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ABSTRACT:

Interactive motion planing and collaborative positioning will play a key role in future autonomous driving applications. For this purpose,
the precise reconstruction and pose estimation of other traffic participants, especially of other vehicles, is a fundamental task and will
be tackled in this paper based on street level stereo images obtained from a moving vehicle. We learn a shape prior, consisting of
vehicle geometry and appearance features, and we fit a vehicle model to initially detected vehicles. This is achieved by minimising an
energy function, jointly incorporating 3D and 2D information to infer the model’s optimal and precise pose parameters. For evaluation
we use the object detection and orientation benchmark of the KITTI dataset (Geiger et al., 2012). We can show a significant benefit
of each of the individual energy terms of the overall objective function. We achieve good results with up to 94.8% correct and precise
pose estimations with an average absolute error smaller than 3◦ for the orientation and 33 cm for position.

1. INTRODUCTION

Autonomous driving comes with the need to deal with highly
dynamic environments. For safe navigation, interactive motion
planing and collaborative positioning, 3D scene reconstruction
in general and the identification and precise reconstruction of
moving objects such as other cars are fundamental tasks. In-
teraction and collaboration between vehicles requires knowledge
about their relative poses. In this context, stereo cameras pro-
vide a cost-effective solution for the perception of a vehicle’s
surroundings. Existing techniques for image based vehicle de-
tection and pose estimation are often restricted to only coarse
viewpoint estimation, whereas the precise determination of vehi-
cle poses, especially of the orientation, and vehicle shape is still
an open problem. We tackle this problem and propose a method
for precise 3D vehicle reconstruction from street level stereo im-
ages. The poses of other vehicles w.r.t. the observing vehicle,
i.e. their relative position and orientation, can directly be derived
from the reconstructions. Using CAD vehicle models to learn
a vehicle shape prior, we formulate a comprehensive objective
function leveraging the shape prior, 3D and 2D information. This
objective function is minimized by an iterative Monte Carlo sam-
pling technique to determine the precise vehicle pose and shape.

2. RELATED WORK

This section provides a brief overview of related work for vehicle
pose estimation, vehicle reconstruction and vehicle modelling.

A coarse estimation of the vehicle orientation is delivered already
by a number of vehicle detection approaches, such as the view-
point specific detectors in (Ozuysal et al. 2009; Payet and Todor-
ovic 2011; Villamizar et al. 2011), and by some part based detec-
tors (e.g. Felzenszwalb et al. 2010; Leibe et al. 2006). However,
all these methods are solely 2D appearance based and typically
∗Corresponding author

only deliver 2D bounding boxes and coarse viewpoint estimates
as output. The approaches of Chen et al. (2015) and Mousavian
et al. (2017) deliver bounding box estimates in 3D using convo-
lutional neural networks (CNN). However, describing objects by
a box only gives a very coarse representation of their shape.

CNNs are also trained in (Tulsiani and Malik 2015; Wang et al.
2018; Xiang et al. 2017; Kundu et al. 2018) to detect objects and
estimate their pose. However, the number of classes to consider in
the CNN is the product of the number of pose parameters and the
number of the discretised pose bins and consequently becomes
extremely high for the task of precise pose estimation. Besides,
in (Tulsiani and Malik, 2015) and (Kundu et al., 2018) only the
angular viewpoint is estimated, neglecting the object translation,
while Wang et al. (2018) exhibit failure cases especially for the
estimation of the translation and Xiang et al. (2017) only achieve
coarse translation estimations. We aim at obtaining precise vehi-
cle poses, including position and orientation, in 3D space.

Another way of capturing 3D object information from images is
pursued by approaches which internally enrich part-based detec-
tors by linking 3D object knowledge to the parts and transferring
this information to the objects after detection. To that end, the in-
creasing amount of freely available CAD data is often exploited.
For instance, in (Liebelt and Schmid, 2010) appearance and ge-
ometry are treated as separate learning tasks. An appearance part
model is trained from real images and each part of the training
data is linked with 3D geometry from synthetic models, which
allows an approximate estimation of 3D pose. Similarly, Pepik et
al. (2012) adapt the deformable part model (DPM) (Felzenszwalb
et al., 2010). They add 3D information from CAD models to the
deformable parts and incorporate 3D constraints to enforce part
correspondences. Thomas et al. (2007) enrich the Implicit Shape
Model (ISM) of (Leibe et al., 2006) by adding depth information
from training images to the ISM and transfer the 3D information
to the test images, which allows the estimation of coarse 3D pose
information. While the latter approaches only use the 3D infor-
mation implicitly, by transferring the learned 3D information to
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the detected objects, 3D model information can be used explic-
itly by deriving cues from the model representation and using
these cues actively for vehicle detection, reconstruction and/or
to infer pose information. In (Ansari et al., 2018; Chabot et al.,
2017; Murthy et al., 2017), a 3D vehicle model is fitted to vehicle
keypoints detected in the image by a CNN. However, these ap-
proaches are prone to imprecise and incorrect keypoint localisa-
tions. Another commonly applied procedure is to use an arbitrary
object detector to initialise or instantiate the model, followed by
fine-grained model fitting or optimisation. Approaches for 3D
scene reconstruction (Bao et al., 2013; Dame et al., 2013; Güney
and Geiger, 2015) follow this procedure by initially detecting ve-
hicles and subsequently integrating vehicle models into the 3D
reconstruction algorithm. In (Engelmann et al., 2016) a Signed
Distance Function (SDF) is used for pose and shape estimation of
vehicles detected in stereo images. The SDF is fitted to detected
vehicles by minimising the distance of reconstructed 3D vehicle
points to the SDF. However, a SDF is a rather complex object
representation and its level of detail depends on the applied voxel
grid size. Active Shape Models (ASM) (Cootes et al., 1995) pro-
vide a less complex method to represent the geometry of an ob-
ject class while being able to handle intra-class variability. Such
models have already been used in the context of vehicle detection
and pose estimation. For instance, based on 3D points from mo-
bile laserscanning data, Xiao et al. (2016) use a 3D vehicle ASM
to fit it to detected and segmented generic street scene objects.
However, in (Engelmann et al., 2016) and (Xiao et al., 2016) im-
age information is not used at all or only for the initial vehicle
detection, but image cues are disregarded for model fitting. In
contrast, Zia et al. (2013) only use single images and incorporate
a 3D ASM into their detection approach, using the model also to
derive precise object pose estimates. For this purpose, they ap-
ply a model-keypoint based multi-class classifier. However, their
results show that their approach heavily depends on good pose
initialisations. Similarly, Lin et al. (2014) recover the 3D vehicle
geometry by fitting the 3D ASM to estimated 2D landmark loca-
tions resulting from a DPM detector. Their approach also suffers
from wrongly estimated part locations resulting from the DPM.
A 3D ASM is also used in (Menze et al., 2015) to be fitted to
detections of vehicles obtained from stereo image pairs and ob-
ject scene flow. However, using scene flow for object detection
is computationally expensive. Coenen et al. (2018) combine 3D
stereo information with image cues to derive an ASM represen-
tation for vehicle detections. However, their results show only
limited benefit from incorporating the image information.

In this paper we want to reconstruct vehicles from street level
stereo images and precisely recover their 3D pose and shape.
Similarly to (Coenen et al., 2018) and (Zia et al., 2013) we make
use of an ASM as vehicle shape prior. Based on initial 3D ve-
hicle detections, we make the following contributions in this pa-
per: (1) We extend the ASM of (Zia et al., 2013) by defining two
groups of keypoints, one describing the geometrical shape and the
other additionally representing distinct vehicle part appearances.
As in (Zia et al., 2013) we learn the geometry representation of
vehicles on the one hand and appearance patterns by training an
image based classifier on the other hand. However, in contrast
to (Zia et al., 2013) we do not use the shape defining keypoints
for appearance learning, but introduce our additionally defined
appearance keypoints for this purpose, believing them to be more
distinctive and thus better suited for learning the classifier. (2) For
the reconstruction of vehicles, we define a probabilistic model,
incorporating different types of observations by jointly leverag-
ing features derived from our shape prior, reconstructed 3D data,

scene knowledge, and image information. The formulation of
our probabilistic model is inspired by the energy formulation in
(Coenen et al., 2018). However, we modify this energy function
to overcome some problems reported by the authors. Further, we
extend their formulation by an additional likelihood term inspired
by (Zia et al., 2013). Our experiments show that these extensions
lead to major enhancements for vehicle reconstruction. (3) In
contrast to (Zia et al., 2013) we do not rely on good pose initial-
isations, especially initial orientation information is not needed.
Instead, we define a robust model initialisation and fitting proce-
dure based on an iterative Monte Carlo model particle sampling
technique. (4) We do not restrict ourselves to a discretised and
small number of orientation bins, but rather deliver fine-grained
pose parameters and detailed vehicle shape, thus going beyond
common pose estimation approaches as e.g. (Felzenszwalb et al.
2010; Tulsiani and Malik 2015; Wang et al. 2018).

3. METHOD

3.1 Overview

The goal of our method is to precisely and fully reconstruct ve-
hicles detected from street level stereo images acquired from a
moving platform with an approximately horizontal viewing di-
rection. We want to deduce a 3D vehicle model which represents
the detected vehicle best in terms of pose (position and orienta-
tion) and shape. For this purpose we learn a parametrized de-
formable model, used as shape prior, which we fit to the detected
vehicles based on geometrical and appearance based information
derived from the stereo images. A schematic overview of our
method is given in Fig. 1. The input to our method are stereo im-
ages with known interior and relative orientation parameters incl.
base length. The stereo image pairs are processed independently.
We define the left stereo partner to be the reference image and
use the ELAS matcher (Geiger et al., 2011) to derive a dense dis-
parity map. Using the disparity image, we reconstruct 3D points
MX for every pixel of the reference image in the 3D model co-
ordinate system MC via triangulation. This system is centered at
the projection centre of the left camera. Its x-y plane is parallel
to the image plane and its z-axis points to the viewing direction.
We introduce a user-defined maximum allowable threshold for
the depth precision δσZ of the reconstructed 3D points and dis-
card points with inferior precision. For the vehicle detection we
apply the instance segmentation approach described in (He et al.,
2017). After a preprocessing step a deformable shape model is
precisely fitted to each detected vehicle to recover its pose and
shape. The emphasis of this paper is on this reconstruction step.
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Figure 1. Overview of our framework.
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3.2 Formal problem definition

Given a set of detected vehicles V , our goal is to associate each
vehicle vk ∈ V with its state vector sk = (tk, θk, γk). After de-
termining the ground plane Ω ∈ R3, we describe the vehicle pose
by its 2D position tk on the ground plane and its heading θk, i.e.
the rotation angle about the normal vector of the ground plane;
γk is a vector of shape parameters determining the shape of the
3D deformable ASM representing each vehicle (cf. Sec. 3.4.1).

3.3 Preprocessing and vehicle detection

Prior to reconstructing the vehicles we use the stereo data to de-
rive knowledge about the 3D layout of the scene, represented by
the 3D ground plane and a probabilistic free-space grid map. Us-
ing this information we reduce and constrain the parameter space
of the model fitting approach.

Ground plane Ω: We apply RANSAC to the stereo point cloud
MX to find the ground plane Ω as plane of maximum support. All
inliers of the final RANSAC consensus set are stored as ground
points MXΩ ⊂ MX. Additionally to the model coordinate sys-
tem MC we define a ground plane coordinate system ΩC. Its ori-
gin is the orthogonal projection of the origin of system MC to the
ground plane. The y-axis is defined in the direction of the plane
normal vector and the x/z-plane lies in the ground plane. We also
determine parameters of a rigid transformation between the sys-
tems MC and ΩC. Using these parameters, we transform all 3D
points MX including the points belonging to the ground plane
MXΩ to the ground plane system, resulting in ΩX and ΩXΩ,
respectively. The subsequent steps are applied in this domain.

Probabilistic free-space grid map Φ: Assuming that vehicles
are located on the ground plane and do not exceed a maximum
height hmax, we define the 3D space above the ground plane and
below the threshold hmax as corridor of interest for the location
of vehicles. We filter all 3D points inside that corridor and store
them as points of interest ΩXInt ⊂ ΩX with ΩXΩ ∪ MXInt =
∅. Based on the points belonging to the ground plane and the
extracted interest points it is possible to reason about free space
in the observed scene, i.e. areas on the ground plane which are
not occupied by any 3D object. To represent the free space areas
we create a probabilistic free space grid map Φ. For this purpose,
we create a grid in the ground plane consisting of square cells
with a side length lΦ. For each grid cell Φg with g = 1...G we
count the number of ground points ngΩ and the number of interest
points ngInt whose vertical projection is within the respective cell.
We define the probability ρg of each cell to be free space as

ρg =
ngΩ

ngΩ + ngInt
. (1)

Grid cells without projected points are marked as unknown.

Gradient information: Using the Sobel operator, we extract gra-
dient information ∇ = (lI∇,rI∇) where lI∇ and rI∇ are gra-
dient magnitude images of the left (l) and right (r) image of the
stereo pair, respectively. We also extract a multi-scale histogram
of oriented gradient (HoG) (Dalal and Triggs, 2005) feature vec-
tor fu for every image point u. A set of multi-scale HoG features
is denoted by F with fu ∈ F in the remainder of this paper.

Vehicle detection: Vehicle detections are required as input to our
vehicle reconstruction approach. For this purpose we make use of
the mask R-CNN (mRCNN), the instance segmentation network
described in (He et al., 2017). Alongside its good performance it

comes with the advantage of not only delivering bounding boxes
but also instance segmentation masks for every vehicle. To ob-
tain a list of detected vehicles vk =

(
ΩXk,

lBk, rBk
)
, we as-

sociate each detection with its object points ΩXk being recon-
structed from the pixels belonging to the respective segmentation
masks, as well as with its left and right image bounding boxes
lBk and rBk. As we apply the detection only to the left image of
the stereo pair, we make use of the dense stereo correspondences
to deduce the segmentation masks and the bounding boxes on the
right image.

3.4 Vehicle Reconstruction

We want to reconstruct each detected vehicle in 3D to recover
its pose and shape. For this purpose, we fit a deformable vehicle
model to each detection, leveraging different types of information
derived from a shape prior and from the observed stereo images.
We formulate a comprehensive probabilistic model, jointly fusing
the different types of observations to obtain the optimal parame-
ters for pose and shape. Details about the shape prior, probabilis-
tic formulation and the optimisation procedure are given in the
following sections.

3.4.1 Shape Prior: Similar to Zia et al. (2013) we use a 3D
ASM as vehicle shape prior. The ASM is learned by applying
principal component analysis (PCA) to a set of manually anno-
tated keypoints K of 3D CAD vehicle models. A deformed vehi-
cle ASM is defined by the deformed vertex positions ν(γ), which
can be obtained by the linear combination

ν(γ) = m +
∑
j

γ(j)λj ej (2)

of the mean model m and the eigenvectors ej , weighted by their
corresponding eigenvalues λj and scaled by the object specific
shape parameters γ(j). The variation of the low dimensional
shape vector γ thus allows the generation of different vehicle
shapes. For the number of the eigenvalues and eigenvectors to be
considered in the ASM we choose j ∈ {1, 2}, which we found
to be a proper tradeoff between the complexity of the model and
the quality of the model approximation. A fully parametrised
instance of a 3D vehicle ASM in the ground plane coordinate
system, denoted by M(s), can be created by computing the de-
formed keypoints using the shape vector γ and subsequently shift-
ing and rotating the whole model on the ground plane according
to the translation vector t and a rotation matrix Ry(θ) derived
from the heading angle θ:

Ml(s) = Ry(θ) · νl(γ) + t, (3)

where l is an index for the keypoints in K.

In (Zia et al., 2013) only a comparably low number of keypoints
is used for both, the definition of the geometry and for learning an
appearance model. In this work, we significantly expand this ve-
hicle representation by defining two groups of keypoints, namely
shape keypoints KS and appearance keypoints KA. KS consists
of keypoints defining the outer shape of the vehicle model, i.e.
it contains keypoints representing corner and boundary points of
the vehicle chassis, of the vehicle body and of the tires. KA con-
tains keypoints not representing the geometrical shape of a vehi-
cle, but related to distinct visual features such as corner points of
the windshield and the rear window, centre points of wheels, the
license plate, front and back light, etc. We believe this group of
keypoints to lead to more distinctive and discriminative features
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for appearance learning compared to the shape keypoints. Note
that the two groups of keypoints KS and KA are not mutually
exclusive. Besides, while in (Zia et al., 2013), the 3D shape prior
is only used to constrain the 2D keypoint configuration in the im-
age, we additionally incorporate its 3D information directly by
deriving both, appearance as well as geometrical representations.

Geometrical representation: We represent the model surface by
defining a triangular mesh M∆ for the ASM shape vertices KS .
Further, we use a subset of KS to define a wireframe MW of the
vehicle model, consisting of two types of edges: crease edges that
describe the outline of the vehicle and semantic edges, describ-
ing the boundaries between semantically different vehicle parts.
Fig. 2 shows the triangulations of several deformed models and
their wireframes.

Figure 2. Exemplary ASM with their triangulated surface (black)
and wireframe. Red: Crease edges, Blue: semantic edges.

Appearance representation: Inspired by Zia et al. (2013), we
train a distinct appearance keypoint detector for all keypoints in
KA, with one class per keypoint and additionally one class for the
background. To this end, we manually label image points for ev-
ery keypoint in real-world images showing vehicles of different
types and from different viewpoints and we randomly pick train-
ing samples for the background from images not containing any
vehicle. To generate training data, we extract multi-scale HoG
features for every labeled point. Based on these features, we train
a multi-class random forest (RF) classifier (Breiman, 2001). We
choose a RF because it has shown to be one of the best classifiers
when only a comparably small amount of training data is avail-
able and because it can handle multi-modal distributions in the
feature space, which can result from the different vehicle view-
points. Fig. 3 shows a test image and examples for the resulting
pixel-wise RF probability map for the background class and two
keypoint classes (wheels and windshield corner).

(a) Test image (b) Probability for background

(c) Probability for wheels (d) Probability for windshield
bottom left corner

Figure 3. Examples for the output of the keypoint classifier.
Brighter red denotes higher probability.

3.4.2 Shape and pose estimation: Given the vehicle detec-
tions vk = (ΩXk,

lBk, rBk) and the information derived from
the stereo image pair, we construct an observation vector ok =
(vk,Φ,F ,∇) to formulate our probabilistic model. Our aim is
to fit a vehicle model M(sk) to each detection by finding the op-
timal state variables ŝk = (t̂k, θ̂k, γ̂k). Neglecting the index k to

simplify our notation in the following sections, ŝ can be derived
by maximising the posterior p(s|o) (MAP). Assuming a uniform
prior p(s), the posterior becomes p(s|o) ∝ p(o|s) and the MAP
corresponds to a maximum likelihood (ML) estimation. Thus, to
estimate the optimal parameters, we minimize an energy func-
tion E(o, s) which corresponds to the negative logarithm of the
likelihood with

E(o, s) = − log p(X|s)− log p(Φ|s)︸ ︷︷ ︸
3D information

− log p(F|s)− log p(∇|s)︸ ︷︷ ︸
2D image information

.

(4)
In E(o, s) we incorporate four individual observation likelihood
terms. The first two terms consider 3D information derived from
the stereo pairs, while the other ones leverage 2D image informa-
tion. The individual likelihood terms are explained in the follow-
ing paragraphs.

3D likelihood: The 3D likelihood depends on the distance of the
3D points X from the model surface M∆ of the model M(s):

log p(X|s) = − 1

P

∑
x∈X

dσx(x,M∆)

2σ2
x

. (5)

In eq. 5, P is the overall number of 3D points in X and σx is the
depth uncertainty of the individual 3D point x. As the set of 3D
points X possibly contains outliers due to segmentation errors
of the applied detection approach or matching errors, we use the
Huber norm to calculate dσx(x,M∆) with

dσx(x,M∆) =

{
‖x,M∆‖22 if ‖x,M∆‖2 ≤ σx,
2σx · ‖x,M∆‖2 − σ2

x) otherwise.
(6)

The Huber norm is more robust against outliers compared to the
quadratic distance ‖x,M∆‖22 of a 3D point x to the model surface
M∆. This likelihood fits the 3D ASM to the 3D point cloud.

Free-space likelihood: This likelihood term uses the probabilis-
tic free space grid map Φ. It is calculated based on the amount of
overlap between the minimum enclosing 2D bounding box MB
of the model M(s) on the ground plane and the free-space grid
map cells Φg given their probability ρg of being free space:

log p(Φ|s) = λΦ
1

AB

G∑
g=1

log(1− ρg) · o(MB,Φg) (7)

In eq. 7, AB is the area of the model bounding box. The func-
tion o(·, ·) calculates the amount of overlap between the model
bounding box and a grid cell using the surveyor’s area formula
(Braden, 1986). The factor λΦ = min(1,

lφ
σM

) is used to weight
this likelihood term based on the grid cell size lΦ and the depth
uncertainty σM of a stereo-reconstructed point in the distance of
the model M(s). This likelihood penalises models that are partly
or fully located in areas which are actually observed as being free
space. It acts as substitute information for missing 3D data on the
vehicle sides that are invisible to the camera.

Classification likelihood: Here, we make use of the trained RF
keypoint classifier. We backproject the non-self-occluded key-
points KA to the left (l) and right (r) stereo images and extract
the HoG-features F = (lF , rF) at the corresponding image po-
sitions. The classification likelihood is calculated by

log p(F|s) = − 1

2C

∑
i∈{l,r}

C∑
c=1

log
1−Ψc(

ifc)

1−Ψb(ifc)
(8)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-21-2019 | © Authors 2019. CC BY 4.0 License.

 
24



where C is the overall number of backprojected keypoints. The
output of the trained keypoint classifier Ψc(

ifc) denotes the clas-
sification probability of the feature vector ifc ∈ iF for its corre-
sponding keypoint class KcA and Ψb(

ifc) denotes the probability
of the same feature vector for the class background. This term
thus models the likelihood of the modelM(s) based on the back-
projected keypoint configuration and the observed image features
at the corresponding positions.

Gradient likelihood: This likelihood term is based on the model
wireframe MW and the gradient images ∇ = (lI∇,

rI∇). As-
suming that the two types of vehicle edges (crease, semantic)
chosen to define the wireframe to correspond to large image gra-
dients, this likelihood depends on a measure of similarity be-
tween the image gradients and the backprojected edges of the
model wireframe. For this purpose, considering self-occlusion,
we backproject the visible parts of the model wireframe to the
left and right images, resulting in binary wireframe images with
entries of 1 at pixels that are crossed by a wireframe edge and 0
everywhere else. We consider differences between the real image
gradient positions and the model wireframe caused by generali-
sation effects of our vehicle model representation by blurring the
binary wireframe images using a Gaussian filter, resulting in the
left and right non-binary wireframe images lIW and rIW . The
generalisation error of the 3D model can be quantified by an un-
certainty σW which is set to 10 cm in this work. We calculate a
backprojection uncertainty for the model wireframe by perform-
ing error propagation on the backprojection of the centre point
XM(s) of the model M(s), setting the point’s uncertainty to σW .
The size of the applied Gaussian filter is defined according to the
resulting backprojection uncertainty, leading to a stronger blur-
ring effect when the vehicle is close to the camera and vice versa.
The gradient likelihood is calculated according to

log p(∇|s) = −1

2

∑
i∈{l,r}

log
(

1−BC(iI∇,
iIW)

)
(9)

in which we use the Bhattacharyya coefficient of the gradient im-
age and the wireframe image as similarity measure with

BC(I∇, IW) =

W∑
w

√
Iw∇ · IwW . (10)

In eq. 10, W is the overall number of pixels inside the respec-
tive detection bounding box l,rB and Iw(·) returns the value of
image I(·) at pixel w. The gradient and wireframe images are
normalised such that

∑W
w Iw(·) = 1. By not considering model

parts whose backprojection falls outside B we reduce the mis-
guiding effect of non-vehicle gradients. This likelihood becomes
large when the backprojected wireframe corresponds well to large
image gradients.

3.4.3 Inference: The objective function of eq. 4 is minimized
to find the optimal pose and shape parameters for each detected
vehicle. As this function is non-convex and the model parame-
ters are continuous, we adapt the iterative Monte Carlo sampling
procedure proposed in (Coenen et al., 2018) to approximate the
parameter set for which the energy function becomes minimal. To
this end we discretise the target parameters by generating model
particles for the vehicle ASM. Starting from one or more initial
parameter sets, we generate a number of particles np in each it-
eration j ∈ [0, nit] by jointly sampling the pose and shape pa-
rameters from a uniform distribution centered at the preceding
parameter values. For the resampling step, we calculate the en-
ergy for every particle and introduce the best scoring particles

as initial seed particles for the next iteration. In each iteration,
the size of the interval from which the parameters are sampled is
reduced. In the following paragraphs, more details are given.

Initialisation: For initialisation we introduce four initial model
particles 0sik = (0tk,

0θik,
0γk) with i ∈ [1, 4] for every vehicle

detection vk. To initialise the parameters of the particles we cre-
ate the minimum 2D bounding box enclosing the 2D projections
of the 3D vehicle points ΩXk on the ground plane. We define
the initial translation vector 0tk as the bounding box centre. The
particle orientations 0θik are set to the four orientations of the
bounding box semi-axes. Due to this, in contrast to (Zia et al.,
2013), we do not depend on good, and in fact not on any initial
orientation estimates. The initial shape 0γk is defined as the zero
vector, thus, the initial particles correspond to the mean ASM.

Resampling: In each iteration j we want to find the ns best scor-
ing particles according to the particle energy in eq. 4 and forward
these particles to the next iteration as seed particles. By forward-
ing multiple particles instead of only one we expect to be able
to deal with multi-modal distributions and local minima in the
objective function.

Refinement: We experienced the energy distribution to exhibit
local minima at opposite directions of the vehicle orientations,
i.e. when the model is rotated by about 180◦ compared to the real
vehicle orientation, because some vehicles are almost symmetric
w.r.t. their lateral axis. To overcome this problem we extend
the minimisation procedure by a refinement step. In this step,
an additional iteration is conducted after the last iteration nit by
introducing two particles as seed particles. The first particle is
chosen as the one achieving the lowest energy within the particle
set of the final iteration and the second particle is a copy of the
first, rotated by 180◦.

Final result: The final values for the target parameters of pose
and shape are defined after the refinement step and are set to the
parameters of the particle achieving the lowest energy within the
particle set of the final refining iteration.

4. EVALUATION

4.1 Test Data and Test Setup

For the evaluation of our method we use stereo sequences of the
KITTI Vision Benchmark Suite (Geiger et al., 2012). The data
were captured by a mobile platform in an urban area. We use
the object detection and object orientation estimation benchmark,
which consists of 7481 stereo images with labelled objects. In
our evaluation we consider all objects labelled as car. For every
object, the benchmark provides 2D image bounding boxes, the
3D object location in model coordinates as well as the rotation
angle about the vertical axis in model coordinates. According to
the KITTI evaluation benchmark1, we distinguish between three
levels of difficulty (easy, moderate and hard) during evaluation,
which mainly depend on the level of object occlusion and trunca-
tion. We require an overlap of at least 50% between the detected
2D bounding box and the reference bounding box for an object to
be considered as a correct detection. The performance of the ap-
plied mRCNN is shown in Tab. 1, depicting the values for recall
(percentage of reference vehicles that were detected), precision
(percentage of detections that actually are vehicles) and F1 (har-
monic mean of recall and precision). The detections are the input

1http://www.cvlibs.net/datasets/kitti
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to our vehicle reconstruction approach. For the evaluation of the
vehicle reconstruction, we consider all correctly detected vehi-
cles and evaluate the reconstructed vehicle poses by comparing
the 3D locations tk and the orientation angles θk of our fitted
models to the reference positions and orientations.

4.2 Parameter Settings

For the 3D reconstruction of the stereo images the maximum
value δσZ for the standard deviation of the depth values is de-
fined as 1.5 m. For the specific stereo setup used in Geiger et al.
(2012), this leads to a maximum valid distance of the 3D points
from the camera of approximately 24 m. We select the side length
lΦ of the free-space grid cells to be 25 cm. In all experiments for
model fitting, we conduct nit = 12 iterations, drawing 150 parti-
cles per iteration from ns = 8 seed particles. The initial interval
boundaries of the uniform distributions from which we randomly
draw the particle parameters are±1.5 m for the location parame-
ter tk, ±2.5 for the shape parameter vector γk and ±45◦ for the
orientation θk. Choosing the range of ±45◦ for the orientation
angles of the four initial seed particles allows particles to take the
whole range of possible orientations in the first iteration, which
is important to be able to deal with incorrect initialisations. In
each iteration j the size of the initially defined interval bound-
aries is decreased by a factor 0.85j . With nit = 12, this leads to
a reduction of the final interval range to 14% of the initial width.

To assess the impact of the individual components in the model
fitting procedure, we define different variants with different set-
tings for the calculation of the energy function. In the 3D variant,
we only consider the 3D likelihood term for the model fitting by
setting. We successively add additional likelihood terms to eval-
uate their individual impact. In variant 3D+F, we add the free-
space likelihood term to the energy function. With this setting we
are able to evaluate the results that can be achieved by only us-
ing 3D data neglecting image information. In contrast to that, we
only consider image information neglecting all 3D information in
the Img setting by only considering the classification and gradi-
ent likelihood terms. However, 3D information is still used for the
initialisation. In 3D+F+C, we apply the classification likelihood
term together with the two likelihood terms based on 3D infor-
mation. To evaluate the complete energy function for the model
fitting we apply the setting Full by leveraging all likelhood terms.
In all variants listed so far, we do not apply the refinement step
described in Sec. 3.4.3. The impact of this step is analysed in the
last variant, referred to as Refine. Here, we apply the settings of
the Full setup and additionally conduct the refinement step at the
end. In addition to the reconstruction results we also report the
values for the initial poses in Init.

4.3 Vehicle Reconstruction Results

To evaluate the vehicle reconstructions, we compare the result-
ing pose parameters from each fitted 3D vehicle model and the
reference data for location and orientation of the vehicles. We
consider a model to be correct in position if its distance from the
reference position is smaller than 0.75m. To evaluate the ori-
entation, we report values in three stages (θ5, θ10 and θ22.5), in
which we consider an orientation to be correct if its difference
from the reference is less than 5◦, 10◦ and 22.5◦, respectively.
Tab. 2 contains the percentage of the correctly estimated pose pa-
rameters for the different variants described in Sec. 4.2 including
the absolute mean error ε for the Refine variant. Comparing the
results for different levels of difficulty, we can see a similar pat-
tern of performance for all variants. That is, all variants perform

best for the easy level and worst for the hard level. While the
amount of correct position estimations decreases only by 8.1 % at
maximum from easy to hard, the results for orientation are more
sensitive to the degree of vehicle visibility, as they decrease by up
to 14.6 %. Further, independently from the level of difficulty, the
percentage of vehicles for which a correct position is determined
only differs by about 2 % between the different approaches (ex-
cluding the Img setting). Again, the more sensitive parameter is
the vehicle orientation. Thus, in the following paragraphs we will
focus on the analysis of the orientation results. Fig. 4 shows the
cumulative histogram of absolute orientation errors over the full
range of 0-180◦ whereas in Fig. 5 we depict a histogram of ab-
solute orientation differences for eight discrete orientation bins,
both exemplarily for the easy level.
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Figure 4. Cumulative histogram of absolute differences between
estimated and reference orientations (easy level).
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Figure 5. Histogram of absolute differences between estimated
and reference orientations (easy level).

Init: As the quality values for the initial poses show, the initiali-
sation in general can only be regarded as very inaccurate or even
wrong, especially related to the orientations. However, as our re-
sults show, our proposed approach is quite robust against these
initialisation errors as it is able to correct the majority of them.
3D: We choose the 3D setting as baseline and achieve results with
up to 64.2 % of orientation estimations whose error is smaller
than 5◦ and 80.2 % with an error smaller than 22.5◦for the easy
category; lower results are achieved for the more challenging cat-
egories. Fig. 5 shows that the incorrect orientation estimations
for this setting mainly fall into the 180◦ bin.
3D+F: Incorporating the free-space energy term for the vehicle
reconstruction generally increases the number of correct orienta-
tion estimations by up to 4.1 %. An interesting observation can be
made from Fig. 5: Considering free-space leads to a reduction of
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easy mod. hard
Recall [%] 98.6 95.9 85.5

Precision [%] 96.7 97.9 98.3
F1 [%] 97.7 96.9 91.5

Table 1. Vehicle detection results.

Init 3D 3D+F Img 3D+F+C Full Refine (ε)

ea
sy

t [%] 65.6 81.7 82.0 61.6 81.7 81.0 80.8 (0.33 m)
θ5 [%] 9.1 64.2 67.8 75.0 80.1 82.6 84.8 (1.9◦)
θ10 [%] 13.7 75.6 79.7 86.5 90.0 90.8 93.2 (2.3◦)
θ22.5[%] 19.1 80.2 83.7 91.1 91.5 92.1 94.8 (2.5◦)

m
od

er
at

e t [%] 58.9 79.5 80.4 59.7 80.8 80.5 80.6 (0.33 m)
θ5 [%] 8.6 59.4 61.8 67.9 73.1 75.2 77.8 (1.8◦)
θ10 [%] 13.1 70.0 72.7 78.2 82.8 83.8 86.4 (2.3◦)
θ22.5[%] 18.5 75.1 77.3 84.0 86.0 86.3 89.0 (2.7◦)

ha
rd

t [%] 51.5 73.6 74.9 54.6 76.0 75.4 75.9 (0.34 m)
θ5 [%] 8.4 53.7 55.8 61.0 66.3 68.0 70.4 (1.8◦)
θ10 [%] 13.0 63.2 65.6 70.4 75.3 76.1 78.4 (2.3◦)
θ22.5[%] 18.1 68.2 70.3 76.5 79.0 78.8 81.6 (2.8◦)

Table 2. Evaluation of the pose estimation results.

incorrect orientation estimations mainly in the intermediate bins
while the number of orientation results in the first orientation bin
increases. We consider this as the desired and natural effect of
the free-space energy term. The values for this variant represent
the results that can be achieved by only considering the 3D infor-
mation derived from the stereo images.
Img: In contrast to the 3D+F setting, the Img setting represents
the results that can be achieved by only using the 2D image cues
for the vehicle reconstruction. According to Tab. 2, neglecting
3D information causes a major loss of correct position estima-
tions (61.6 % compared to 82.0 % by the 3D+F setting for the
easy case). Also, the image likelihood terms seem to be strongly
beneficial for estimating the vehicle orientations. Thus, up to
7.2 % (θ5, easy case) more correct orientation estimations can be
achieved by only using image information compared with only
considering 3D information. Fig. 5 shows that the image likeli-
hood terms mainly help to distinguish between opposite vehicle
heading directions as the number of orientation differences in the
last orientation bin is remarkably lower compared to the 3D+F
setting. In the following settings, the effect of combining 3D and
2D information for the vehicle reconstruction is analysed.
3D+F+C: According to Tab. 2, incorporating the classification
likelihood term together with the two 3D likelihood terms yields
the largest improvements for the orientation estimation by de-
creasing the number of incorrect orientation estimations by up to
12.3 % (for the θ5 criterion). Fig. 5 shows that the classification
energy term helps to reduce false estimations of both, the last as
well as the intermediate orientation bins.
Full: Additionally considering the gradient likelihood term to the
objective function, small improvements of up to 2.5 % for the θ5

criterion can be achieved.
Refine: It is the goal of the refinement step to reduce the number
of orientation estimations that differ from the reference by 180◦.
Fig. 5 shows that the desired effect can be achieved to a certain
degree. Introducing seed particles with opposite viewing direc-
tions compared to its preceding particle decreases the errors in
the last orientation bin drastically. In total, the refinement step
yields improvements of up to 2.7 %. Hence, regarding the orien-
tation estimation, the distinctly best results with up to 84.8 % and
even 94.8 % of correct orientation estimations w.r.t. the θ5 and
the θ22.5 criterion are achieved by applying our Full objective
function including the conclusive refinement step. Further, we
are able to achieve very precise pose estimations with maximum
average errors of 2.8◦ for orientation and 34 cm for position.
For collaborative positioning tasks, the estimation of the orien-
tation is the more sensitive factor: for an exemplary vehicle dis-
tance of 10 m, an orientation error of 2.8◦ leads to around 50 cm
error in positioning compared to the 34 cm resulting from the
position estimation error. Using the Refine setting we are able

to outperform the orientation estimation results of Coenen et al.
(2018) by 12.4 % and to achieve an equivalent amount of correct
orientations as in Zia et al. (2013) but with a 1.5◦ smaller av-
erage error and without depending on good pose initialisations.
Though, it has to be noted that in Zia et al. (2013) no stereo in-
formation was used. Fig. 6 shows some qualitative results of our
vehicle reconstruction approach.

Figure 6. Qualitative results. Left: Backprojected model
wireframes. Right: 3D view on the reconstructed scene;

estimated ground plane and the 3D vehicle models are shown

5. CONCLUSION

We developed an approach for shape and pose aware vehicle re-
construction from street-level stereo images. We were able to
show the benefits of the different constituents of our objective
function w.r.t. the pose estimation results: While the classifica-
tion likelihood term leads to the largest improvements, the gradi-
ent likelihood term is able to reduce incorrect orientation estima-
tions in the intermediate orientation bins and the refinement step
in the last bin, respectively. Until now, the stereo image pairs are
processed individually. In the future, the reconstruction frame-
work will be extended to multiple image pairs of subsequent time
steps, thus fitting a vehicle model to observations from differ-
ent epochs simultaneously. This might help to reduce the overall
computational cost by incorporating prior estimation results of
previous epochs, using a reasonable vehicle motion model. Fur-
ther, in the future we will make use of the shape estimation results
to reason about vehicle categories, the vehicle type and to recog-
nize individual vehicles.
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