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ABSTRACT:

Indoor environments tend to be more complex and more populated when buildings are accessible to the public. The need for knowing
where people are, how they can get somewhere or how to reach them in these buildings is thus equally increasing. In this research point
clouds are used, obtained by dynamic laser scanning of a building, since we cannot rely on architectural drawings for maps and paths,
which can be outdated. The presented method focuses on the creation of an indoor navigation graph, based on IndoorGML structure,
in a fast and automated way, while retaining the type of walkable surface. In this paper the focus has been on door detection, because
doors are essential elements in an indoor environment, seeing that they connect spaces and are a logical step in a route. This paper
describes a way to detect doors using 3D Medial Axis Transform (MAT) combined with the intelligence stored in the path of a mobile
laser scanner, showing good first results. Additionally different spaces (e.g. rooms and corridors) in the building are identified and
slopes and stairs in walkable spaces are detected. This results in a navigation graph which can be stored in an IndoorGML structure.

1. INTRODUCTION

In the past years there has been an increasing need for naviga-
tion assistance in indoor environments, because of the growing
complexity and size of buildings. It can especially be helpful to
wheelchair users, who are restricted in their routes, or for blind
or partially sighted people, who are not always able to follow
route signs (Mirza et al., 2012). Moreover Boguslawski et al.
(2016) stress the importance of up-to-date indoor models of com-
plex buildings for disaster scenarios and emergency response.

However, existing building models or floor plans are often out-
dated and can contain wrong information, because the situation
“as-built” can differ from the way that it was planned (Bosché
et al., 2014; Volk et al., 2014; Hong et al., 2015; Alattas et al.,
2017; Staats et al., 2018). Besides manually updating floor plans
or building models, a less labour-intensive way to obtain up-to-
date information on an indoor environment is to make use of point
clouds. In order to obtain them one can use static or dynamic
laser scanners, the advantage of the first being higher accuracy
of the points. However, because the laser scanner is only set up
at limited locations in the environment, the resulting point cloud
can miss certain parts of the environment that are occluded by
furniture and other objects. Dynamic laser scanning provides
better opportunities for a faster and more complete coverage of
the environment, because one can also walk behind objects that
are occluding part of the environment, such as furniture. Point
cloud processing algorithms are needed to obtain useful informa-
tion from the millions of points, such as the shape and location of
elements in the indoor environment. This information in turn can
be used for navigation purposes.
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In this paper a process is described to go from an indoor point
cloud to a navigation graph based on a structure defined in the
IndoorGML standard. In this process walkable voxels (Staats et
al., 2017, 2018), obtained through a region growing method, are
generalised into different rooms by doorway detection, and from
this a graph is constructed between indoor spaces. A novel way
of door detection in point clouds is described, making use of the
trajectory of the laser scanner and the 3D Medial Axis Trans-
form (MAT) (Peters, 2018) of the point cloud. Related work on
the topic of this paper is discussed in Section 2. Background in-
formation on theories directly applied in this research, such as
IndoorGML, voxels, walkable space detection and the 3D MAT
of point clouds is described in Section 3, after which the door de-
tection method and network generation are explained in Section
4. Results and a discussion of them are given in Section 5, and
finally conclusions and future work are discussed in Section 6.

2. RELATED WORK

2.1 Indoor navigation networks

Essential requirements for indoor navigation are: a way to lo-
calise the person to be navigated (indoor positioning), a map or
3D model of the environment, a network graph representing nav-
igable paths, a path-finding algorithm and a human interpretation
of the path (wayfinding) (Nakagawa and Nozaki, 2018). This pa-
per focuses on the third: creating a navigation graph for an indoor
environment, in which nodes represent locations, and edges the
connectivity between these locations. This graph can be used to
calculate optimal routes between nodes, in order to navigate peo-
ple through buildings.
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Sithole (2018) and Nakagawa and Nozaki (2018) describe three
main types of navigation networks found in related work: 1)
graphs that link separate indoor spaces (e.g. rooms and corri-
dors), 2) grid structured graphs that are based on small-scale cells
or voxels (tessellation), and 3) potential field models, which are
continuous and have repelling (obstacles, walls) and attracting
(the end goal) forces. The latter is most often used in the navi-
gation of autonomous robots and drones (Koren and Borenstein,
1991; Ge and Cui, 2002), and is computationally very heavy for
route calculation. Grid structured graphs can be based on 2D
cells (pixels), as done by Nakagawa and Nozaki (2018), lim-
ited to one floor, or voxels (3D volumetric pixels), as done by
Fichtner et al. (2018). The last authors create an octree structure
in the empty space of a point cloud, and construct a connectiv-
ity graph in neighbouring empty octree leaves. The smaller the
leaves, the more accurate information can be represented. How-
ever, depending on the chosen cell size, resulting networks are
often dense. Because of this route calculation time in large build-
ings can quickly increase. Moreover these networks do not con-
tain any knowledge on the presence of stairs, doors and other
important navigation concepts, and they are often unnecessarily
small-scaled for human navigation purposes. This is why this
research focuses on the first type of network: graphs linking sep-
arate indoor spaces.

Duality is a main theme in graph-based network reconstruction,
regarding the rooms as primal space, and relationships between
them as dual space, for instance applied on 2D building plans
by Yang and Worboys (2015), or 3D building models by Bogus-
lawski et al. (2011). Others generate routes in an indoor environ-
ment based on centrelines of polygons in building plans (Meijers
et al., 2005). These lines represent the skeleton of the polygon,
also called the Medial Axis (Blum, 1967).

2.2 Door detection

A main requirement for the construction of an indoor navigation
graph is an awareness of the locations of doors and traversable
openings in walls, and which two indoor spaces they connect.
There are various methods of doorway detection in indoor point
clouds discussed in research. Dı́az-Vilariño et al. (2014) and
Dı́az-Vilariño et al. (2015) use Generalized Hough Transforms
(GHT) (Ballard, 1981) to detect edges in point clouds, in this
way detecting door-shapes. Dı́az-Vilariño et al. (2016) determine
wall planes in the point cloud, which are then read as a binary im-
age, with pixel values dependent on whether they contain points.
These methods are however very dependent on a predetermined
size and shape of the door, and are also prone to detect false pos-
itives.

In order to prevent this, one can make use of the trajectory of
the mobile laser scanner, for instance by detecting doors that are
walked trough. An example of this is described by both Dı́az-
Vilariño et al. (2017) and Staats et al. (2018) who analyse the
height of the original point cloud above the trajectory. Wherever
a drop in height is observed, it is assumed the trajectory is passing
a door frame. This method will only work in buildings with doors
that are not of the same height as the ceiling. Another method
that makes use of the trajectory of the scanner is described by
Nikoohemat et al. (2017) and Nikoohemat et al. (2018), who ap-
ply ray-casting from the trajectory to detect openings in walls.
An opening is defined as a door when the trajectory is passing
close by the door centre.

3. THEORETICAL BACKGROUND

3.1 IndoorGML network structure

IndoorGML OGC (2014) is a standard developed by the Open
Geospatial Consortium (OGC), especially focused on modelling
the interior of buildings for navigation purposes. This includes
the relationships between different indoor spaces in the form of a
Node-Relation Graph (NRG), which is based on the idea of du-
ality. In the NRG indoor spaces (e.g. rooms and corridors) are
the nodes, and the relationships between them are described by
edges. There are three different types of NRGs: Adjacency, Con-
nectivity and Accessibility. If two indoor spaces are beside each
other (touching), there is an edge connecting them in the Adja-
cency NRG. If there is also a door in the wall they share, it means
there is an edge connecting them in the Connectivity NRG. In the
Accessibility NRG more specific information is saved, such as
whether a certain type of user (e.g. wheelchair user) can traverse
a node or edge (e.g. representing stairs).

There are two ways in which a NRG can be represented. First
of all there is the thin wall model, in which indoor spaces have
a node, and their connections are shown with edges. Secondly
there is the thick wall model, in which also walls and doors are
represented by nodes. The relationships between walls, doors
and indoor spaces are shown as edges. Including walls and doors
in the network improves knowledge on the indoor environment,
which is advantageous for navigation. In case of a connectivity
graph the walls can be left out of the model, because they cannot
be traversed, but doors are assigned a node. An example of a
thick wall connectivity graph for a floor plan is shown in Figure
1.

Figure 1. An example of a thick wall Connectivity NRG (dotted
line) for a floor plan

For navigation purposes the Connectivity and Accessibility
NRGs are most useful to consider, making them the main ob-
jectives of this research, which is to automatically extract a navi-
gation graph with IndoorGML structure from a point cloud.

3.2 Voxelisation and walkable space

3.2.1 Voxelisation: Voxelisation of a point cloud can be ap-
plied in order to structure it, and so that it can be processed faster
and more easily later. Voxels, also described as “volumetric pix-
els” (Nourian et al., 2016), can be used as a 3D grid structure
on the point cloud, having cells of a fixed x, y and z dimension.
For each cell it is determined whether it is filled with point cloud
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points, or empty. It is applied by Broersen et al. (2015) by using
an octree structure, in which the bounding box of the point cloud
is recursively divided into eight octants, until the smallest scale
is achieved. The smallest level octants are used as voxels in the
methods of this paper.

3.2.2 Walkable voxel detection: Staats et al. (2018) devel-
oped a method to classify a voxelised indoor point cloud into hor-
izontal surfaces, stairs, slopes and other types of elements. This is
done by voxelising the point cloud and the mobile laser scanner
trajectory. By analysing the height differences in the trajectory
stairs, slopes and horizontal parts are classified. By projecting the
classified trajectory voxels down to the voxelised point cloud this
classification is passed through, and these voxels are used as seed
points in a region growing algorithm, to include more voxels to
the floor, stair and slope elements. The neighbour searching in the
region growing algorithm takes into account an 8-neighbourhood
of the voxel in the horizontal plane (see Figure 2).

4-connectivity 8-connectivity

current
pixel

current
pixel

Figure 2. 4- versus 8-neighbourhood of a pixel

After this doors are identified by looking at height differences
in the voxelised original point cloud above the trajectory. This
algorithm also checks the distance to the sides of the doors. The
door detection process was not automated yet, which limits the
automatic detection of different spaces. After the voxelised point
cloud is region grown into floor regions, the walkable space is
identified by subtracting furniture elements.

3.3 3D MAT

As discussed in Section 2, 2D Medial Axis has already been used
in the generation of navigation networks from 2D floor plans.
In this research the 3D MAT for geographical point clouds (see
Peters (2018)) is computed from an indoor point cloud and used
for wall detection. The 3D MAT method of Peters consists of
two steps. First, the Unstructured 3D MAT, in which all medial
balls are calculated for the point cloud, using a ball-shrinking
algorithm (Ma et al., 2012). Second, the Structured 3D MAT, in
which the medial balls are grouped into medial sheets, analogous
to branches of the 2D MAT, by region growing.

3.3.1 Unstructured 3D MAT: The 3D MAT consists of me-
dial balls. A medial ball with centre (c) and radius (r) has the
following three characteristics: 1) the surface of a medial ball
touches two or more points of the point cloud (points p and q),
2) the normal vectors of points p and q point towards centre c,
meaning that the ball surface is tangent to the surface at p and
q, 3) a medial ball does not contain any points of the original
point cloud. An example of the MAT for a 2D shape is shown
in Figure 3. In order to obtain medial balls in a point cloud, the
ball-shrinking algorithm of Ma et al. (2012) is used.

3.3.2 Structured 3D MAT: The set of medial balls can be
structured by grouping them into sheets, using a region growing

Figure 3. Some medial balls of a shape and in yellow the
corresponding medial axis (Peters, 2018)

algorithm. A medial ball is selected as seed point, and its neigh-
bours are added to the same medial sheet if they overlap. More-
over, the separation angle θ of a medial ball, which is the angle
between vector ~cp and ~cq (see Figure 4) is taken into account. θ
of the neighbour should not differ more than a threshold value
from θ of the seed point, to ensure similarity. As a result of this
multiple medial sheets are computed for the point cloud, which
can be used to analyse structural elements in the point cloud.

θ

c

p
q

r

surface

Figure 4. Key geometric characteristics of a medial ball

4. METHODOLOGY

The methodology of this research is based on the theories dis-
cussed in Section 3. First of all, 3D MAT is applied on an indoor
point cloud, and MAT sheets formed inside walls are retained, as
described in Section 4.1. The MAT sheets, original point cloud
and trajectory are then voxelised. Using these MAT sheets the
location of doors are detected, and original point cloud voxels
on the floor inside the door frame are removed (see Section 4.2).
This ensures that the walkable voxel space, as generated by the
method of Staats et al. (2018), is classified into different indoor
spaces. With these results a navigation graph in the manner of
an IndoorGML Connectivity NRG is created (Section 4.3). A
summary of all steps is shown in Figure 5.

4.1 Wall detection using 3D MAT

When the 3D MAT algorithm is applied on an indoor point cloud,
the resulting medial sheets are amongst others formed between
furniture objects, in hallways between walls, but also in the empty
space inside walls that were scanned on both sides (see Figure
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Indoor point cloud
3D MAT sheet

creation (Peters,
2018)

Filter wall sheets

Filtered 3D  
MAT SheetsVoxelisation 

Delete point cloud
voxels on floor inside

door frames

Walkable voxel
detection & clustering
(Staats et al., 2018)

Laser scanner
trajectory

Find location of doors
by analysing MAT
sheets above and
around trajectory

  Separate spaces 
(rooms, corridors) 

and stairs, slopes    

Generate nodes in
doors, spaces, stairs

and slopes

Find connectivity
relationships

Connectivity 
Graph

Figure 5. Overview of the steps in the methodology

6). These last type of sheets can be retained by applying filter
parameters, based on the geometric characteristics of medial balls
belonging to those sheets, as shown in Figure 4. Medial balls that
are formed inside walls have two distinct characteristics, namely:
1) the radius r is half the thickness of a wall, which is relatively
small, and 2) the separation angle θ is approaching 180◦. To
illustrate this, in Figure 7 these characteristics of a ball inside a
wall are shown.

Figure 6. Left: empty space in wall scanned on both sides, right:
some medial balls formed inside the wall

Moreover, the normal vectors of the centre points belonging to the
medial balls in a wall sheet will point sideways, because a wall
is perpendicular to the horizontal, meaning that the z-component
of normal vectors will be close to 0. On top of this all, walls are
generally large structures in a building, so the sheets inside them
will have a large total number of points, which is also used as a
filter parameter. In order to filter sheets based on the radius and
separation angle, the median of each parameter in a sheet is taken
to get a sample value of all points. For the z-component of the
normal vectors in a sheet first the absolute value is calculated,
after which also the median value of all points is calculated. A
summary of all filter parameters is shown in Table 1. Results
after testing different values for the parameters are discussed in
Section 5.1.

width of wall

point on medial ball

point of original point cloud

medial ball centre

r
θ

Figure 7. Local geometry of a medial ball (blue) inside a wall
(side view)

Parameter Value in MAT sheet
Separation angle θ Median approaching 180◦

Radius r Median < half max. thickness walls
Z-component normal nz Absolute median approaching 0
Total number of points High

Table 1. Theoretical parameters for filtering MAT sheets

4.2 Doorway detection

After filtering the MAT sheets to retain wall sheets, the results can
be used for doorway detection. In order to do this, the wall sheets,
original point cloud and laser scanner trajectory are all voxelised
with the same voxel size and origin parameters. In this method
not only the location of the door needs to be detected, but also
the voxels in the original point cloud that lie on the floor inside
a door frame (see Figure 8). The goal of this is to create a gap
between two separate indoor spaces, which will ensure separate
floor regions being created in the region growing step of walkable
voxel detection (Section 3.2).

Figure 8. Left: Voxels (in red) of the original point cloud that lie
on the floor inside a doorway, right: voxels inside door frame

removed, creating a gap

There are two situations for the door detection. The first situation,
shown in Figure 8, occurs when there is a wall above the door.
For each trajectory voxel it is checked whether there exists a wall
sheet voxel above it. If so, the trajectory voxel is marked as the
location of a door.

In order to create the gap between two rooms inside the door
frame, so that the rooms are separated in region growing, it is
also checked for all original point cloud voxels whether they lie
below a wall sheet voxel.

In the second situation considers doors that are of the same height
as the ceiling, which means that there is no wall between the top

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-271-2019 | © Authors 2019. CC BY 4.0 License.

 
274



of the door frame and the ceiling, so the first situation cannot be
used. In order to detect the location of doors, and which voxels
lie on the floor inside doors, the MAT sheet voxels around the
trajectory are inspected, to check whether there is a wall on both
sides of the trajectory (compare Figure 9 and 10).

north trajectory voxel

wall sheet voxel in radius

checked trajectory voxel

α1

α2 azimuth

wall sheet voxel not in radius

Figure 9. Top view of situation when trajectory goes along a wall

north

α1

α2

Figure 10. Top view of situation when trajectory passes a
doorframe (legend in Fig. 9)

For each trajectory voxel it is checked which MAT sheet voxels
fall inside a certain radius around it. For all of these voxels, the
azimuth, α, is calculated (see Figure 9). Then, they are all paired
with each other, meaning that for a trajectory voxel with n MAT
sheet voxels in its radius, there will be

(
n
k

)
=

(
n!

k!(n−k)!

)
pairs.

For all pairs the absolute difference in azimuth is calculated, as
|α1 − α2|. When, for one or more pairs, this value ≈ 180◦, the
trajectory voxel is selected as door location. This does not occur
when a trajectory goes alongside a wall (see Figure 9), so there is
no pair of voxels inside the radius where |α1 − α2| ≈ 180◦.

In order to get all voxels on the floor inside the doorframe, the pair
of MAT sheet voxels that fulfils the condition |α1 − α2| ≈ 180◦

is selected. A virtual line is drawn between the pair, and a line
voxelisation algorithm is applied to get a sequence of voxels on
this line at the height of the trajectory, see Figure 11. All voxels
of the original point cloud that lie below this line are not taken
into account for the region growing of walkable voxels.

In a narrow corridor it can happen that many consecutive doors
are detected falsely by the method looking at MAT sheet voxels,
because the wall is close on both sides of the trajectory. This
is prevented by analysing the number of consecutive trajectory
voxels that are detected as a door, and removing them as door
nodes when this sequence is longer than the maximum thickness
of a wall in voxels.

Figure 11. Left: Pair of MAT sheet voxels inside doorframe
(red), right: voxel line drawn between pair of voxels

4.3 Connectivity graph creation

In order to create a connectivity graph in IndoorGML Node-
Relation Graph (NRG) manner, nodes have to be placed in
spaces, doors, slopes and stairs, and connectivity relationships
between them have to be determined.

4.3.1 Node placement: The locations of doors are known
from the method described in Section 4.2, in which also the vox-
els inside the door frame are removed. Because of this, together
with the region growing in which floors, stairs and slopes are clas-
sified, the floor is segmented into different indoor spaces. From
these separate spaces nodes can be extracted by selecting a point
inside the space. This can be done by taking the mean x,y,z for
a convex shaped room, or by selecting a random floor voxel as a
node when the room is concave.

As no specific way is discussed in the IndoorGML standard on
the placement of nodes in stairs and slopes, it has been decided to
place a node at the top and bottom of a stairway, in order for it to
connect well to the rest of the graph. For this the beginning and
the end of a stair or slope are detected, by looking at the places in
the trajectory when the type, as described in Section 3.2, changes
from floor to slope or stair.

4.3.2 Connectivity determination: In order to find which
nodes are connected the door, stair and slope nodes are regarded.
It is assumed that all separate indoor spaces are connected to other
spaces by either doors, stairways or slopes. A door always lies be-
tween two spaces; two floors, a floor and a stair or slope, or two
stairs or slopes. These spaces are detected by finding the closest
spaces to the door node. For stair and slope nodes: the bottom
of a stairway or slope is always connected to either a space or a
door, and the top of the stair or slope. For the top node this is ap-
plied vice versa. The network is created by connecting the stair
and door points to the points in the spaces.

5. RESULTS AND DISCUSSION

The methods are applied on a point cloud gathered in a part of a
university faculty. It includes a hallway, with some rooms and a
staircase leading to another room adjacent to it, and a large hall
with a large staircase in the middle incorporating multiple floors.
It was gathered with a ZEB-REVO laser scanner. The results
of the methods applied to get a connectivity graph for this point
cloud are discussed in this chapter.

5.1 Wall detection by 3D MAT

The 3D MAT sheet parameters, that were defined in Section 4.1,
have been tested on the point cloud to find the most optimal val-
ues. First of all different values of the separation angle were tried,
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and with keeping only sheets with a median of> 0.8π rad no wall
sheets were filtered out, and no unnecessary sheets were kept.
The same approach was used for the radius, which gave the best
value of keeping all sheets with a median of < 0.4 m, and for the
z-component of the normal vector with a value of< 0.2 only wall
sheets were kept. When a sheet had less than 1000 points, it was
never generated inside wall. A summary of the results is shown
in Table 2.

Parameter Value in MAT sheet
Separation angle θ Median > 0.8π rad
Radius r Median < 0.4 m
Z-component normal nz Absolute median < 0.2
Total number of points >1000

Table 2. Theoretical parameters for filtering MAT sheets

5.2 Doorway detection

In the door detection method proposed in this thesis only doors
that are walked through can be detected. There are 13 doors in
total, of which 7 are walked through. Most of the 6 doors that
were not walked through belong to rooms that were passed by, but
not visited. In the point cloud used, 7 doors are walked through,
of which all locations are detected. There are no doors detected at
locations where there is no door, so no false positives. For one of
the 7 doors that is detected, the indoor space is not split into two
separate spaces. The reason for this is shown in Figure 12. This
is caused by the fact that in the step of region growing of floors
the 8-neighbourhood of a voxel is taken into account, so voxels
that touch diagonally are counted as neighbours.

Figure 12. Door location is detected (left), but floor not
separated into two indoor spaces, because touching floor voxels

(right)

5.3 Connectivity graph creation

After applying the walkable space detection step, with voxels in-
side door frames taken out of region growing, the results in Figure
13 are obtained. Different colours indicate separate spaces. All
spaces that were visited by the ZEB-REVO laser scanner have
been automatically assigned a separate identifier. The dark blue
floor patch is the corridor mentioned, and the yellow floor patch
the large hall. The orange patch is the second floor from the cor-
ridor.

The connectivity network resulting from the node allocation and
connectivity determination steps is shown in Figure 14. All
rooms and doors have been assigned one node (orange and green

Figure 13. Resulting separate indoor spaces indicated with
different colours, stairs and slopes shown in white

respectively), and stairs and slopes are indicated with a red node
at their top and bottom. Connectivity relationships are shown by
the black lines. As can be seen, large spaces with multiple con-
nections (such as the corridor and large hall) also have only one
node. This makes routes that go through these spaces not always
representative.

Figure 14. Connectivity network automatically generated from
walkable space (red = stair or slope, green = door, orange =

room)

5.4 Discussion

The first results produced by the method proposed are promising.
A connectivity graph is generated between indoor spaces, and
doors, stairs and slopes are included. There are some points of
discussion that came forth while implementing the methods.

First of all the filtering parameters of the sheets could be depen-
dent on the type of indoor environment scanned, and especially
the total number of points in a MAT sheet is very dependent on
the point cloud density. Secondly only walls that were scanned on
both sides are detected, because medial balls can only be created
inside those walls. However, walls that were not scanned on both
sides are not needed to detect doors, because when a wall has
been scanned on only one side, it automatically means it has not
been walked through. Lastly it can be noted that the output con-
nectivity graph is not very suitable for navigation purposes yet.
Because each indoor space has only one node, especially routes
in corridors and large spaces are not representative of real paths.
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6. CONCLUSIONS AND FUTURE WORK

In this paper an automatic method is proposed to obtain a navi-
gation graph with IndoorGML Connectivity NRG structure from
a point cloud and laser scanner trajectory, by applying the 3D
MAT algorithm, and filtering it to obtain MAT sheets formed in-
side walls. These wall sheets are then used to detect the loca-
tion of doors in the voxelised point cloud, and also the voxels
on the floor inside the door frame. The latter are then removed
from the region growing step, in which walkable voxels are iden-
tified and classified into floor, stair and slope voxels (Staats et
al., 2018). This results in regions being grown as separate indoor
spaces, which are then used, together with the location of doors,
stairs and slopes, to create nodes at those locations. Connectiv-
ity relationships are deducted, which can form the basis of an
IndoorGML Connectivity NRG.

From the results shown in Section 5 the following conclusions
can be drawn:

• The 3D MAT, as implemented by Peters (2018), can be ap-
plied to indoor point clouds, and filtered in order to retain
only MAT sheets that were formed inside walls that were
scanned on both sides.

• Door detection using the 3D MAT wall sheets show promis-
ing results. Only doors that are walked through are detected.
Of 7 doors, the location of all could be detected. For one
door the gap created in the door frame between two spaces
was not adequate, causing them to be joined in the region
growing of walkable voxels.

• From the location of doors, rooms, stairs and slopes a graph
with IndoorGML Connectivity NRG structure can be cre-
ated.

• This connectivity network is not directly suitable for short-
est path calculations. When a large corridor has only one
node, the routes leading through this node are not represen-
tative of a real path.

• Accessibility information such as the location of stairs can
be directly retrieved from the connectivity graph. The width
and height of doors could be obtained from the voxelised
point cloud as well, by analysing height and width of voxels
around the locations marked as doors. Other types of acces-
sibility information, such as accessibility rights for certain
persons, cannot be retrieved from an indoor point cloud.

• The methods presented for door detection require the dy-
namic laser scanner to pass through all doors in order for
them to be detected. This can be seen as a weakness of the
method, but also minimises the occurrence of false positives
(doors being detected which are not really there) at the loca-
tion of furniture that look like doors (closets), or doors that
are permanently closed (see Figure 15).

These conclusions and other observations lead to the following
future work:

• In order to ensure 8-separation in voxels that lie on the floor
inside door frames a buffer could be created around the wall
sheets voxels, and all voxels below this buffer could be taken
out of the region growing step as well. This will ensure the
gap between two spaces to be wide enough.

Figure 15. False door with a glass pane

• To make routes in a hallway more representative subspacing
should be applied on some indoor spaces. This is a concept
also described in IndoorGML. The authors of this paper are
currently working on it, and have achieved promising results
in long corridors, while more work is to be done on wide
open spaces.

• The deducted connectivity relationships in this paper can be
used as an input for a IndoorGML Connectivity and Acces-
sibility NRG, which is something that the authors are cur-
rently working on as well.
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