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ABSTRACT:

The adoption of RGB and depth (RGB-D) sensors for surveying applications (i.e., building information modeling [BIM], indoor
navigation, and three-dimensional [3D] models) to replace expensive and time-consuming methods (e.g., stereo cameras, laser
scanners) has recently attracted great attention. Due to the distinctive structure and scalability of indoor environments, the depth
quality produced from RGB-D cameras and the simultaneous localization and mapping (SLAM) system responsible for the cameras
pose estimation are substantial problems with existing RGB-D mapping systems. This study introduces a new RGB-D data
processing framework that adopts two-dimensional and 3D features from RGB and depth images. To overcome the self-repetitive
structure of indoor environments, the proposed framework uses novel description functions for both line and plane features extracted
from RGB and depth images for further matching between successive RGB-D frame features. Also, the framework estimates the
camera pose by minimizing the combined geometric distance of both two-dimensional and 3D features. Using the previously
known structure of the indoor environment, the framework leverages the structural constraints to enhance 3D model precision.
The framework also adopts a graph-based optimization technique to distribute the closure error to the graphs nodes and edges
when a loop closure is detected. The visual RGB-D SLAM system and the default sensor tracking system (SensorFusion) were
used to assess the performance of the proposed framework. The results show that the proposed framework can achieve significant
improvement in 3D model accuracy.

1. INTRODUCTION

The advent of consumer–grade depth sensors (e.g., RGB-Depth
[RGB-D] cameras) and their great potential for surveying
applications have recently led to valuable progress in indoor
positioning and mapping (Tang et al., 2016). RGB-D sensors
have been used in two main research areas. The first is
robotic navigation and control; in this area, the main purpose
is to guide the robot to avoid indoor obstacles, so real–time
performance and pose precision are the focused targets (Endres
et al., 2014, Huang et al., 2017). The second area is surveying
and three-dimensional (3D) model reconstruction applications;
here, the main purpose is to produce a rich and complete
3D model of the surrounding environment (Dos Santos et al.,
2016, Tang et al., 2016, Tsai et al., 2015).

The main limitations that prevent the deployment of RGB-D
sensors in high–precision surveying application are the limited
depth range of the sensor, around three meters for structured
light-based RGB-D sensors (e.g., Structure Sensor) and five
meters for time–of–flight-based RGB-D sensors (e.g., Kinect
v2), and successive brittle frame (i.e., frames have fewer
distinctive features) registration that leads to lost tracking or
camera pose bias.

Extensive studies have been carried out to improve depth
quality since the first version of the structured light RGB-D
∗Corresponding author

camera (Kinect v1) was released as a remote videogame
controller in 2010. The depth precision of an RGB-D
sensor can be enhanced with a proper calibration method
(e.g., disparity-based calibration model (Darwish et al., 2017),
distortion-based error model (Herrera et al., 2011, Herrera et
al., 2012), photogrammetric bundle adjustment method (Chow
, Lichti, 2013), covariance-based error model (Pagliari , Pinto,
2015)). Compensation for the systematic error and depth
distortion were achieved by revealing the calibration parameters
and the error model coefficients.

The RGB-D camera location problem can be recovered using a
suitable tracking algorithm (i.e., the early and basic tracking
algorithm is Kinect Fusion (Newcombe et al., 2011)). The
widely–used family of algorithms called RGB-D simultaneous
localization and mapping (SLAM) (Stachniss et al., 2007) uses
visual features with corresponding depth information to obtain
the relative movement between successive RGB-D frames.
Due to the depth quality and mismatching between pairs of
RGB images, random sample consensus (RANSAC) (Fischler
, Bolles, 1981) and iterative closest point (ICP) (Bae , Lichti,
2008, Rusinkiewicz , Levoy, 2001) algorithms are applied to the
computed relative pose to further filter out the matched outliers
and refine the pose, respectively.

However, RANSAC and ICP can only in theory reduce random
error related to matching and depth noise. In practice, the
performance of RGB-D SLAM algorithms suffers from a
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systematic pose drift problem. The main reasons for system
drift are the point cloud quality, the SLAM minimization cost
function, and the geometric distribution of matched feature
points, which is related to the scene structure (e.g., coplanarity
of feature points) and the local minimum of the ICP algorithm
(Bose , Richards, 2016). Most RGB-D SLAM algorithms use
visual loop closure to enhance the reconstructed 3D model
of the environment; the loop closure concept can be applied
locally (i.e., searching every 5 frames for a possible loop) or
globally (i.e., closing the first and last frames). The widely
used algorithm for detection and correction of the closure error
was based on a graph–optimization technique (Kümmerle et al.,
2011). Others researchers are using photogrammetric bundle
adjustment to detect and correct both local and global loop
closure (Melbouci et al., 2015).

In this study, we propose a new framework that uses all
possible information from the surrounding indoor environment
to precisely reconstruct a 3D model. The proposed framework
uses not only visual two-dimensional (2D) feature points but
also 3D features such as lines and planes. In addition,
the framework overcomes the minimal problem of the ICP
algorithm by using a descriptor for each selected 3D feature for
further matching. After matching of 2D and 3D features, a new
objective function is introduced to be minimized for precise
construction of the 3D model from the captured RGB-D frames.
If a loop closure constraint is present, a graph-optimization
technique is used to correct the closure error and optimize the
final camera pose.

The remainder of the manuscript is organized as follows. In
Section 2, we overview the current RGB-D SLAM systems,
and in Section 3, we describe our proposed framework.
Section 4 presents the experimental results of the framework
performance evaluation, and Section 5 presents our conclusions
and directions for future work.

2. RELATED WORK

The earlier algorithm that deals with construction of 3D models
from successive RGB-D frames is the Kinect Fusion system
(Newcombe et al., 2011). The system mainly uses the depth
information and an ICP algorithm to register successive RGB-D
frames, whereas the visual information from the RGB images is
used to color the final 3D model. Henry et al. (2012) proposed
a basic visual RGB-D SLAM system that uses visual features,
the ICP algorithm, and loop closure correction to estimate
the camera pose. Many other features are added to enhance
the RGB-D SLAM systems performance, starting from simple
matched visual features (e.g., SIFT (Lowe et al., 1999, Lowe,
2004), SURF (Bay et al., 2008)) and applying the concept of
structure from motion (SFM) (Koenderink , Van Doorn, 1991)
to recover the relative transformation between each successive
RGB-D frame. Dos Santos et al. (2016) used a disparity-based
model with maximum stable color regions to estimate the
relative movement between two successive RGB-D frames.

Regarding the visual RGB-D SLAM concept, many studies
have explored the ability of integration of various algorithms
and various methods to enhance RGB-D SLAM performance
for specific applications (Stachniss et al., 2007). The
application of a visual–based RGB-D SLAM algorithm with
continuous searching for loop closure optimization between
each key frame was introduced as DVO SLAM (Kerl et al.,
2013) . Dai et al. (2017) designed a system that can handle

an on–the–fly RGB-D SLAM system with implementation of
sparse points and dense model optimization.

A plethora of SLAM algorithms have been published (Stachniss
et al., 2007), each with specific performance based on the
available observations, the optimization technique used, and
the applications (e.g., surveying, robotics, indoor and outdoor
navigation, looped environments). Fioraio and Konolige (2011)
used bundle adjustment with ICP (Besl , McKay, 1992) and
used graph optimization for final pose optimization. Endres et
al. (2012) developed a system that first implements the visual
matched feature with local loop closure using g2o (Kümmerle
et al., 2011). The system gave precise results when tested in
a small room with many distinctive visual features with near
depth. The common limitation of these methods is that the
operation distance should be less than three meters. When the
matched features are farther from the camera (i.e., the depth
is greater than three meters) and the scene lacks distinguishing
visual details, the visual RGB-D SLAM system can easily fail.

Instead of depending on visual features, the edge RGB-D
SLAM algorithm (Bose , Richards, 2016) introduces edge
detection based on depth image with an ICP algorithm to
compute the cameras relative pose; this method works well in
3D spaces with rich 3D edges even if they have less texture.
The main constraint of this method is the mapping speed and
local minimal problem of ICP, as the edges were extracted
only without matching. Because the point cloud produced
from depth images is noisy, especially for points at a depth of
more than two meters, the classical method to detect, extract,
and match 3D features (Diez et al., 2015) has not yet been
implemented because the descriptor of the 3D feature is based
on the 3D structure and is greatly affected by the depth noise.
Hsiao et al. (2017) used the planar constraint to reduce the
drift problem of the visual RGB-D SLAM system for a 30-Hz
frame rate. To overcome the RGB-D depth precision problem
of distant matched visual points, integration between SFM
technique and RGB-D SLAM system was carried by several
investigators (Concha , Civera, 2017, Dai et al., 2017, Kerl
et al., 2013, Melbouci et al., 2015, Stückler , Behnke, 2012).
Kerl et al. (2013) minimized both geometric (depth) and
photometric (color) distances with the g2o algorithm as a global
optimization container to recover both the 3D model and the
camera pose, and the system achieved a 3-cm error (mean error
of camera trajectory) compared with a 4-cm error for MRSMap
(Stückler , Behnke, 2012).

Other studies have concentrated on offline enhancement of the
RGB-D SLAM performance, which has mainly been used for
surveying applications and 3D model reconstruction. Halber
and Funkhouser (2017) introduced an offline constrained
method to refine the global 3D model by manually
extracting the models predefined geometry (e.g. orthogonality,
parallelism). The system can work for large spaces, but it must
have previous knowledge of the environments structure because
the system uses planar constraints iteratively to refine the global
3D model. Tang et al. (2016) integrated SFM with visual
RGB-D SLAM concepts to produce a complete 3D model for
near and far range; to some extent, this method can be applied
in outdoor environments.

In this study, an offline framework of a RGB-D SLAM system
is proposed for continuous mapping of indoor spaces. The
proposed framework considers all possible constraints in an
indoor environment. We first use the point features-based
method to estimate the initial relative pose and then extract the
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line features from both RGB and depth images based on both
normal and depth information. After line feature detection, we
extract, describe, and match the feature lines, and at the same
time we extract the existing 3D planes based on RANSAC.
Plane extraction, selection, description, and matching are all
applied. The proposed framework uses all possible visual
features (SIFT points, visual Hough line) and 3D features (lines
based on depth, lines based on normal, and planar objects) with
a crucial description and matching functions to overcome the
minimal problem of ICP.

3. THE PROPOSED FRAMEWORK

The proposed framework considers all possible features in
both RGB and depth images to precisely reconstruct a 3D
model of the indoor environment. Figure 1 shows the
proposed framework, which consists of five major threads.
The calibration thread, which is mandatory to improve the
depth precision and to eliminate lens distortion. The feature
extraction thread which focuses mainly on extraction of features
from both 2D space (RGB) and 3D space (point cloud).
The feature description thread which deals with description
of the nominated features for further matching. Before
the environment constraints thread, in case of loop closure
correction, the final thread deals with the tracking algorithm,
which keeps the RGB-D camera in the same framework.

Figure 1. The proposed framework to reconstruct 3D
models from RGB-D captured frames

In the first thread, we developed a mobile application to capture
both processed and raw data for further offline processing. In
the second thread, we adopted a method (Darwish et al., 2017)
to calibrate all captured data. In the third and fourth threads,
2D and 3D features were extracted, described, and matched.
In the fifth thread, a general cost function that minimizes the
geometric distances of all matched features was applied to
estimate the relative camera transformation between successive
frames. In the sixth thread, the environment constraints stage
used perpendicular and parallelism constraints to optimize the
3D model. The seventh thread presents loop closure detection
and correction, for which we adopted the method presented by
(Kümmerle et al., 2011). The final thread presents the final
output products for pose information and 3D modeling.

The following subsections describe in detail the aforementioned
threads except for the calibration strategy; more details about
RGB-D calibration and the graph-based optimization technique
can be found in the literature (Chow , Lichti, 2013, Herrera
et al., 2012, Lachat et al., 2015, Mallick et al., 2014, Pagliari
, Pinto, 2015, Raposo et al., 2013, Zhang , Zhang, 2014).
The major contributions of this study include the stages of
feature description and matching; tracking estimation; and
environment constraints optimization.

3.1 Feature Detection and Extraction

The proposed framework depends on the extracted features
from both RGB and depth images. The extracted features are
divided into two categories. The first category is presented as
2D features, which contain SIFT feature points and edges from
the RGB images. The second category, which is assumed to
include 3D features, contains edges and planes extracted from
depth images. The extracted edges are based on either the
normal difference or the depth difference. For 3D planes, the
RANSAC method is used to extract all possible planes from
the depth images. After the 2D and 3D features are detected,
the nomination criterion is proposed to select the distinctive
features. For 2D features, a color gradient based on a Hessian
matrix (Bay, 2006) is applied with a certain threshold to define
the nominated feature points (Bay et al., 2008, Cornelis , Van
Gool, 2008). A new nomination criterion is proposed for each
3D feature type (i.e., lines or planes). The nomination method
of the line features is based on length; lines whose length
exceeds a certain threshold are nominated as a feature. For the
3D plane feature, a nominated plane is based on the number
of inliers and its distance to nearby planes. The plane that has
the largest number of inlier points within a certain threshold
is nominated as a plane feature. Equations 1, 2, and 3 show
the formulae used to identify the nominated planes among the
detected (m) planes. Assuming that the depth image converted
to point cloud (P ) and (m) planes (PL) were extracted with the
RANSAC method, for each recognized plane (PLi) and for a
certain distance threshold (tpts), the number of inliers for each
plane was computed, and the planes were sorted in descending
order using (1). Equation 2 represents the distance between a
pair of detected planes. Finally, equation 3 is a filtering formula
that returns only the nominated planes (PLnorm ) among the
detected planes (PL).

I = Ω
( m∑

i=1

φ
(
PLi, P

)
≤ tpts

)
(1)

where PLi = parameters define the ith plane
P = point cloud generated from depth image
tpts = distance threshold that defines the point outliers
φ = function computes the orthogonal distance
between points P and plane PLi

Ω = function sorts the detected planes PL based on
number of inliers
I = indices of sorted planes based on point inliers
m = the total number of detected planes

Rplane =

∑m−1

i=1
ω
(
PLI(i), PLcI(i+1)

)
≥ tpls

size
(
PLcI(i+1)

) (2)

where PLi = parameters define the ith plane
PLcI(i+1) = point cloud defines I(i+ 1)th plane
size(PLcI(i+1)) = number of points defined
I(i+ 1)th plane
tpls = the distance threshold to filter out
the identical planes
ω = the function returns the orthogonal distance
between two planes points
Rplane = the percentage of points of the I(i)th plane
that lie outside the I(i+ 1)th plane
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within distance tpls
I = indices of sorted planes based on point inliers
m = the total number of detected planes

PLnom = PL
(
1, Rplane ≥ tnom

)
(3)

where Rplane = the percentage of points of the I(i)th plane
that lie outside the I(i+ 1)th plane
PL = cell array contains parameters that
define all detected planes
tnom = the threshold defined the overlap
between two planes
PLnom = the nominated planes parameters

3.2 Feature Description and Matching

After the distinctive 2D and 3D features are detected and
extracted, the description of each feature is applied for further
matching to remove outliers. In case of 2D features, a SIFT
descriptor based on the color gradient is used with correction
of scale and orientation of each nominated feature point (i.e.,
the SIFT descriptor length is 64 bits), whereas in the case of
3D features, the description vector of each selected feature is
based on the Euclidean distances between the 3D feature and
the 3D position of the matched SIFT points. The descriptor
of the 3D feature length depends on the number of matched
SIFT points between two successive frames. Equations 4 and
5 show the descriptors of 2D and 3D features, respectively.
Because the matching between nominated features is based on
the descriptors, the 2D feature is matched based on the sum of
squared differences (SSD) between each pair of descriptors,
and the best match corresponds to the minimal of SSD
(Cornelis , Van Gool, 2008). 3D features are matched based on
the normalized Pearsons cross correlation concept. Equations
6 and 7 present the matching concept between 2D features and
3D features, respectively.

D2d = ∪block=16
block=1

(∑i=4

i=1
dxi,

∑i=4

i=1
|dxi|,

∑i=4

i=1
dyi,

∑i=4

i=1
|dyi|

)
(4)

where D2d = the descriptor of 2D feature image point
dxi = the image gradient of sub block (i) along
x direction
dyi = the image gradient of sub block (i) along
y direction

Normally, the SIFT descriptor uses a 4×4-pixel sub block size
with a global block of 4×4 sub blocks, which means that the
descriptor has a vector length of 64.

D3d = ∪j∈n
k∈m‖Fj − Pk‖2 (5)

where D3d = the descriptor of 3D feature, presented as a line
extracted from the RGB image and projected back to
the point cloud, directly extracted from the depth
image based on normal, or presented as a plane
directly extracted from the point cloud
Fj = the 3D feature information, a line uses two
points and a plane uses three points
Pk = the coordinate of the projected matched SIFT
point to the 3D point cloud
m, n = are the total numbers of matched SIFT
points and extracted 3D features, respectively

Matching between both 2D sets of descriptors can be carried out
by SSD, and the pair of matched features reflects the minimum
value of SSD. Equation 6 represents the SSD method.

SSDf1,f2 =

i=64∑
i=1

(
Df1(i)−Df2(i)

)2
(6)

where f1,f2 = point features that exist in
the first and second images, respectively.
SSDf1,f2 = the sum of squared difference distances
between point features.
Df1 , Df2 = the descriptor of point features located on
first image and second image, respectively.

Sik =
cov
(
Di, Dk

)
σdiσdk

(7)

where Sik = matching score between
descriptor i and k
cov = covariance between descriptor i and k
Di, Dk = descriptor of 3D feature i and k, respectively
σdi , σdk = descriptor standard deviation of 3D feature
i and k, respectively

After illustrating all possible features from the depth and RGB
images (i.e., the matched SIFT points and the 3D features
all collaborate to compute the relative pose between two
successive RGB-D frames), the following section discusses
comprehensively the proposed tracking algorithm used to
update the camera pose for the proposed framework.

3.3 Tracking Estimation

Computing the relative movement between two captured
RGB-D frames is a crucial stage for continuous tracking
of RGB-D cameras. The visual RGB-D SLAM system
minimizes the geometric distance of the corresponding SIFT
matched points between RGB-D frames to recover the cameras
relative pose. The proposed framework mainly uses geometric
information to compute the relative pose between RGB-D
frames. Three different pieces of information are extracted
from the successive RGB-D frames: the matched 3D points
from the point cloud corresponding to the point features from
RGB images; the line features extracted from both the RGB and
the depth information; and the planes extracted from the point
cloud.

Annotations: For each extracted feature type, we adopt
different representation; thus, different formulae were
introduced to compute the relative movement between two
RGB-D frames depending on the feature type. It is assumed
that the scene has (m) matched points, (n) matched lines,
and (q) matched planes. For the corresponding 3D points,
we present P1 and P2 as two matrices of dimension of m×3,
with each containing all point information, and each row has
[XiYiZi]. For the extracted lines, we present L1 and L2 as
two matrices of dimension of n×6, with each containing the
line information as [XCliY CliZCliXDliY DliZDli], where
the first three elements refer to the coordinates of the center
point of the line (we choose the nearest matched SIFT point to
the line and compute its projected coordinate to the line) and the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-263-2019 | © Authors 2019. CC BY 4.0 License.

 
266



next three elements refer to the direction vector of the extracted
line. For the extracted planes, we present PL1 and PL2 as two
matrices with dimension of q×6, where each row represents the
plane information as [XCniY CniZCniNxniNyniNzni] and
the first three elements refer to the center point of the plane. We
use the same concept of line to detect such points, and the next
three elements refer to the normal vector of the matched plane.

Three geometric quantities should be minimized during the
pose estimation process: Ep is the back-projection error of the
matched 3D point features between the RGB-D frames (8), El

is the residual vector between matched lines (9), and En is the
vector of residuals between matched planes (10). It is assumed
thatR and T are the rotation and translation of the rigid relative
transformation between two RGB-D frames, respectively.

Ep = ‖RP1 + T − P2‖2 (8)

where P1, P2 = m× 3 matrix containing coordinates of all
matched points for RGB-D frame 1 and 2, respectively.

El = ‖(RCl1 + T )t.f(D2)− f(D2).Cl2‖2 (9)

where f = function converts the direction vector
to a normal vector.
Cl1, Cl2 = matched lines center point of RGB-D
frame 1 and 2, respectively
D1, D2 = direction vectors of matched lines between
RGB-D frame 1 and 2, respectively.

El = ‖(RCn1 + T )t.N2 −N2.Cn2‖2 (10)

where Cn1, Cn2 = matched planes center point coordinates
for RGB-D frame 1 and 2, respectively.
N1, N2 = normal vectors of matched planes between
RGB-D frame 1 and 2, respectively.

The tracking estimation of the RGB-D camera can be
represented as in (11); as from the geometry principles, lines
and planes introduce more constraints on rotation rather than
the translation opposite to the point features, one can apply
different weight for each objective function stated in (8), (9),
and (10). We keep this weighting factor as a future work which
can be examined.

{R̂, T̂} = agrmin
(
Ep + El + En

)
(11)

where R̂, T̂ = estimated camera rotation and translation,
respectively.
Ep, El, En = the point, line, and plane features
re-projection error, respectively.

The system first begins to initialize the pose between two
RGB-D frames by adopting the principal concept of visual
RGB-D SLAM and the point feature correspondences used
to calculate the relative pose. This information is then used
to match all extracted planes and lines extracted from both
depth and RGB images. The final pose is calculated with
(11). After optimizing the pose information between successive
RGB-D frames, the environment constraints stage is introduced
to further smooth the reconstructed 3D models.

3.4 Environment Constraints

The environment constraints stage is the final refinement
process before the loop closure concept (if any) is applied. In
this stage, the spatial relations (i.e., perpendiculars, parallels)
are basically generated from the camera pose to roughly
determine the 3D shape constraints. Thus, the global model
gM is divided into separate sub models sM for further accurate
alignment. The environment constraints stage is based on
the planar objects between the successive sub models. The
structure sensor coordinate system is defined as shown in figure
2.

Figure 2. Structure sensor coordinate system.

Using the coordinate system information, the rotation around
y direction (θy) indicates planar movement constraints in the
2D floor plan. The structure sensor is normally attached to an
iPad, so the rotation around the z and x directions is around
15 degrees. In an indoor environment, the dominant axis that
controls the scanning process is the y-axis. Equation 12 shows
the formula used to detect the turned frames (the most likely
valuable frame that contain the constrained structures) from the
y-axis rotation, after which equation (13) is used to construct
the sub models for further alignment.

N =

[
1, PE

(
G
(
∂θy
∂y

))]
(12)

where N = the IDs of the turned RGB-D frames
PE = the function that detects the peaks from
time series
G = Gaussian filter function to smooth
the gradient of y-axis rotation
θy = rotation angle around the y-axis

sM(i) = gM
(
N(i) : N(i+ 1)

)
(13)

where N = the IDs of the turned RGB-D frames
gM = global model to be smoothed
sM = sub models divided based on
the turned frames indices N

Once the sub models were constructed, the environment
constraints stage is carried out based on the previously known
spatial relationship between each sub model. It is assumed
that the spatial relationships were stored in S, which contained
the turn angles around the three axes. S is reconstructed
based on the planar relation between two successive sub model,
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perpendiculars, parallels, and artificially defined angles (e.g.,
π/4,π/8, 3π/4). The environment constraints stage deals with
enforcing back these artificial angles. Equation (14) presents
the formula used in the environment refinement stage.

{rpose, rM} = itercon
(
sM, S

)
(14)

where rpose = the refined camera poses after
constrained stage
rM = the refined model after refinement stage
S = spatial constrained information
itercon = constrained function iteratively enforces
predefined spatial information S

After estimating and refining the relative pose between
successive RGB-D frames, detection and correction of loop
closure, if any, was performed.

3.5 Loop Closure

Loop closure is a basic concept for correcting a closed mapped
space; the reputed method is the graph optimization technique
based on nonlinear least-squares optimization (Kümmerle et
al., 2011). This method constructs a graph problem based
on nodes and edges, where each node represents the pose
information of each RGB-D frame and the edges represent the
6DoF relative baseline between two successive RGB-D frames.
The algorithm was adopted for most of the previous RGB-D
SLAM algorithm and reflected stable results; thus, we adopt
the loop closure problem in the proposed framework.

4. EXPERIMENTS AND DISCUSSIONS

The experiments were used to evaluate the performance of
the proposed framework against other RGB-D SLAM systems
(e.g., offline visual RGB-D SLAM (Tang et al., 2016),
SensorFusion). For simplifying the figures representations,
the proposed framework here and after will be noted as Fully
Constrained RGB-D SLAM (FC RGB-D SLAM), however it is
an offline process pipeline. FC RGB-D SLAM is designated
to precisely reconstruct 3D models of long indoor corridors
with few distinctive features. The data were captured with
a Structure Sensor attached to an iPad Air 2, which is used
to capture and process the data. The Structure Sensor has
a framework (SDK; SensorFusion) to process the captured
depth images, color images, and IMU data from the iPad to
create a 3D model of the captured environment. The proposed
framework was compared to both visual RGB-D SLAM (Tang
et al., 2016) and SensorFusion methods. Data were captured
for a narrow corridor, 58 m long, 2.5 m high, and 1.5 m wide.
A laser scanner was used to capture the ground truth of the
corridor for further quantitative evaluation.

The accuracy assessment is based on the model quality of the
point difference. Each model was compared to the ground truth.
The error of each point was quantified, and the histogram of
each model was used to check the model accuracy. Figure
3 shows the quantitative results for the three RGB-D SLAM
systems. It can be clearly seen that the proposed framework
can enhance the overall model accuracy and its alignment.
The model is divided to three patches (A, B, and C) that are
completely perpendicular, as shown in figure 3(b). At the
corner, the angles are perfect right angles in the reconstruction

model using the proposed framework, but they are not right
angles with either the visual RGB-D SLAM or SensorFusion
methods; however, the visual RGB-D SLAM system achieves
better accuracy than the SensorFusion system. Parts A and C
show a severe drift in both the SensorFusion and visual RGB-D
SLAM results, whereas the drift was significantly reduced in
the FC RGB-D SLAM result. The largest error was present in
the corner between A and B, possibly because of the material of
the wall; because this part of the corridor is a glass window, the
depth result from the RGB-D camera includes a lot of noise.
The error at the end of part C is due to the structure of area
E (highlighted by a black line). This area lacks 2D and 3D
features because it is an open space.

(a) (b)

(c) (d)

(e)

Figure 3. Spatial error distributions for a scanned corridor
in vertical scanning mode: (a) model from SensorFusion;
(b) model from visual RGB-D SLAM; (c) model from FC
RGB-D SLAM; (d) Projected wall to the ground of four

models (black is ground truth, blue is FC RGB-D SLAM,
red is visual RGB-D SLAM, and green is SensorFusion);

(e) Error histogram of the three systems

To validate the proposed framework, three more data sets were
captured using the same sensor with different data collection
procedures. One set was obtained with the iPad horizontal,
another set was obtained with the iPad horizontal and with a
low frame rate (5 fps), and the third set was obtained with
the iPad horizontal and facing the ground (uncaptured ceiling).
Figure 4 presents a histogram of the average cumulative error to
summarize the results of the four experiments. It can be clearly
seen that the error of 95% of points does not exceeded 0.20
m for the FC RGB-D SLAM compared to 1.00 m and 1.20
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m for the visual RGB-D SLAM and SensorFusion methods,
respectively.

Figure 4. Average cumulative error histogram for all
captured experiments

5. CONCLUSIONS AND FUTURE WORK

The use of RGB-D cameras as low-cost depth sensors to
reconstruct indoor 3D models has attracted great attention
in various research areas (e.g., surveying, robotics, computer
vision). Two major research problems face the use of this
fruitful technology in precise surveying applications (i.e.,
centimeter-level precision applications). The first problem
is the quality of the depth information produced by RGB-D
cameras, and the second is the lost tracking, which can
produce the full 3D model from the captured RGB-D frames.
This research focuses on the second research problem; thus,
a new framework is proposed to achieve 3D models with
centimeter-level precision from captured RGB-D frames. The
proposed framework adopts both 2D and 3D features to obtain
the RGB-D camera pose as the first stage. In the second
stage, the existing constraints between the 3D features are
used to refine the reconstructed 3D model. The proposed
framework was compared to visual SLAM and SensorFusion
systems to evaluate its performance. The results demonstrate
the usefulness of the proposed framework.

The nomination of matched point features from RGB images
can be applied based on a suitable stochastic analysis of
matched SIFT points to enhance the SLAM performance,
especially if 3D features are missing from some frames.
An extended SLAM may include an object extracted from
RGB-D images to enhance both modeling and tracking
performance. This could be a new way to integrate both
computer vision applications (i.e., RGB-D object recognition)
and feature-based RGB-D SLAM. The revolution of machine
learning applications could facilitate the 3D feature extraction
and matching process, as the neural network can effectively
predict the descriptor of the 3D feature from a noisy point
cloud.
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