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ABSTRACT:

Many current indoor localisation approaches need an initial location at the beginning of localisation. The existing visual approaches
to indoor localisation perform a 3D reconstruction of the indoor spaces beforehand, for determining this initial location, which is
challenging for large indoor spaces. In this research, we present a visual approach for indoor localisation that is eliminating the
requirement of any image-based reconstruction of indoor spaces by using a 3D model. A deep Bayesian convolutional neural
network is fine-tuned with synthetic images generated from a 3D model to estimate the camera pose of real images. The uncertainty
of the estimated camera poses is modelled by sampling the outputs of the Bayesian network fine-tuned with synthetic images. The
results of the experiments indicate that a localisation accuracy of 2 metres can be achieved using the proposed approach.

1. INTRODUCTION

Indoor localisation is the key enabler of many applications like
navigation guidance, location-based services and augmented
reality. In the absence of global navigation satellite system
signals (GNSS) in indoor environments, several approaches
have emerged in the past two decades that include Wifi,
ultra-wideband or radio frequency identification (Mautz, 2012).
However, these approaches are dependent on a dedicated
network of sensors and are often expensive. With the
widespread availability of mobile devices having sensors,
especially camera, visual approaches such as SLAM, visual
odometry and model-based visual tracking have become a focus
of research (Acharya et al., 2019b). However, the key constraint
for these approaches is the requirement of an initial location at
the start of localisation (Se et al., 2002).

The existing visual approaches that are independent of
the initial location includes image retrieval approaches
(Arandjelovic and Zisserman, 2012, Radenović et al., 2016) and
direct pose regression approaches (Kendall et al., 2015, Shotton
et al., 2013). The main drawback of such approaches is the
creation of databases of images, depth images or point clouds
that usually involves performing a 3D reconstruction of the
indoor spaces before (Piasco et al., 2018). Sensing large indoor
spaces becomes a challenge due to time and resources involved
in the process. For example, structure-from-motion (SfM)
requires capturing a large number of overlapping images to
estimate the camera poses and reconstruct the environment.
Besides, the SfM approaches are computationally expensive
and are susceptible to errors.

In this research, a solution is proposed to eliminate the
requirement of image-based reconstruction the indoor spaces,
utilising a 3D indoor model that can be obtained from an
existing building information model (BIM) of the building.
This 3D model is used to generate synthetic images with known
camera poses. The images are subsequently used for fine-tuning

∗Corresponding author

a deep Bayesian convolutional neural network (CNN) to regress
the camera poses of real test images. Therefore, this approach
eliminates the requirement of real images with their ground
truth poses during the fine-tuning phase, which is usually
derived from SfM approaches.

In Addition, we model the uncertainty of camera pose
estimations by adopting a Bayesian CNN (Kendall and Cipolla,
2016). Uncertainty provides an indication of confidence and
trust in an estimated position in the absence of ground truth.
Uncertainty modelling in pose regression networks has been
done based on real images by previous workers. In this work,
we use synthetic images to fine-tune deep CNNs, and evaluate
the uncertainty of pose regression by testing with real images.
The results are compared with a benchmark that is created by
using real images and SfM approaches. The following are the
main contributions:

1. The proposed approach eliminates the requirement of
performing image-based reconstruction of indoor spaces
by utilising synthetic images rendered from a 3D model.

2. The uncertainty of the estimated camera poses from a
network fine-tuned with synthetic images is modelled to
show the correlation with actual errors.

3. A detailed analysis of the trajectory is performed to
identify the factors contributing to large errors and
uncertainties.

The paper proceeds with a review of visual approaches in
Section 2. The related concepts are explained in Section 3.
The details of the dataset, experiments and results are explained
in Section 4, followed by discussions and future directions in
Section 5 and conclusions in Section 6.

2. RELATED WORKS

The existing visual approaches that estimate the image location
without an initial estimate are either image retrieval approaches
or direct pose regression approaches. The image-based retrieval
approaches use an existing database of images with known
camera pose (Arandjelovic and Zisserman, 2012) to match with
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Figure 1. The design of the approach.

the query image to estimate camera pose. However, these
approaches require a large database of images with known pose
and are susceptible to viewpoint changes (Piasco et al., 2018).

The direct pose regression approaches include the works of
(Irschara et al., 2009, Shotton et al., 2013), where point clouds
and depth images are used respectively to regress the camera
pose. Although these methods can provide accurate estimates
of the camera pose they are limited by the requirement of a 3D
point cloud that is usually created using SfM approaches or of
a specific camera to sense the depth of the indoor scene.

In the last five years, deep CNNs have achieved outstanding
performance in image classification (Krizhevsky et al., 2012,
Acharya et al., 2018) and object detection and tracking
(Acharya et al., 2017). There is a recent trend in the
research community using deep CNNs for localisation. For
example SLAM (Parisotto et al., 2018) and visual odometry
(Wang et al., 2017) use a sequence of images, and direct
pose regression approaches, such as PoseNet (Kendall et al.,
2015), use single images only. PoseNet is a pre-trained
deep CNN that is fine-tuned with images of known pose
derived from SfM approaches. Similar to the approaches using
SfM for localisation, the major challenge for PoseNet and its
following approaches is the requirement of 3D reconstruction
the environment. Geometrical constrains have been used to
improve the pose regression ability of PoseNet by using a
geometrical loss function (Kendall et al., 2017). Synthetic
images derived from a BIM have been used to fine-tune PoseNet
to localise with real images (Acharya et al., 2019a).

The uncertainty of a system plays a vital role in understanding
the confidence of the estimations. In the literature, Bayesian
systems have been used to model the uncertainty of a system,
such as Kalman filtering (Groves, 2013). On the other hand,
probabilistic approaches to direct pose regression such as the
works of (Kendall and Cipolla, 2016), measure the uncertainty
of the network for localisation. In Kalman filter uncertainty
is estimated by propagation of variance, whereas in regression
networks it is done by stochastic Monte Carlo sampling.

The estimated uncertainty correlates with the actual error
obtained from ground truth camera poses for real images
(Kendall and Cipolla, 2016). An additional finding of the study
was that the location and the rotation uncertainties are also
correlated, and thus can be used to form a single uncertainty
value which represents the overall model uncertainty.

While uncertainty modelling in pose regression networks has
been done on real images, in this work we use synthetic images
that eliminate the requirement of image-based reconstruction
of the indoor space or performing SfM approaches. We
achieve this by fine-tuning the networks with synthetic images,
and ground truth camera poses derived from the 3D model.

Additionally, we explore the correlation of the uncertainty with
the actual errors obtained from ground truth for a network
fine-tuned with synthetic images and tested on real images.

3. METHODOLOGY

The proposed approach uses a pre-trained Bayesian CNN
fine-tuned with different types of synthetic images with known
camera poses to estimate the unknown camera poses of real
images. Figure 1 shows the overview of the approach, where
we use a modified architecture of GoogLeNet (Szegedy et al.,
2015). We fine-tuned the network with a synthetic dataset
containing several types of images generated by graphical
rendering from the 3D model. Subsequently, the fine-tuned
networks are tested with real images for its pose regression
ability and uncertainty of the network is modelled to check
the correlation with actual errors. Besides, we identify the
factors contributing large errors and uncertainties for networks
fine-tuned with synthetic images and tested on real images.

3.1 Rendering synthetic images from a 3D model

In the literature, the ground truth camera poses are estimated
using SfM approaches for fine-tuning the networks (Kendall et
al., 2015, Walch et al., 2017, Clark et al., 2017, Kendall and
Cipolla, 2016). In this research, the ground truth camera poses
are known, and a virtual camera is used to render synthetic
images. The details of the creation of the synthetic dataset are
described in Section 4.1.1.

The shallow layers of a deep CNN learn generic low-level
image features, such as edges and textures, whereas the deeper
layers can distinguish high-level features such as roads and sky.
These high-level image features serve as image landmarks that
is used to perform pose regression (Kendall et al., 2015). The
image features in the deep layers of a pre-trained deep CNN are
invariant to colour, texture, pose or context (background) for
the task of classification (Peng et al., 2015). This leads us to
believe that a deep CNN fine-tuned with synthetic images with
known camera pose should be able to regress the camera pose
of real images with different colour and texture.

A pre-trained deep CNN requires only a few fine-tuning images
as compared to millions of images required for training from
random weights. As generating millions of synthetic images
is an overwhelming task, we fine-tune a pre-trained network
with 1500 synthetic images and perform pose regression by
leveraging transfer learning. A relevant question is whether
the fine-tuned network can learn relevant high-level geometrical
features from the synthetic images for camera pose regression
with real images. The relevant high-level features in the context
of indoor spaces could be doors, walls and ceilings.
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Additionally, another question is whether processing the real
images to make them similar to the synthetic images will
improve the pose regression ability of the network. To
examine the concept, we convert the real and the synthetic
images to edge gradient magnitude (gradmag) images, hence
transforming them both to a common image feature space.
Consequently, we fine-tune the networks with edge gradmag
of synthetic images and test with edge gradmag of real images.

3.2 Fine-tuning a Bayesian network

Bayesian neural networks model the uncertainty in neural
networks by gathering distributions over the network weights
(MacKay, 1992). Drop-out (Srivastava et al., 2014) is a
common practice that is used to avoid over-fitting a network
while training with limited training data. Sampling a Bayesian
network with randomly dropped out connection at test time can
be considered as a way of getting Monte Carlo samples from the
posterior distribution of the estimations (Kendall and Cipolla,
2016). Moreover, as the posterior distribution is not directly
traceable for such a network, a variational inference usually is
used to approximate the distribution of the weights (Gal and
Ghahramani, 2016).

We adopt a 24 layer deep Bayesian CNN (Kendall and Cipolla,
2016), where the softmax classifier (Szegedy et al., 2015) is
replaced with a fully connected layer of dimension 2048. The
fully connected layer is connected to a 7-dimensional affine
pose regressor that regresses the camera pose p:

p = [x, q] (1)

where x = location of camera [X, Y, Z]
q = quaternions defining camera rotation [q0, q1, q2, q3]

The weights are taken from a pre-trained network trained on
Places dataset (Zhou et al., 2014). The Places dataset contains
millions of images of different locations and is suitable for
training networks to classify places. Using the weights of a
pre-trained network eliminates the tedious task of training the
network with millions of images. Drop-outs are performed
only before the convolution layers that had randomly initialised
weights, in order to improve the pose regression ability of the
network. The network is subsequently fine-tuned with synthetic
images using the objective loss function:

loss(I) = ||x̂− x||2 + β

∣∣∣∣∣
∣∣∣∣∣q̂ − q

||q||

∣∣∣∣∣
∣∣∣∣∣
2

(2)

where x̂ = estimated location
q̂ = estimated orientation
I = Image
β = scaling factor to balance errors of x and q.

At the test time, the Bayesian network is sampled to obtain
Monte Carlo drop-out samples, and the pose is estimated
by taking a mean of the samples. The number of samples
required for optimum performance of the network is 40, beyond
which there is no evidence of improvement (Kendall and
Cipolla, 2016). The distribution of the samples follows a
unimodal Gaussian distribution for both location and rotation
(Kendall and Cipolla, 2016), and the distributions contains
only one peak corresponding to the maxima. The locational
and rotational uncertainties are expressed as the trace of the
unimodal Gaussian’s covariance matrices and are represented
by numbers. Note that the locational uncertainties have the unit
of m2 and the rotational uncertainties are dimensionless scalers
(product of two quaternions).

4. EXPERIMENTS AND RESULTS

Two experiments were performed to model the uncertainty of
the network’s pose regression on real images when fine-tuned
with synthetic images. The first experiment consists of creating
a baseline performance using real images, and to determine the
optimum value of weighting factor β. The second experiment
was performed to measure the performance of the network
fine-tuned with different types of synthetic images on real
images. In addition, the experiment involved fine-tuning two
networks with edge gradmag of synthetic images and testing
with the gradmag of the real images.

Caffe (Jia et al., 2014) deep learning library was used for
the experiments. The loss was minimised with a learning
rate of 10−3 using Adagrad gradient descent optimisation for
160 epochs on an NVIDIA GTX980M graphics processor unit
(GPU) with 4GB memory. The images were resized to 320x240
pixels, and a crop of 224x224 pixels was applied subsequent to
mean subtraction during fine-tuning and testing.

4.1 Dataset

Two datasets were used in the experiments, namely a synthetic
image dataset and a real image dataset. The synthetic image
dataset was created from the 3D model. The real image dataset
was collected by capturing images of a corridor of a building
with a camera of a smartphone.

Figure 2. The 3D model derived from a BIM. The trajectory
used for generating synthetic dataset is shown in green color. For

better visualisation of the indoor space, the roof was removed.

4.1.1 Synthetic image dataset We used a 3D model derived
from the UoM dataset, which is part of the ISPRS benchmark
on indoor modelling (Khoshelham et al., 2017, Khoshelham et
al., 2018, Ramezani et al., 2017). The dataset consists of a part
of a corridor having coverage of 230m2 and is shown in Figure
2. In the literature, the ground truth camera poses of the real
images are estimated using SfM approaches, and the images
are captured along a trajectory in the indoor or outdoor spaces
(Kendall et al., 2015, Walch et al., 2017, Kendall and Cipolla,
2016, Clark et al., 2017). Following the same idea, we define a
trajectory of approximately 30 meters in the 3D model as shown
in Figure 2.

We generated synthetic images by rendering images at an
interval of 5 centimetres along the trajectory. Additional
synthetic images were rendered by tilting the camera ±10o
around Y and Z axis. Ideally, we should render synthetic
images of the indoor environment in all possible locations
and orientations (Wu et al., 2017). However, that will raise
the rendering time to generate synthetic images substantially.
Consequently, we generated a total number of 3000 synthetic
images for each type of dataset.
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(a) Syn-car (b) Syn-pho-real (e) Syn-edge(c) Syn-pho-real-tex (d) Gradmag-Syn-car

Figure 3. Different types of synthetic images generated from the 3D model.

Five different types of synthetic images were generated by
moving a virtual camera along the predefined trajectory. The
five datasets are called Cartoonish (Syn-car), Photo-realistic
(Syn-pho-real), Photo-realistic textured (Syn-pho-real-tex),
Gradmag of Cartoonish (Gradmag-Syn-car) and Edge render
(Syn-edge). The names in the brackets are pseudonyms that
we used for convenience. The naming convention of image
types are as per Blender1, which was used to render the images.
Sample images of each dataset are shown in Figure 3.

The Syn-car images use a rendering model that roughly traces
the path of light rays. The Syn-pho-real and Syn-pho-real-tex
images use an advanced Physics-based rendering model that
traces the light rays in a way very close to the real world. The
main difference between Syn-pho-real and Syn-pho-real-tex is
the presence of synthetic textures, such as textures of brick and
carpet for the latter. Gradmag-Syn-car images were derived
by taking the edge gradmag of the Syn-car images. Syn-edge
images were created by rendering only the edges visible in the
camera field-of-view, such as the edge of walls and floor. The
Syn-edge images does not contain the effects of illumination of
the environment as compared to the Gradmag-Syn-car images.

(a) Real image (b) Gradmag image

Figure 4. A real image and its gradient magnitude image.

4.1.2 Real image dataset A video sequence containing a
total number of 1000 images of the corresponding corridor was
captured by a smartphone camera having a field-of-view of
56.32o. The images were captured at the rate of 30 frames per
second and had a resolution of 640x480 pixels. We suppressed
the weak edges that were below a threshold to produce the edge
gradmag of the real images. A real image and its corresponding
edge gradmag image is shown in Figure 4.

4.2 Baseline performance using real images

We created a baseline performance by fine-tuning a network
with real images (not gradmag) of known camera poses and
tested with real images again. The ground truth camera poses
of the real images were estimated by using SfM approach of
Agisoft PhotoScan Professional R© software that uses bundle
adjustment for estimating and refining camera poses. We
provided the 3D coordinate of the reconstructed environment

1Blender is an open-source 3D computer graphics software for
performing simulations and for creating visual art and videos. For more
information visit: www.blender.org

manually for performing accurate bundle adjustment, resulting
in the re-projection error of 0.91 pixels, and the reconstruction
error of 2.60 centimetres.

The image sequences were randomly portioned into fine-tuning
and validation sets containing 500 images respectively. The
suitable value of the parameter β was estimated by performing
a grid search in the expected range of 120 to 750 for indoor
environments (Kendall et al., 2015). Figure 5 shows the median
location and rotation errors with the variation of β. The
location errors are calculated as the Euler distances from the
ground truth and the rotational errors in radians are calculated
by 2cos−1(〈q̂q〉), where 〈.〉 denotes the inner product of two
vectors.

Locational error Rotational error
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Figure 5. The variation of locational and rotational errors with β.

Figure 6 shows the distribution of location and rotation
uncertainties corresponding to the different values of β. The
correlation of the locational and rotational uncertainties are
estimated by using the correlation coefficient R which is
defined as:

R =
cov(Ul, Ur)

σUlσUr

(3)

where cov = covariance of two random variables
Ul = Uncertainty of location
Ur = Uncertainty of rotation
σUl = Standard deviation of Ul

σUr = Standard deviation of Ur .

R has a range of [-1,1]. The sign of the coefficient denotes
the positive or negative correlation, whereas the magnitude
indicates the strength of the relation of two random variables.
Figure 6 indicates that a strong positive correlation for the
value of β = 500. Therefore, we select a β value of 500 for
our experiments, as the ideal network should have correlated
locational and rotational uncertainties. Figure 7 (a) shows
the distribution of the estimated camera poses along with the
locational and rotational errors and it is observed that the
largest errors are near the 90o turns of the corridor. Figure 7
(b) and (c) shows the variation of locational uncertainty with
location errors and rotational uncertainty with rotational errors
respectively.
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Figure 6. The variation of locational and rotational uncertainties with β. R denotes correlation coeffcient.
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Figure 7. Baseline performence of a network fine-tuned and validated using real images with β = 500. (a) The distribution of the
estimated camera poses. The red line shows the ground truth trajectory estimated using SfM approaches. The colours represent the
magnitude of the errors corresponding to each point. The locational and rotational errors are in meters and degrees respectively. (b)

locational uncertainty vs locational errors (c) rotational uncertainty vs rotational errors

Total synthetic images fine-tuning images validation images real gradmag images for testing
3000 1500 1500 1000

Table 1. The number of synthetic fine-tuning, synthetic validation and real testing images for the five networks.
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Figure 8. The results of the network (a) fine-tuned with Syn-car and tested on real images (b) fine-tuned with Syn-pho-real and tested
on real images (c) fine-tuned with Syn-pho-real-tex and tested on real images (d) fine-tuned with Gradmag-Syn-car and tested on edge
gradmag of real images (e) fine-tuned with Syn-edge and tested on edge gradmag of real images. Uncertainty plots for (f) Syn-car (g)

Syn-pho-real (h) Syn-pho-real-tex (i) Gradmag-Syn-car and (j) Syn-edge datasets.
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frame 77

(a) Frame 77

frame 98

(b) Frame 98

frame 113

(c) Frame 113

frame 371

(d) Frame 371

frame 541

(e) Frame 541

Figure 9. Predicted camera poses by a network fine-tuned with Gradmag-Syn-car dataset and tested with edge gradmag of real images.

Frame Location Location Rotational Rotational
error (m) uncertainty error uncertainty

77 0.55 m 1.01 m2 5.74o 0.22
98 0.24 m 1.44 m2 2.77o 0.24
113 0.46 m 1.21 m2 5.31o 0.22
371 1.61 m 1.42 m2 5.30o 0.25
541 1.05 m 1.48 m2 7.70o 0.23

Table 2. Errors and uncertainties corresponding to Figure 9

4.3 Estimating uncertainty with synthetic images

In this experiment, five networks were fine-tuned with synthetic
datasets and were tested with two types of real images,
to estimate the best type of image suitable for performing
cross-domain pose regression. Moreover, we investigate
whether the uncertainties of the estimated camera poses from
a network fine-tuned with synthetic images are correlated with
actual errors. The location and rotation errors, uncertainties and
the distribution of the estimated points are accounted.

Three datasets namely Syn-car, Syn-pho-real and Syn-pho-
real-tex are similar in appearance to the real images. Therefore
we test networks fine-tuned with the three datasets directly
with real images. However, the two networks fine-tuned with
Gradmag-Syn-car and Syn-edge datasets are tested with edge
gradmag of real images. Figure 8 (a) - (e) shows the distribution
of the estimated camera poses for real images with errors by the
networks. Figure 8 (f) - (j) shows the locational and rotational
uncertainties of the estimated camera poses.

In Figure 8 the networks fine-tuned on edge gradmag
images (Gradmag-Syn-car and Syn-edge) perform better
than the other networks. There is approximately two-fold
accuracy improvement for the networks fine-tuned on edge
gradmag images (Gradmag-Syn-car and Syn-edge), compared
to Syn-car, Syn-pho-real and Syn-pho-real-tex images. The best
camera pose estimations (both locational and rotational) came
from the network fine-tuned with Gradmag-Syn-car dataset and
tested with edge gradmag of real images, followed by the
network fine-tuned with Syn-edge images.

Additionally, the distribution of the estimated locations from
the network fine-tuned with Gradmag-Syn-car images (Figure
8 (d)) is best amongst other image types, followed by Syn-edge
images (Figure 8 (e)). Figure 8 (i) - (j) show higher correlation
for locational and rotational uncertainties, for both the edge
gradmag images, Gradmag-Syn-car being the most correlated.

It is observed from Figure 8 that the locational errors for the
network fine-tuned with Syn-pho-real-tex is least, as compared
to Syn-car and Syn-pho-real images, but the errors of all the
three networks are comparable. The possible explanation could
be the presence of the synthetic textures in Syn-pho-real-tex
dataset that make this type of images appear similar to the real
image. However, the rotational errors of network fine-tuned

with Syn-car dataset are least, followed by networks fine-tuned
with Syn-pho-real-tex and Syn-car images.

From Figure 8 (a) - (c) it is noted that the distribution of the
estimated locations by the networks fine-tuned with Syn-car
and Syn-pho-real are poor as compared to Syn-pho-real-tex
images dataset. For all three networks, the estimated poses
result in cluster formation away from the ground truth
trajectory. Additionally, there exists a shift in the estimated
camera locations, indicating the presence of a bias. Regarding
uncertainties, from Figure 8 (f) - (h), it is seen that the
network fine-tuned with Syn-car and Syn-pho-real-tex has the
similar correlation for locational and rotational uncertainties,
as compared to very low correlation for Syn-pho-real dataset.
This fact explains the high errors of the Syn-pho-real images as
compared to other image types.

Figure 9 shows the overlay of the 3D model on five selected
test images using the camera poses estimated by the network
fine-tuned with Gradmag-Syn-car dataset and Table 2 shows
the errors and uncertainties of the corresponding camera poses.
The locational and rotational errors in those frames varied from
0.24 - 1.61 meters and 2.77o - 7.70o respectively. The range
of locational and rotational uncertainties was 1.01 - 1.48 square
meters and 0.22 - 0.25 respectively.

Figure 10 (a) - (b) show the trend of the locational errors and
uncertainties respectively for visualising the most error-prone
and uncertain areas of the trajectory. Figure 10 (c) shows the
images corresponding to the large estimation errors. In Figure
10 (a) - (b) it can be seen that the most substantial errors and
uncertainties are present in part BC of the trajectory, which
corresponds to a 90o turn and a few large errors exists near Point
D, E and F.

The images with large errors, as seen in Figure 10 (c), contain
significant amount of either motion blur or artefacts. Motion
blur results in low values of edge gradmag of the real images,
which results in loss of information and explain the large errors
in Points B, C and D of the trajectory. Artefacts are objects that
are present in the real image but not in the 3D model, such as
posters and notice boards and results in higher errors for Points
A, D, E and F. Additionally, artefacts are also introduced due
to the structural difference of the 3D model and the building,
which are introduced as a result of errors in modelling the
building.

Table 3 shows the errors and uncertainties of the frames shown
in Figure 10 (c) with high errors. The locational and rotational
errors in those frames varied from 6.74 - 10.10 meters and 9.01o

- 62.10o respectively. The range of locational and rotational
uncertainties was 1.45 - 3.09 square meters and 0.24 - 0.35
respectively. Comparing Table 3 with Table 2 indicate that
larger uncertainties are associated with images having larger
errors.
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Figure 10. (a) shows the average normalised errors of the trajectory (b) shows the average normalised uncertainties of the trajectory
and (c) shows corresponding points on the trajectory with high errors.

Frame Location Location Rotational Rotational
error uncertainty error uncertainty

10 6.97 m 2.86 m2 10.05o 0.25
167 10.10 m 1.99 m2 62.10o 0.27
240 6.93 m 3.09 m2 42.73o 0.35
277 8.07 m 2.47 m2 19.02o 0.25
405 6.74 m 1.45 m2 23.34o 0.27
591 8.19 m 1.90 m2 9.01o 0.24

Table 3. Errors and uncertainties corresponding to Figure 10 (c)
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Figure 11. (a) Location uncertainty vs error (b) Rotational
uncertainty vs errors for Gradmag-Syn-car images.

Figure 11 shows the correlation of the locational errors
with locational uncertainties and rotational errors with
rotational uncertainties. Figure 11 (a) indicates the locational
uncertainties are more correlated with the location errors as
compared to baseline experiment with real images in Figure
7 (b). Similar trend is observed for rotational errors and
uncertainties when comparing Figure 11 (b) with 7 (c). Thus,
the estimated uncertainties can be used as a measure of errors
and are particularly useful in the absence of ground truth, as
it provides the confidence with which we can trust the camera
pose estimations.

5. DISCUSSION AND FUTURE DIRECTIONS

In indoor spaces, specifically with repetitive structures, two
places might appear similar, and it is impossible to differentiate
between them without some auxiliary information. This
problem is referred to as perceptual aliasing (Lowry et al.,
2016) and is also a limitation of the current approach. For
example, consider frame 240 in Figure 10 (c), where the camera
is close to the wall, and only one door is visible. As all the
doors and walls in the building have the same appearance, it
creates confusion for pose estimation. This phenomenon can
explain the high errors and uncertainties near part Point C of

the trajectory in Figure 10. Similarly, the high errors in the
benchmark experiment with real images can be explained based
on this fact.

The proposed approach is independent of any central processing
server and hence does not need any additional infrastructure
for operation, in addition, the network is very lightweight
concerning storage (approximately 50 MB). The processing
time for each image on a GPU is approximately 67 milliseconds
and 9.07 seconds on an i7 CPU. Fortunately, most of the modern
pervasive devices contain a GPU that can be used to accelerate
the processing.

The achievable accuracy by the localisation approach is
suitable for pedestrian navigation (Taneja et al., 2011) but
is not sufficient for robotic applications; however, there is
still room for improvement. A potential future direction to
overcome the perceptual aliasing could be the use of Kalman
filter to integrate the uncertainties derived from the network
with the spatio-temporal information from a video sequence,
or the use of long-short-term-memory (LSTM) to exploit
spatio-temporal information alone. On the other hand, to
address the computational challenge, another future direction
for the research could be exploring mini-networks that are made
explicitly for operation in mobile devices.

6. CONCLUSIONS

We present a visual indoor localisation approach that can
provide the initial location of a camera for existing visual
localisation approaches, such as SLAM, visual odometry and
model-based visual tracking for pedestrian navigation. We
address a challenge of the existing approaches by eliminating
the requirement of performing SfM approaches before the
operation. We fine-tune a pre-trained deep Bayesian CNN with
different types of synthetic images generated from a 3D model
and to regress the camera pose of real images. The experiments
indicate that a localisation accuracy of approximately 2 meters
can be achieved by representing real images as edge gradient
magnitude images. The localisation errors are the result
of the presence of motion blur, artefacts in the images and
repetitive structures. Moreover, the uncertainties associated
with the estimated locations are correlated with the localisation
errors, thus providing the measure with which we can trust
the estimated locations. The current research point towards
interesting future directions that can improve the performance
of such an approach.
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