negative gradient of

the distance map, i.e., the direction of steepest descent, until the

polygon is reached. Then ~c is replaced with this new position.

3.2 Rotation and Translation Parameters, Inner Iterations

Typically, coordinates of city models are given in very large

UTM coordinates. Because of precision, it does not make sense

to rotate or scale with respect to the origin in UTM coordinates.

Thus, we compute a point (x, y, z) near the center of the scene.

Then we subtract this vector from all points.

After computation of the so translated matching pairs (~sk, ~dk),
1 ≤ k ≤ n, we have to find a best possible transformation

matrix T with T~sk ≈ ~dk, 1 ≤ k ≤ n. This part of the algorithm

is basically the same as for matching two given point clouds.

However, we add an extra optimization step to allow limited

scaling in the next subsection, see (5).

Matrix T = T~a,σ depends on a scaling factor σ and parameters

~a := (α, β, γ,∆x,∆y,∆z). Euler angles α, β, and γ describe

rotation around x-, y-, and z-axis (in this order). Then transla-

tion by a vector (∆x,∆y,∆z,0)⊤ is performed. The outcome is

scaled by σ > 0. Typically, scaling of photogrammetric point

clouds (for example generated with structure from motion algo-

rithm) is isotropic.

Then T~a,σ :=

σ ·









cos(γ) cos(β) t1,2 t1,3 ∆x
sin(γ) cos(β) t2,2 t2,3 ∆y
− sin(β) cos(β) sin(α) cos(β) cos(α) ∆z

0 0 0 1

σ









,

t1,2 = − sin(γ) cos(α) + cos(γ) sin(β) sin(α)

t1,3 = sin(γ) sin(α) + cos(γ) sin(β) cos(α)

t2,2 = cos(γ) cos(α) + sin(γ) sin(β) sin(α)

t2,3 = − cos(γ) sin(α) + sin(γ) sin(β) cos(α).

For each pair (~s, ~d) we discuss local residuum

~r(~a, σ) = (r1, r2, r3, 0)
⊤ := T~a,σ · ~s− ~d ∈ R

4.

With respect to the variables ~a and a fixed scaling factor σ = 1,

residuum ~r(~a, 1) has a Jacobian

J(~a) :=









∂r1
∂α

∂r1
∂β

∂r1
∂γ

∂r1
∂∆x

∂r1
∂∆y

∂r1
∂∆z

∂r2
∂α

∂r2
∂β

∂r2
∂γ

∂r2
∂∆x

∂r2
∂∆y

∂r2
∂∆z

∂r3
∂α

∂r3
∂β

∂r3
∂γ

∂r3
∂∆x

∂r3
∂∆y

∂r3
∂∆z

0 0 0 0 0 0









.

Let (T~a)α be the matrix that is derived from T~a,σ for σ = 1 by

partially differentiating all components with regard to α. Then

the first column of J(~a) can be written as (T~a)α ·~s. In the same

manner, all other columns can be expressed using component-

wise derivatives of T~a.

We combine all local residua to one vector in R
3n:

~R(~a, σ) := (~r1,1, ~r1,2, ~r1,3, ~r2,1, . . . , ~rn,3)
⊤

where ~rk,j is the j-th component, j ∈ {1, 2, 3}, of the local

residuum of pair (~sk, ~dk).

Subject to a scaling factor σ = 1, we have to minimize an ob-

jective function (mean of the squared residua)

e(~a, 1) :=

∥

∥

∥

∥

1√
n
~R(~a, 1)

∥

∥

∥

∥

2

2

=
1

n

3n
∑

k=1

(~Rk(~a, 1))
2

(2)

to find optimal rotation and translation parameters.

Amongst other approaches like singular value decomposition,

a minimum of (2) can be computed with the Gauss Newton

or Levenberg-Marquardt least squares optimization methods.

The Levenberg-Marquardt algorithm introduces a damping fac-

tor that combines the Gauss Newton method with steepest gra-

dient descent. Gauss-Newton and Levenberg-Marquardt opti-

mization lead to inner iterations (3) and (4) that have to be per-

formed for each outer iteration step of ICP. The inner iterations

start with ~a0 := (0, 0, 0, 0, 0, 0). Then one iteratively computes

vectors ~al that hopefully converge to the position of a (local)

minimum. In case of Gauss Newton optimization

~al+1 := ~al − (D(~al)
⊤ ·D(~al))

−1 ·D(~al)
⊤ 1√

n
~R(~al, 1). (3)
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The Jacobian D(~a) of 1√
n
~R(~a, 1) is composed from Jacobians

of local residua: The 3k + j-th row of D(~a) is given as the j-

th row of 1√
n
J(~a) where the Jacobian J(~a) belongs to ~rk, the

local residuum of pair (~sk, ~dk) for ~a.

Using the Gauss Newton method, we cannot control the size

of parameter changes. This is the advantage of Levenberg-Mar-

quardt iterations. Let I be the identity matrix and λl ≥ 0 param-

eters controlling the search radius r (step size) for local minima,

~al+1 := ~al−(D(~al)
⊤·D(~al)+λlI)

−1·D(~al)
⊤ 1√

n
~R(~al, 1). (4)

The factor λl is motivated by a Lagrange multiplier that re-

sults from a condition ‖~al+1 − ~al‖22 = r2. The step size is

updated from step to step starting with an initial value λ0, see

(Marquardt, 1963). A Gauss-Newton step is given if λl = 0.

For large λl, a small step of gradient descent is performed.

In case of Levenberg-Marquardt iterations, only downhill steps

have to be considered: If the objective function does not de-

crease, parameter λl has to be increased (doubled in our im-

plementation). This corresponds with a smaller maximum step

size, and the step has to be performed again. If the objective

function directly decreases, λl+1 can be chosen smaller than λl

(here: λl+1 := λl/2). This increases the step size. For strate-

gies to choose parameters, see (Marquardt, 1963), cf. (Hanke-

Bourgeois, 2002, p. 190). The vector of residua is weighted

with factor 1√
n

to allow an initial choice of λ0 that is indepen-

dent from the varying number of correspondences. Therefore,

we can apply a variant of the Levenberg-Marquardt method that

is defined via the identity matrix I instead of a diagonal matrix

consisting of diagonal elements of D(~al)
⊤ ·D(~al).

The inner Gauss Newton or Levenberg-Marquardt iterations ter-

minate if a convergence criterion is fulfilled after l steps: The

current arithmetic mean of squared distances between pairs of

corresponding points is below a threshold value (we use 10−4),

or the difference between this mean and the previously com-

puted mean is below a threshold value (we use 10−6), or a max-

imum number of iterations is exceeded. Then we have found

rotation and translation parameters ~al.

(Fitzgibbon, 2003) proposes an ICP algorithm that only uses

one single Levenberg-Marquardt step, i.e., the maximum num-

ber of inner iterations is one. With respect to Section 4 we rec-

ommend one Gauss-Newton iteration step instead of a single

Levenberg-Marquardt step.

3.3 Scaling

Now we compute an appropriate scaling factor σ0 for current

outer iteration step by minimizing e(σ) :=
∑3n

k=1
(~Rk(~al, σ))

2.

The necessary condition d
dσ

e(σ) = 0 results in

σ0 :=

∑n

k=1

∑3

j=1
(T~al,1~sk)j · (~dk)j

∑n

k=1

∑3

j=1
(T~al,1~sk)

2
j

. (5)

Let σ be the product of all scaling factors obtained by previous

outer iteration steps. If σ·σ0 6∈ [1−ε, 1+ε] for a small threshold

parameter ε > 0 (in our tests is ε = 0.03) then we replace σ0

by σ0 := 1−ε
σ

if e
(

1−ε
σ

)

< e
(

1+ε
σ

)

, or σ0 := 1+ε
σ

otherwise.

3.4 Completing an Outer Iteration Step

With rotation, translation and scaling parameters found, we ap-

ply T~al,σ0
to all source points. This completes one outer itera-

tion of ICP. The outer iterations have to be continued until sim-

ilar convergence criteria as for the inner iterations are fulfilled:

The current error e(σ0)/n is below a threshold value (we use

10−4), or the absolute error difference between e(σ0)/n and

the corresponding error of the previous outer iteration step is

below a threshold value (10−6 in tests), or a maximum number

of iterations is exceeded. This last criterion was not used in our

tests.

After finishing with n outer iteration steps, let T1, . . . , Tn be

transformation matrices computed in steps 1 to n, and let M be

the translation matrix that adds (x, y, z) to a point in homoge-

nous coordinates. Then M · Tn · · ·T1 ·M−1 is the final matrix.

4. EXPERIMENTAL RESULTS

To measure errors, we determine the arithmetic mean of squared

Euclidian distances between corresponding points, i.e., a mean

squared residuum. We do not consider points that do not have

a correspondence in the city model. Also, the number of corre-

sponding points might change between ICP iterations.

Figure 4. The upper image shows a photogrammetric

point cloud of Bockum, computed from a UAV video with

more than five million points, the second image shows the

CityGML model that we use for registration. The point

cloud of Kaiser Wilhelm museum with more than three

million points is visualized in the third image, for a

corresponding CityGML model see Figure 1.

We tested with two photogrammetric, manually coarsely regis-

tered point clouds that were generated from UAV videos. One

point cloud covers the center of Bockum, a suburb of the Ger-

man town Krefeld, see Figure 4. The other cloud represents the

Kaiser Wilhelm museum of art in Krefeld, see Figure 1. We

match them with models of UTM square kilometers [334.000,
335.000] × [5.691.000, 5.692.000] and [329.000, 330.000] ×
[5.689.000, 5.690.000], respectively. Influence of Gauss-New-

ton versus Levenberg-Marquardt method, maximum number of

optimization iterations, and projection to bounding rectangles

versus projection to real polygonal shapes is analyzed. One
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Initial situation

Situation after 15 iterations using the Gauss-Newton algorithm in each iteration:

One can clearly see improvement at the street front (vertical line in the middle of

the images).

Figure 5. Two images showing corresponding pairs of

points for the Bockum point cloud. Exact polygonal

contours are used to find corresponding points.

could also compare results with ICP algorithms working on tar-

get point clouds. But to this end, one has to sample a city model

to generate such a target point cloud. The outcomes are heavily

dependent on the size of sampled clouds. Thus, such a compar-

ison is difficult. However, we could compare our running times

with ICP in point-to-plane mode as described in (Goebbels ,

Pohle-Fröhlich, 2018). In these tests, the point-to-model ICP

was roughly three times faster.

Figures 5 and 6 illustrate how source point clouds align to cor-

responding points of the city model. To generate the figures,

points were projected to the ground plane. Only 0.1% out of

more than two million correspondences are shown. Blue points

belong to the cloud, red points are their counter parts lying on

walls and roofs of the city model. Shown correspondences are

limited to a distance of 5 m. If there is a visible distance be-

tween points of a pair, a line is drawn to connect them.

ICP requires coarsely registered point clouds. Thus, computed

rotation angles ϕ will be close to zero. For such angles, ϕ ≈
sin(ϕ) and 1 ≈ cos(ϕ) are very good Taylor expansions. In

general, several iterations of Gauss-Newton or Levenberg-Mar-

quardt methods might be required because the objective func-

tion is replaced by a Taylor expansion that does not include

higher partial derivatives of order greater one. But if such a

Taylor expansion fits exactly with the objective function, then

only one Gauss-Newton step is necessary to exactly find param-

eters for which the gradient is the zero vector and a least squares

minimum is obtained. Our experiments show that this appears

to happen approximately in our scenarios. With the exception of

some initial iterations, almost all Gauss-Newton optimizations

of test cases only consist of two inner iteration steps. The inner

iterations then stop because the second step can’t reduce the er-

ror by more than 10−6. In this case, the Levenberg-Marquardt

Bockum point cloud, see Figures 4, 5: All runs reduce an
initial error of 3.90487 to the same final error of 2.351.

method number number running
of outer of inner time

iterations iterations
GN 53 limited to 1 258 s
LM λ0 = 1 95 limited to 1 440 s
LM λ0 = 1 54 average: 4 670 s
LM λ0 = 1/16 53 average: 2.5 452 s
LM λ0 = 1/64 53 average: 2 412 s

Museum point cloud, see Figures 4, 6: All runs
reduce an error of 6.10032 to the same final error 1.976.
method number number running

of outer of inner time
iterations iterations

GN 61 limited to 1 326 s
LM λ0 = 1 91 limited to 1 488 s
LM λ0 = 1 61 average: 4.5 816 s
LM λ0 = 1/16 61 average: 2 483 s
LM λ0 = 1/64 61 average: 2 484 s

Table 1. Levenberg Marquardt optimization (LM)

compared with one Gauss-Newton (GN) step (more than

one step does not bring improvement). Projection to

bounding rectangles is used, polygonal shapes are not

considered.

algorithm does not bring any improvement, see Table 12. To

the contrary, the parameter λ tends towards zero for which the

algorithm becomes the Gauss-Newton method. We therefore

recommend using only one Gauss-Newton inner iteration step.

By directly limiting the number of iterations to one, we could

reduce computing time by 40%. Since we start inner iterations

by setting all angle parameters to zero, all partial derivatives of

matrix T~a are either 0, 1 or −1 in this first inner iteration step.

Thus, Jacobian D(~a) can be computed without any multiplica-

tion other than with the weighting factor 1√
n

(that can be also

omitted in case of Gauss-Newton optimization). This allows an

additional speedup.

Lazy computation of distance maps appears to be inexpensive.

Iterations based on real polygonal shapes are slightly slower

than those using projections to bounding rectangles. But, to a

certain degree, the longer running times per iteration are com-

pensated by fewer iterations that are needed to fulfill conver-

gence criteria.

When considering real polygonal shapes, in general the error is

larger than for projections to bounding rectangles, see Figures

7 and 8. Since we only consider matching pairs in error mea-

surement, a larger error with real polygonal shapes is natural.

The larger error does not imply a worse result. For the two test

point clouds, we do not observe significant differences in the

outcomes of both projection approaches: If we take the final

point clouds computed with projections to polygons (cf. Fig-

ures 7, 8), the mean squared distances to bounding rectangles is

2.33 for the city center and 1.98 for the museum point cloud. If

we optimize using projections to bounding rectangles and also

measure distances between the resulting clouds and rectangles,

the errors are 2.35 and 1.98, respectively. Vice versa, if we

measure distances between the aligned clouds and polygons,

we obtain errors 2.55 and 2.31 for optimizing with projections

to polygons, and errors 2.59 and 2.31 for optimizing with pro-

jections to bounding rectangles.

2Running times were measured on one 2.3 GHz i5 core of a MacBook

Pro with 16 GB RAM.
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Initial correspondences After ten iterations After 25 iterations

Figure 6. Using the same visualization as in Figure 5, the images show correspondences of the museum point cloud.

Gauss-Newton algorithm is used in connection with projections on bounding rectangles. One can clearly see that after

ten iterations many correspondences were found to correct a rotation.

5. CONCLUSION

The presented point-to-model version of ICP shows a similar

but even faster behavior than the point-to-plane version requir-

ing two point clouds. It is capable of aligning photogrammetric

point clouds with CityGML models. Thus, there is no need

to generate a 3D point cloud from the model for performing

the registration process. It appears to be sufficient to project

points to bounding rectangles instead of exact polygons of walls

and roof facets. Within each (outer) iteration, only one Gauss-

Newton step should be performed. In our examples, the Leven-

berg-Marquardt approach does not improve convergence.

We used CityGML models without terrain information. Most

walls of buildings reach down to a ground plane. The z-coor-

dinate of the ground plane corresponds with the lowest point of

the building. Thus walls might intersect with terrain and have

a significant part below ground. That is a potential source of

error for our ICP algorithm. By additionally considering digital

terrain models, results of the algorithm can be improved further.
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Figure 7. Computational results for the Bockum point cloud; top: projection to bounding rectangles (using one

Gauss-Newton step, 53 (outer) iterations, running time: 243 s); bottom: projection to wall and roof polygons (using one

Gauss-Newton step, 44 iterations, running time: 283 s)
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Figure 8. Computational results for the museum point cloud; top: projection to bounding rectangles (using one

Gauss-Newton step, 61 iterations, running time: 326 s); bottom: projection to wall and roof polygons (using one

Gauss-Newton step, 56 iterations, running time: 392 s). The increasing number of correspondences prevents the mean

squared error from being decreasing strictly.
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