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ABSTRACT: 

Climate change and so its effect on terrestrial ecosystem has been a focus point for a while now. Among them, rainfall and 

temperature changes happen to exert a strong influence on the condition of vegetation cover. So, it is imperative to analyze the 

variation and inter-relationship between vegetation cover and climate pattern, especially country like Nepal having a dynamic 

ecosystem. This paper aims to analyze the spatial-temporal distribution of vegetation cover, temperature, and rainfall, and to 

examine the relationship of the latter two with vegetation for entire Nepal. Primary data used were vegetation and temperature 

data from Moderate Resolution Imaging Spectroradiometer (MODIS) and rainfall data from Climate Hazards Group Infrared 

Precipitation with Stations (CHIRPS) data product. The relationship analysis was carried out in three phases; first, the trend 

of vegetation with respect to rainfall and land surface temperature (LST) was inspected over entire study area by creating a 

time series of Normalized Difference Vegetation Index (NDVI) monthly means for six months, averaged over the whole study 

period. However, vegetation change pattern across various ecological regions of Nepal also needed to be considered, for the 

three different regions are profoundly different from each other in a number of factors like altitude and soil type. Finally, the 

variation of vegetation with climatic parameters, i.e. rainfall and temperature, along the eleven-year study period was also 

portrayed, to depict how the vegetation cover has been fluctuating over the years. During the study period, the correlation 

coefficient between vegetation index and rainfall was the highest in October in Terai while that with temperature was in July 

in Hilly region. Overall, vegetation was influenced greater by the temperature than rainfall in all three ecological regions with 

the highest correlation coefficient of vegetation with temperature and rainfall, being -0.937 and 0.556 respectively. 

1. INTRODUCTION

Vegetation dynamics and responses to the climate change have 

been recognized as one of the key issues in global change of 

terrestrial ecosystem (Fu & Li, 2010). Among them, 

precipitation and temperature strongly influence the vegetative 

conditions  (Li, Jianrong, & Yang, 2014). In particular, monsoon 

precipitation and temperature are well known to affect vegetation 

distribution. Because vegetation requires humidity, rain, and 

favorable temperatures, regional weather can be characterized by 

these parameters. Changes in vegetation and land use / land cover 

are closely correlated with changes in seasonal precipitation and 

land temperature, which in turn have effect on regional climate. 

Rainfall and temperature pattern are varying and, atmospheric 

CO2 concentrations is increasing due to anthropogenic activities 

contributing to climate change. Therefore, study on effect of 

climate changes in vegetation is essential to identify the 

ecosystem functions for providing a scientific basis for 

corresponding policies. 

Currently available field data are not sufficient enough for the 

regional scale implementation as they are collected at small 

spatial scale and vary in their reliability. Satellite imagery has 

become source for analyzing that context due to its high spatial 

and temporal resolution. The information derived from the 

satellite-based data (such as vegetation distribution, temperature 

and rainfall pattern in our case) is of importance for analyzing 

vegetation dynamics and its response to climate change. The 

monitoring of vegetation by remote sensing is an accepted 

technique of resource assessment. Due to high spatial and 

temporal resolutions and accuracy, remotely sensed data can 

provide technical support for monitoring vegetation dynamics at 

large scales. The Normalized Difference Vegetation Index 

(NDVI) was proposed by Rouse et al. based on red and near-

infrared reflectance, has been frequently used for studying 

vegetation dynamics because it is highly correlated with the 

photosynthetic capacity, the leaf area index, biomass, and net 

primary productivity (Ning et al., 2015). For large areas 

comprising vegetation, NDVI method is better suitable where 

analysis is carried out using either past or present images with no 

ground truth data (AS et al., 2012).  Moreover, the availability of 

long-term, repetitive satellite-derived datasets to derive and 

measure temperature and rainfall pattern are abundant which 

open the door for analyzing temperature and rainfall pattern in 

larger scale. 
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Nepal is a country with a dynamic ecosystem that responds to 

fluctuations in climate and anthropogenic land use patterns. So, 

it is imperative to analyze the variation and inter-relationship 

between vegetation cover and climate pattern, possibly to 

forecast the biomass production (Baniya et al, 2018). The 

integration of satellite remote sensing in combination with field 

ground measurements is particularly appropriate for monitoring 

this context, especially a country like Nepal with variant 

ecological belts. Most previous regional-scale studies were based 

on time series vegetation cover derived from the satellite images 

and the field-based measurement of temperature and rainfall 

measurements from weather stations (Liang S., 2004). This 

research attempts to study the vegetation cover dynamics as an 

effect of rainfall and temperature over six months’ period from 

2000 to 2010 by using geospatial techniques. For this, spatial-

temporal variation of vegetation using NDVI and temperature 

pattern are derived from the MODIS products, gridded satellite 

rainfall (CHIRPS) time series, measured rainfall and temperature 

over the study area at different weather ground stations were 

used. 

2. STUDY AREA

The study area covers whole Nepal (28.3949° N, 84.1240° E) 

with an area of 147,181 square kilometers. Nepal is landlocked 

by India on three sides and China's Tibet Autonomous Region to 

the north. Nepal measures about 800 kilometers along the 

Himalayan axis by 150 to 250 kilometers across. It rises from 

low of 59-meter elevation in tropical Terai to 8848 meters in the 

hill. Along south-to-north it can be divided into three belts: 

Lower Plains, Mountain and Hill. The Lower Plains, also called 

Terai, begins at the Indian border and includes some hill ranges. 

The southernmost part of Terai is flat and intensively farmed 

North-Indian River Plain and is called Outer Terai. The hilly area 

contains the region which generally doesn’t contain snow. This 

area lies at an altitude of 1500-2700 meters. The Mountain 

Region or Parbat rises above 3000 meters that constitutes the 

subalpine and alpine zone which are mainly used for seasonal 

pasturage. The major altitude belts of Nepal are Tropical Zone 

(below 1000 meters), Subtropical Climate Zone (1,000 to 2,000 

meters), Temperature Climate Zone (2,000 to 3,000 meters), 

Subalpine Zone (3,000 to 4,000 meters) and Alpine zone (4,000 

to 5,000 meters). 

Figure 1. Study area 

3. METHODOLOGY

3.1 Data Acquisition 

The primary datasets used were NDVI and LST from MODIS 

satellite product and monthly CHIRPS gridded precipitation 

datasets from the CHG archives. Data with one-kilometer spatial 

resolution is extracted on monthly basis to assess vegetation 

status while an average, 8-day, per-pixel LST in a 1200 x 1200-

kilometer grid was downloaded where each pixel value in the 

MOD11A2 is a simple average of all the corresponding 

MOD11A1 LST pixels collected within that 8-day period.  On 

the other hand, satellite imagery of 0.05 ° resolution with in - situ 

station data was used to create gridded rainfall time series for 

rainfall time series for rainfall trend analysis. 

Figure 2. Workflow of the project 

Validation of Remote Sensing Products (RSPs) is fundamental 

work prior to proper use of RSPs and validation at pixel scale 

was carried out for this project. The validation process can be 

summarized with major three steps:  

a) sampling design for ground observation,

b) data collection,

c) and estimation of the mean value at pixel scale.

Rain Gauge Station Precipitation data and Google Earth Data 

were used for validation. Data from Google Earth were used to 

verify extent of vegetation coverage. Precipitation data from 

2000-2010 with monthly resolution (obtained from Survey 

Department of Nepal), were used for checking the quality of 

monthly CHIRPS precipitation dataset. The rain gauge network 
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was chosen such that it covered Mountain, Terai, and Hilly 

regions uniformly. 

3.2 Image Pre-processing 

 

The original MODIS products downloaded from USGS website, 

i.e. both LST and NDVI come in HDF-EOS format with 

sinusoidal coordinate system. Then after they were pre-

processed in the software called MODIS Reprojection Tool. The 

functionalities of the tools that the software provides can be 

achieved both from the command-line and from the GUI. 

Considering the huge sets of data to be processed, batch 

processing via command- line was opted to avoid the repetition 

of the task. 

 

MRT was used for two major reasons: create a mosaic, and 

project HDF format to tiff and reprojection from sinusoidal to 

WGS84. 

 

 

Figure 3. Map showing distribution of selected meteorological 

stations in Nepal 

 

 

3.3 Validation of Downloaded Data 

 

Because of low spatial resolution of CHIRPS data, it was 

validated prior its use to ensure sufficient credibility to be used 

in the project.  

 

Pixel - to - pixel comparison was performed to compare satellite- 

and ground - based rainfall products. Based on sample stations 

selected across Nepal, a total of 53 region of interest (ROI) were 

generated in ENVI. The monthly average was subsequently 

generated for the whole study period, i.e. 2000 to 2010, for the 

pixels associated with the region of interest. On the other hand, 

the daily precipitation data from the Hydrology and Meteorology 

Department (DHM) were processed and the pivot table was used 

to generate a monthly average for each station in MS Excel. 

 

After all the necessary data were generated to evaluate the 

accuracy of the satellite-based products when compared against 

the ground-based rainfall depths, a goodness of fit statistics was 

used, namely the percentage bias – PBIAS ( Shrestha et al., 

2017).  

 

PBIAS =  
 ∑ (Rgauge − Rsatellite)

∑(Rgauge)
∗ 100, 

 

where  Rsatellite = rainfall estimates from the CHG product 

 Rgauge = rainfall recorded in a particular rain 

 gauge. 

 

Afterwards, monthly precipitation and difference of monthly 

precipitation of CHIRPS and rain gauge stations were generated, 

averaged for all sample stations for a given month to analyze the 

bias of the CHIRPS data. 

 

3.4 Generate Vegetation Cover Map, Temperature Map 

and Rainfall Map  

 

To analyze the seasonal evolution of vegetation, an average of 

the NDVI images over the study period from 2000 to 2010 is 

taken for each month. 

 

It was carried out for all the months consecutively from May to 

October. The same was done for LST as well as CHIRPS, and 

hence vegetation, temperature and rainfall map were generated. 

As the analysis required the independent average value for each 

ecological region, ‘zonal statistics’ was used in order to derive 

the average value of each parameter for all the ecological 

regions.  

 

3.5 Establishment of Relationship of Vegetation with 

Temperature and Rainfall 

 

The analysis was carried out through two approaches, statistical 

and spatial. Under each type of analysis, further two approaches 

were opted to show the relationship, seasonal change and year-

wise change. The variation in vegetation alongside the change in 

rainfall and temperature was analyzed month-wise in order to 

identify the impacts that the temperature and rainfall has on 

vegetation in each month through pre-monsoon to post-

monsoon. Meanwhile, our analysis was guided by average data 

of eleven- years period. So to ensure if there are any abrupt 

changes in any given year that would deviate the final average, 

the analysis was made to inspect year-to-year impacts of these 

climatic parameters.  

 

For statistical analysis, the data so generated were then 

represented in the graphs that supported the analysis while on the 

other hand, study of spatial distribution of the all three maps of 

NDVI, LST and rainfall was made for spatial analysis. Besides, 

the correlation maps indicating the relationship of NDVI with 

rainfall and temperature individually, were also generated using 

R script to help with the analysis. Afterwards, the analysis from 

both the approaches were brought together so as to condense the 

overall analysis to the final result. 

 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Relationship between NDVI and Climate Variables 

(Rainfall and Temperature) for Ecological Regions of 

Nepal 

 

In first case, the analysis was guided by average data of eleven- 

years period, i.e. 2000 to 2010 to describe the variation of 

vegetation. The graphs in figure 4 depicts the relationship 

between NDVI and rainfall in three ecological regions of Nepal. 

 

Relationship Between NDVI and Rainfall                                                                                   

  

(1) 
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(a) 

 
(b) 

 
(c) 

Figure 4 (a)-(c). Graph showing seasonal variation of NDVI 

with rainfall across (a). mountain, (b). hilly and (c). terai region 

 

 Although all three ecological regions depict similar trend, but 

the maximum NDVI and precipitation value attained in each 

region was different for a given particular month. In the 

beginning of study period, the value for both NDVI and rainfall 

was least for May as a result of comparatively limited amount of 

vegetation and so the precipitation. With the onset of monsoon, 

the precipitation increased vigorously, however, the growth in 

vegetation could not be instantly seen. The water requirement of 

plants would then be sufficiently fulfilled due to monsoon 

rainfall as it helps to retain adequate moisture availability in soil 

so that the plant roots can easily extract water from soil for their 

growth. Accordingly, by the end of monsoon, NDVI tended to 

increase but by then, the rate of precipitation decreased 

deliberately. 

The semi-arid land with minimal humidity and the fact that, the 

area is mostly covered by ice and glaciers, may have led to 

limited vegetation in mountain region (Baniya et al., 2018), as a 

result, very low response between the two variables was 

displayed. The hills had high NDVI values due to the presence 

of a large number of community forestry and agricultural 

practices while in Terai cultivated lands were high (Baniya et al., 

2018) which supported the high NDVI values that the region had. 

Meanwhile, in some cases NDVI showed increase in its value 

even in those areas that did not receive adequate amount of 

rainfall, which can be due to the artificial irrigation carried out 

by people on their own. 

 

 
(a) 

 
(i) 

 
(b) 

 
(ii) 

 
(c)                                   

 
(iii) 

 
(d) 

 
(iv) 

 
(e) 

 
(v) 

 
(f) 

 
(vi) 

 

 

Figure 5. Map showing NDVI eleven-years composite for (a). 

May, (b). June, (c). July, (d). August, (e). September and (f). 

October and map showing CHIRPS eleven-years composite for 

(i). May, (ii). June, (iii). July, (iv). August, (v). September and 

(vi). October. 
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Relationship Between NDVI and Temperature 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6 (a)-(c). Graph showing seasonal variation of NDVI with 

Temperature across (a).mountain, (b).hilly and (c). terai region 

 

The LST value is greatly affected by altitude. The maps and 

graphs (figure 6 and 7) together depicted the fact that, unlike 

precipitation, the temperature showcased inverse relationship 

with vegetation. The temperature was the highest amongst all, in 

May while the vegetation was likely to be the least. As the month 

progressed, the temperature showed decreasing trend while the 

NDVI values showed the exact opposite. But this trend continued 

until the temperature was high. By the time it was October, both 

NDVI and temperature showed downward trend suggesting that, 

NDVI stayed inversely proportional to high temperature but once 

the temperature values started decreasing, NDVI almost became 

immune to its effect.  

 

Apart from the negative pattern showcased by LST and NDVI in 

graphs (figure 6), an additional fact was shown by the maps 

(figure 7), i.e. the impact of temperature was seen to be least in 

the mountain region. This could be explained by the fact 

mentioned above that, as the temperature starts decreasing, its 

effect on vegetation too, subsides. Therefore, lesser the 

temperature, smaller its effect on vegetation. Also, the vegetation 

density in that region is way too low, which could also be one of 

the many reasons for it to not show the distinct impacts of 

temperature on its vegetation.  

     
(a)            (i) 

      
(b)            (ii) 

      
(c)            (iii) 

      
(d)          (iv) 

      
(e)              (v) 

        
(f)              (vi) 

Figure 7. Map showing NDVI eleven-years composite for 

(a).May, (b).June, (c).July, (d).August, (e).September and 

(f).October and map showing temperature eleven-years 

composite for (i).May, (ii).June, (iii).July, (iv).August,  

(v).September and (vi).October 
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4.2 Correlation Coefficient Values between Monthly NDVI 

and Monthly (a)Mean Rainfall and (b)Mean LST across 

three ecological regions  

 

The correlation table (table 1) indicating the relationship 

between the rainfall and NDVI well reflects the fact that NDVI 

and rainfall are positively correlated but the strength of 

correlation is really poor while the one with NDVI and 

temperature suggests (table 2), in each of the ecological region, 

the average value of LST and NDVI are negatively yet, highly 

correlated showing there is inverse relationship between them. 

Lower value of LST is characterized by the higher value of 

NDVI. 

 

Month Mountain Hill Terai 

May 0.341 0.209 0.572 

June -0.426 0.288 0.611 

July -0.021 0.143 0.455 

August -0.426 -0.596 -0.177 

September -0.189 -0.014 0.292 

October -0.117 0.31 -0.793 

 

Table 1. Correlation coefficient between NDVI and rainfall     

(r(NDVI, Rainfall)) across different ecological regions during 

the period of study 

 

Month Mountain Hill Terai 

May 0.64 0.018 0.0175 

June 0.357 -0.334 -0.728 

July 0.011 0.76 -0.039 

August 0.441 0.48 0.281 

September 0.485 0.753 0.621 

October 0.54 0.163 0.038 

 

Table 2. Correlation coefficient between NDVI and temperature 

(r(NDVI, LST)) across different ecological regions during the 

period of study 

 

As precipitation does not immediately put an impact on 

vegetation and requires a month or so to have its effect in action, 

the analysis of this delayed effect of seasonal rainfalls to NDVI 

showed vague correlation, as seen on the map (figure 7a). But on 

detailed inspection, the map tends to deliver poor relationship of 

NDVI to rainfall, closely limiting to 0 in most cases, throughout 

the study area.  

On the other hand, the correlation map of NDVI relating to 

temperature (figure 7b) shows befitting relationship as obtained 

from the statistical prospect. The statistical part claimed NDVI 

to have strong negative relationship with temperature which is 

why the hills and the Terai depict high negative correlation 

values, for the vegetation density is greater on that region while 

the mountains claim positive relationship which do not entirely 

justify the statistics because it is the aggregate for six whole 

months, which can be the reason for slight deviation in the 

results. 

 
(a)  

 
(b)  

Figure 7. Spatial distribution of correlation between mean 

NDVI and climate factors (a. rainfall b. temperature) for six 

months’ period 

 

4.3 Validation of CHIRPS Data 

 

While rainfall estimates based on satellite measurements are 

becoming a very attractive option, they are characterized by non-

negligible biases (Shrestha, et al., 2017). As such, the accuracy 

of satellite product of the Climate Hazard Group (CHG) was 

assessed using ground-based measurements through the 

following graphs and plots. 

 
Figure 8. Monthly precipitation of CHIRPS and rain gauges, for 

all sample stations 
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Figure 9. Difference in monthly precipitation, between CHIRPS 

and rain gauges, for all sample stations 

From the graph in figure 8 and 9, the difference in rain gauge 

station data and CHIRPS data seem fairly comparable, given that 

the PBIAS value is also in range for good performance rating 

where, PBIAS was found to be -19.2763 % which considerably 

falls under good performance rating based on the table 3:  

Performance rating PBIAS (%) 

Very Good < ± 15 

Good ±15 – ±30 

Satisfactory ±30 – ±55 

Unsatisfactory ±55 

Table 3. Performance rating of CHIRPS data (Shrestha et al., 

2017) 

As the (0.05° × 0.05°) resolution CHIRPS data was validated 

against the point station data, the grid data could be considered 

satisfactory on this regard. 

5. CONCLUSION

The project discussed the spatial-temporal patterns and 

relationships of NDVI with LST and gridded satellite rainfall 

throughout the study period. Both precipitation and temperature 

are dominant climate factors contributing to the vegetation 

growth in the study area. The correlation analysis with 

significant NDVI, LST and CHIRPS trends indicated that 

precipitation showed strong and positive impact on vegetation at 

most places while temperature had a significant negative impact. 

NDVI was more susceptible to the variations of rainfall and 

temperature in Hilly and Terai while the impact appeared to be 

least in Himalayan region, for it has low vegetation density as 

compared to prior two, as an effect of topography and altitude. 

Overall, the impact of temperature was seen to be greater than 

rainfall as a whole.  

Meanwhile, there are other factors that need to be considered on 

the influence of terrestrial vegetation growth, such as relative 

humidity, nutrients, light intensity and mechanical factors 

including wind and occurrence of fire, and so on (Breckle, 2002). 

So, incorporating other climatic factors for better analysis on 

climate impact is highly recommended. 
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