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ABSTRACT: 

 

Indoor navigation can be a tedious process in a complex and unknown environment. It gets more critical when the first responders try 

to intervene in a big building after a disaster has occurred. For such cases, an accurate map of the building is among the best supports 

possible. Unfortunately, such a map is not always available, or generally outdated and imprecise, leading to error prone decisions. 

Thanks to advances in the laser scanning, accurate 3D maps can be built in relatively small amount of time using all sort of laser 

scanners (stationary, mobile, drone), although the information they provide is generally an unstructured point cloud. While most of the 

existing approaches try to extensively process the point cloud in order to produce an accurate architectural model of the scanned 

building, similar to a Building Information Model (BIM), we have adopted a space-focused approach. This paper presents our 

framework that starts from point-clouds of complex indoor environments, performs advanced processes to identify the 3D structures 

critical to navigation and path planning, and provides fine-grained navigation networks that account for obstacles and spatial 

accessibility of the navigating agents. The method involves generating a volumetric-wall vector model from the point cloud, identifying 

the obstacles and extracting the navigable 3D spaces. Our work contributes a new approach for space subdivision without the need of 

using laser scanner positions or viewpoints. Unlike 2D cell decomposition or a binary space partitioning, this work introduces a space 

enclosure method to deal with 3D space extraction and non-Manhattan World architecture. The results show more than 90% of spaces 

are correctly extracted. The approach is tested on several real buildings and relies on the latest advances in indoor navigation.  

 

 

1. INTRODUCTION 

Large buildings such as shopping malls, airports and hospitals 

suffer from the lack of up-to-date 3D models. During a disaster, 

having a digital twin of the building which reflects the emergency 

exits and indoor spaces is crucial for the first responders. Because 

of the complexity of the indoor environment, it is not trivial to 

keep the 3D models of buildings up-to-date. Therefore, most of 

the Building Information Models (BIM) or 2D floor plans are as-

designed and do not reflect the as-constructed or as-is state. 

Thanks to the recent improvements in the field of Mobile Laser 

Scanning (MLS) and Wearable Laser Scanners (WLS) (Karam et 

al., 2018; Lehtola et al., 2017), nowadays it is possible to scan a 

large complex in few hours just by walking inside the building. 

The output data from the mobile laser scanners are point clouds 

and images that represent the current status of building. Such 

output is a valuable source of information for first responders 

when it is enriched with semantics such as space subdivisions and 

navigable spaces. However, enriching the raw data of complex 

environments to valuable information for users (e.g. firefighters) 

needs the development of a smart pipeline. Such a pipeline 

should be able to distinguish the clutter (e.g. furniture and 

humans) in the point clouds from the permanent structure (walls, 

floor, ceiling and stairs). Additionally, the final output should 

have higher level of semantics such as the room layout and 

location of furniture which could be treated as obstacles during 

the disaster. In addition to a correct 3D model that reflects the 

current status of building, smart algorithms need to be developed 
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to generate flexible paths based on the agent’s constraints. The 

agent is the actor who should be guided during the disaster. 

Recent literature addresses the problem of indoor 3D 

reconstruction from point clouds in a different pipeline than 

navigation, mainly for BIM applications (Ikehata et al., 2015; 

Mura et al., 2016; Nikoohemat et al., 2018; Ochmann et al., 

2016). On the other hand, there are some related work focusing 

on the problem of path finding and navigation inside the 

buildings using already existing models (Diakité and Zlatanova, 

2018; Nagel, 2014; Wang and Zipf, 2017). Our pipeline 

addresses problems from indoor 3D modelling of point clouds to 

the extraction of advanced navigation networks. We tested our 

algorithms on complex indoor environments using the data from 

various mobile laser scanning systems. Our work contributes a 

new approach for space subdivision without the need of using 

laser scanner positions or viewpoints. Unlike other space 

subdivision methods which are based on a 2D cell decomposition 

or a binary space partitioning, this work introduces a space 

enclosure method to deal with 3D space extraction and non-

Manhattan World architecture. Furthermore, the 3D presentation 

of spaces as occupied, functional and the remaining free space, 

provides the 3D access for various agents for pathfinding in 

disaster situations. 

 

The structure of our work is as follows: in chapter 2 the related 

work is reviewed. In chapter 3, the problem of modelling from 

point clouds is tackled. The represented method is built on the 

pipeline suggested by (Nikoohemat et al., 2018). Chapter 4 

explains how to generate a Flexible Space Subdivision (FSS) 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-285-2019 | © Authors 2019. CC BY 4.0 License.

 
285



 

(Diakité and Zlatanova, 2018) from the 3D model generated in 

chapter 3. Such subdivisions can be exploited to generate flexible 

navigation paths accounting for the spatial constraints of the 

agents. In chapter 5, we show the results which is followed by the 

conclusion and future work in chapter 6. 

 

 

2. RELATED WORK 

We devote the related work to two major problems that are 

addressed in our pipeline. First, the topic of indoor 3D 

reconstruction from point clouds is briefly reviewed. Second, the 

literature in the field of indoor navigation and indoor space 

subdivision are explored. 

 

Indoor 3D Modelling from Point Clouds 

Recently, there has been a progress towards reconstruction of 

indoor models from point clouds, although most of these works 

are limited to clutter-free environments or Manhattan-World 

structures (Becker et al., 2015; Khoshelham and Diaz-Vilarino, 

2014). Other works reduce the complexity of the structure 

assuming walls are always vertical or ceilings are at the same 

height which generates a 2.5D model (Ikehata et al., 2015; Tran 

H. et al., 2019; Turner et al., 2015). Few works deal with arbitrary 

wall layout and slanted walls (Li et al., 2018; Mura et al., 2016; 

Nikoohemat et al., 2018). The process of 3D modelling from the 

point clouds is not limited to the detection of the permanent 

structures but also reconstruction of a watertight model. To this 

end, some researchers reconstruct the walls in a piecewise-planar 

approach (Mura et al., 2016; Xiao and Furukawa, 2014) while 

others generate volumetric walls (Bassier et al., 2018; Macher et 

al., 2017; Ochmann et al., 2016). Our method reconstructs the 

walls as a volumetric object after detecting the planes in the point 

clouds. Additionally, we validate all the walls are topologically 

correct and connected.  

 

Openings such as doors are necessary elements in a correct 3D 

model and for navigation. Detection of the doors from the point 

clouds using the trajectory of the mobile laser scanners is 

suggested by (Elseicy et al., 2018; Nikoohemat et al., 2017). 

Occlusion reasoning is used in some other works (Xiong et al., 

2013) to identify openings. Structure grammar is applied by 

(Ikehata et al., 2015) for detecting doors. Machine learning and 

deep learning algorithms are used in some works for detection of 

indoor objects such as walls, windows and doors (Boulch et al., 

2018; Qi et al., 2016). In this work, the adjacency graph 

developed by (Nikoohemat et al., 2018) is used for detection of 

the permanent structure and the trajectory of the mobile laser 

scanners is exploited for identifying the doors. 

 

Space Subdivision and Indoor Navigation 

A 3D model should represent the correct layout of the interiors 

such as space subdivisions and rooms. To generate a valid 

navigation graph, the topology of the indoor spaces and the 

connections (e.g. doorways) must be correct. Researches in 

indoor navigation traditionally rely on 2D floor plans of the 

environment (Goetz and Zipf, 2011; Yang and Worboys, 2015). 

And the few ones that use 3D models consider empty buildings 

(Khan and Kolbe, 2013) and are mostly 2.5D rather than real 3D. 

Recent works have drawn the attention to the advantages of 3D 

models and the need of refining the spatial subdivision of the 

models in order to provide more advanced navigation networks 

and systems (Liu and Zlatanova, 2011; Zlatanova et al., 2014). 

This has been also considered in the OGC standard for indoor 

navigation, IndoorGML (Lee et al., 2014). 

 

Space subdivision for navigation is a concept more familiar to the 

robotics domain. Approaches in that field require highly refined 

spatial models to have a better control of the movement of robots 

or track them with more precision. A common method is based 

on the occupancy grid supported by morphological algorithms 

(Ambruş et al., 2017; Nikoohemat et al., 2018; Werner, 2018). 

Using occupancy grid for robot operations is a logical choice 

while for human agents, the concern is more about being able to 

anticipate considerable obstacles, e.g. for disabled people or 

consider the occupancy induced by the functions of the indoor 

objects. Furthermore, most of the recent literature which 

investigates the space subdivision for indoor navigation rely on 

vector models (Diakité and Zlatanova, 2018; Taneja et al., 2016), 

leaving no solution for buildings without BIM or 2D CAD 

models. The few ones dealing with point cloud focus on the 

semantic enrichment of the acquired data (Fichtner et al., 2018; 

Staats et al., 2018). 

In this work, we use cluttered point clouds acquired from 

complex buildings and make a pipeline that generates space 

subdivisions using the FSS framework and produces the 

navigation graph. Therefore, in our 3D model obstacles are 

included from the point clouds to build a versatile environment 

for our tests. 

 

 

3. 3D MODELLING FROM POINT CLOUDS 

In this section the algorithms for reconstruction of a 3D model 

from point clouds are explained. Our method uses the adjacency 

graph suggested by (Nikoohemat et al., 2018) for detection of 

permanent structures. The output of the adjacency graph is 

labelled point clouds which we use to model the walls, floors and 

ceiling. A method is developed to make a watertight, 

topologically valid model out of the labelled point clouds by 

extending the walls and reconstructing the gaps. Finally, doors 

are detected using the trajectory of the mobile laser scanner. 

 

3.1 Detection of the Walls, Floors and Ceilings 

The typical solution in the literature for detecting the walls is 

based on the assumption that walls are always vertical, and they 

form a regular grid structure. In our pipeline, navigation in 

complex structures for disaster management is the goal. 

Therefore, we need a method that can deal with an arbitrary wall 

layout and cluttered point clouds. We generate an adjacency 

graph from planar segments to further analyse it for the detection 

of the walls. Before proceeding with creating the adjacency 

graph, neighbouring segments with the same orientation should 

be merged into one segment by comparing the normal of their 

planes. A new plane is calculated for merged segments. 

 

Adjacency Graph The point clouds are segmented to planar 

patches using a surface growing algorithm (Vosselman et al., 

2004). An adjacency graph is generated from the planar segments 

where each segment represents the node in the graph and each 

edge is connecting two adjacent segments. Before proceeding by 

labelling the nodes and edges in the graph, we classify the 

segments to almost-vertical and almost-horizontal categories 

using a threshold of 45 degrees. By observing the logical 

structure in an indoor environment, we can learn that there is a 

topology relation among ceiling, wall and floor. A ceiling is 

connected to the wall and the centre of the ceiling is above the 

centre of the wall candidate (wall-ceiling edge). Respectively, the 

wall is connected to the floor and the centre of the wall is above 

the floor centre (wall-floor edge). Two walls can be connected to 

each other if both of them are almost vertical and adjacent (wall-

wall edge). The algorithm checks each edge and assigns one of 
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the three labels wall-wall, wall-ceiling or wall-floor to the edge 

otherwise the edge remains unlabelled (Figure 1).  

 

Semantic Labelling In this step, the nodes which represent the 

segments will be assigned one of the permanent structure labels: 

wall, floor or ceiling. To do this, each node is examined 

individually, for example if a node has at least one wall-ceiling 

edge and its segment is almost-vertical then it is labelled as wall. 

If the segment is almost-horizontal and has more than one wall-

ceiling edge then it is a ceiling and if it has more than one wall-

floor edge, it is a floor. Additionally, some soft rules will be 

applied to differentiate floor and ceiling from some false 

positives. For example, segments labelled as ceiling should not 

have overlap with each other, otherwise the upper segment is 

selected as the ceiling. Floor and ceiling nodes should not have a 

common edge in the graph and should have a distance more than  

 
Figure 1: (a) shows the segmented point clouds and the adjacency 

graph. (b) The adjacency graph and (c) detected walls in yellow, 

floor in orange and ceiling in red colour. Other colours represent 

the clutter (e.g. furniture). 

 

1.5 meter. Nodes with fewer than 500 supporting points per 

segment are not included in the graph. For more details and 

special cases refer to (Nikoohemat et al., 2018). The output of the 

adjacency graph is planar segments with their semantic labels. 

However, because of the occlusion and complexity of the indoor 

environment some of the segments are misclassified or remain 

unknown. Before starting with the modelling, we should make 

sure that the labels are correct by visual inspection. 

 

Visual Inspection and Correction Labelled segments are 

visualized by a separate colour per class. The correction is just 

changing the label of a segment to a correct class. For example, 

in some cases a clutter segment is labelled as a permanent 

structure which should be sorted to the unknown class (see the 

blue dotted circle in Figure 2). Note that for this work, furniture 

is classified as unknown (clutter). To simplify the visual 

inspection, each level of the building is inspected independently 

and for each level the ceiling is corrected separately. The process 

of visual inspection is fast and it takes few minutes to an amateur 

user for a building with approximately 20 rooms. 

 

After semantic labelling and visual correction, the segments are 

ready for 3D model reconstruction. One step towards 3D 

modelling is the space subdivision or in other words extraction 

of the room layout. To achieve this goal, the walls should be 

modelled and should be topologically correct. In next section, we 

explain how the disjoint segments are tackled for modelling.  

 

 

Figure 2: The figure shows the top view of several rooms. 

Detected walls are in orange, and the red circles show the missing 

walls, which after visual inspection, their label changed to the 

wall. The blue circle shows a false positive wall, which should be 

classified as a clutter. 

 

3.2 Generate a Watertight 3D Model 

Generating a watertight model involves modelling the permanent 

structures such that indoor spaces topologically closed by their 

bounding elements are well reproduced. Labelled segments from 

previous step may not be connected to each other because of gaps 

in the data (not scanned area) or missing data during the 

segmentation and labelling process. Note that although an 

adjacency graph is reconstructed based on the proximity of the 

segments, these latter are partially connected. Part of the 

segments that are not connected should be extended to each other 

to form a watertight model. To achieve this goal, an oriented 

enclosing rectangle is generated per segment and the best fitting 

plane of the rectangle is calculated from the point clouds 

associated to the segment. Therefore, for each segment an 

oriented rectangle and its corresponding plane is used for further 

processing.  

 

Automatic Topology Correction Each wall should be 

connected to the neighbouring walls, floor and ceiling. We call 

this issue an undershoot problem which means two objects are 

not connected. Because of undershoot problem the production of 

an enclosed space, i.e. a room, is problematic. Rectangles which 

represent the permanent structures (walls, floors and ceilings) are 

used to check the consistency of the space. For all rectangles, 

each two nearby rectangles are selected, and their planes are 

intersected. If the intersection line is within a distance of the 

edges of two rectangles, then two rectangles are extended to meet 

each other at the intersection line (Figure 3a, b). The threshold 

for intersection should be less than a narrow corridor width (e.g. 

1.2 meter), because the walls on two sides of the corridor should 

not meet each other. Openings caused by doorways could be 

closed by this approach and later be replaced by a door object in 

the 3D model. The automatic topology correction is done for each 

pair of adjacent rectangles. Note that this approach is not limited 

to Manhattan-World and vertical walls assumptions and it can 

handle any arbitrary room layout. In the next step, rectangles of 

two faces of a wall are merged into one wall object to reconstruct 

a volumetric wall. 

 

Modelling Volumetric Walls A volumetric wall is a parametric 

object that is represented by the wall thickness (w), the normal of 
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the wall plane (n), the extension of the wall extracted from the 

oriented rectangle (h * l) and the centre of the wall (c) calculated 

from the associated point clouds. Each volumetric wall is stored 

and visualized by an oriented bounding box. In contrast to the 

floor and the ceiling, walls are the objects that could be measured 

from both sides. However, sometimes both faces of a wall are not 

present in the data either because it is a façade, or it is not 

reachable from the other side (e.g. occlusion). Here, a method to 

model a volumetric wall even if it is partially measured or 

labelled is explained. The same rules apply for the ceiling and 

floor reconstruction. The only difference for the floor and ceiling 

is that the thickness (w) is user defined. In multi-storey buildings 

it is possible to model the ceiling of the lower level with the floor 

of the upper floor. However, we limit the scope of this work to a 

user defined parameter for the floor and ceiling thickness.  

 

 
Figure 3: (a) and (b) show before and after the topology 

correction. Extension of the rectangles for unconnected walls. (c) 

and (d) show two faces of walls are merged to create volumetric 

walls. 

 

To model walls, all rectangles which represent wall segments are 

sorted based on their area. Sorted rectangles are compared two 

by two and parallel rectangles with a distance less than a 

threshold are merged. The new attributes for the merged 

rectangle are recalculated. At each merge, the plane of the 

rectangle is modified considering the rectangle’s area as the 

weight. The thickness of the wall is calculated based on the 

Euclidean distance of the planes of two rectangles. The distance 

is measured from the centroid of the smaller rectangle to the 

plane of larger rectangle. The extent (h * l) and the centre (c) are 

acquired from the bigger rectangle. Therefore, in the cases that 

one side of the wall is complete and the other side is partially 

measured, we hypothesize that the extent of the wall is given by 

the bigger rectangle. All the wall attributes are stored in the 

oriented bounding box object as the volumetric wall. Walls which 

are not merged will be assigned an oriented bounding box with a 

user defined thickness. Other attributes such as the normal and 

the centre can be calculated from the box. Since our algorithm 

generates the parametric walls, we can convert them to other 

standard 3D formats or an IFC wall format for further 

improvements. The bounding boxes and their parameters are 

exported as a standard format such as a Wavefront file (obj) or 

an Object File Format (OFF) to be used for space extraction and 

indoor navigation. 

Adding Doors and Furniture Doors are detected using a 

method from (Nikoohemat et al., 2018). For the extraction of the 

doors, the trajectory of the mobile laser scanner is required. Using 

this method, doors which are crossed by the trajectory are 

identified. This includes closed and open doors. A door is 

appeared in the data as closed, when the scanner operator passes 

the opening and the door is closed before or after the scanner 

crosses it but yet visible. The centre of the door is pinpointed by 

using three criteria: 1. a trajectory should be close to the 

candidate door centre; 2. there should be some points on top of 

the door centre; and 3. in the neighbourhood of the door centre 

there should not be points, which implies that there is an opening. 

When doors are identified, an oriented bounding box indicating 

the extent, orientation and the location of the door is generated. 

The width of the door is user defined.  

 

Semantically identifying the permanent structures allows us to 

isolate the clutters resulting from the scanning. Among them, 

objects corresponding to actual indoor furniture such as tables 

and chairs are manually selected, and the rest is removed to clean 

the model. The identified furnishing elements are represented as 

the oriented bounding box (OBB) of the objects. The purpose is 

to add details to the 3D model for navigation applications using 

the FSS framework, which steps are described in the following 

section. 

 

 

4. FSS ON THE VOLUMETRIC MODEL FROM THE 

POINT CLOUD 

In this section we discuss the application of the Flexible Space 

Subdivision (FSS) framework (Diakité and Zlatanova, 2018) 

from the 3D vector output of the previous section. Flexible in this 

context implies that a space can be changed based on the dynamic 

objects such as furniture and obstacles. Accordingly, the 

remaining space for the navigation should change. The purpose 

of the framework is to subdivide the indoor environment into 

three main categories: the occupied (O-Spaces), the functional 

(F-Spaces) and the remaining free spaces (R-Spaces). This 

subdivision comes in a context of fine-grained indoor navigation. 

By subdividing the environment on the basis of the objects that 

occupy it and their functions, the FSS makes it possible to 

account for advanced constraints during navigation, while 

ensuring enough granularity for precise location.  

 

Although the original framework was described mainly for BIM 

models, in this paper we start from a point cloud in order to 

benefit from all the advantages that it provides (rapid acquisition, 

up-to-date representation, etc.). However, there are several 

features required for applications like path planning and indoor 

navigation that a BIM model would directly provide, while they 

are missing from a point cloud input. Therefore, they have to be 

retrieved. The process in the previous section has allowed to 

recover the permanent structures of the model up to a level that 

is geometrically comparable to a BIM model. Now we have to 

retrieve the most critical feature for the FSS, which is the shape 

of the indoor space, and from there we can generate the other 

subspaces of the framework, and then the navigation network. 

 

4.1 Recovering the Indoor Spaces as Explicit 3D Features 

The indoor space features are implicitly present in the watertight 

3D model. Similarly to BIM models, they are the result of the 

configuration of the common permanent structures (walls, floors, 

ceilings, etc.) (Diakité and Zlatanova, 2016). Figure 4 illustrates 

the layout of the interior of a model after it is processed from 

point clouds. It is visible that the orientation of the volumes (e.g. 
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the walls) is not always straight as it should. While this may be a 

serious esthetical issue, it is not a limitation in the scope of this 

work, as the priority is to provide a quick and precise enough 

insight of the navigable spaces in the building. 

 
Figure 4: Walls and floor obtained after the reconstruction of the 

Fire brigade building using point clouds. This is an intermediate 

result which after the space subdivision generates correct spaces. 

 

The indoor space structures can be retrieved directly from the 

point cloud (Nikoohemat et al., 2017). However, the roughness 

of the volumes resulting from such process does not make them 

suitable for the operations on which the FSS is relying (Diakité 

and Zlatanova, 2018). Thus, smoother spaces are needed to 

provide them with a BIM-like vector structure.  

 

 
Figure 5: Smooth space reconstruction from Boolean operations. 

 

Starting from the wall, floor and ceiling volumes, our approach 

reconstructs the space volumes. The goal is to simply extracting 

the closure of the interior of the model using Boolean operations. 

This operation is known as the regularization of a closed set in 

ℝn (Tilove and Requicha, 1980). As it says, this method deals 

only with closed volumes, therefore only indoor spaces with full 

closure can be reconstructed. Figure 5 illustrates the resulting 

spaces. The geometry of the space volumes is closer to the BIM 

paradigm, and they do not purposely consider the indoor 

obstacles yet. Furthermore, we can also see that one room is 

missing due to their lack of closure. With the spaces that could 

be reconstructed, we can now proceed to the rest of the FSS 

process. 

 

4.2 Identification of the Occupied Spaces (O-Spaces) 

The consideration of the indoor objects that populates the space 

is critical for indoor navigation applications. While they 

generally make the 3D reconstruction trickier, they remain as 

valuable information in the scope of the FSS. The framework 

does not require a very precise geometric description of the 

indoor features to perform the subdivision. Thus, the 

simplification method adopted in the end of the previous section 

fits to the purpose, and the furniture is represented as oriented 

bounding boxes. Furthermore, furnishing elements that are close 

to each other are automatically aggregated under the same OBB, 

which respects the conditions required by the FSS in such 

configurations. Therefore, the OBBs of the furniture are 

considered as the O-Spaces and the identification of the free 

space will rely on them. 

 

4.3 F-Spaces and R-Spaces 

F-Spaces correspond to the spaces that are induced by the 

explicit and implicit function of an object and allow to account 

for such parameters in the navigation. From a more technical 

point of view, F-Spaces allows to produce proper position nodes 

for agents with respect to the function of indoor object. For 

example, in a context of emergency response, F-Spaces of objects 

such as extinguishers would allow to navigate the agent up to 

where the object would be accessible. Similarly, an F-Space of a 

highly flammable object would stand as a space to avoid during 

the navigation. 

However, the semantic level of our model does not allow to get 

enough information about the function of the furnishing 

elements. For this reason, F-Spaces are skipped in the process.  

 

 
Figure 6: O-Spaces (colourful boxes) and extracted R-Spaces 

(yellow volumes). The image shows the spaces from below, 

because otherwise the obstacles (colourful boxes) are covered 

with free space from a top view. Walls are not included in this 

model. 

 

R-Spaces They correspond to the actual free space that remains 

once the O-Spaces and the F-Spaces are subtracted from the 

spaces. The process to obtain them is to simply apply a Boolean 

difference between each space (which generally correspond to a 

room) and the O-Spaces (and F-Spaces if any) that it contains. 

Figure 6 gives an illustration of the R-Spaces generated from the 

model in Fig.4. One volume is displayed in wireframe for 

illustration purpose. With those extracted subspaces, we can now 

generate an advanced 3D navigation graph. 

 

4.4 Advanced Navigation Network 

Most existing navigation systems rely on simplified networks to 

provide navigation services. Simple building topology is used to 

determine for example which room is connected to which 

corridor, through a given opening. This then leads to a 

connectivity graph that provides a very limited insight of the 

reality of the indoor environment. In contrast, our navigation 

networks, while providing all the advantages of a basic 

connectivity graph, also provides the accessible areas in 3D, 

allowing agents with any locomotion type to plan for an obstacle 

free path. Figure 7 (top) shows a simple network that connects 

the extracted rooms through their shared doors. As the image 

shows, this network would not allow to anticipate the indoor 

configuration to plan for special bulky tools. 

 

 
 

 
Figure 7: Top: extraction of a basic navigation graph using spaces 

and door (green). Bottom: Advanced navigation graph 

accounting for obstacles and 3D accessibility. This graph can be 

utilized for navigation planning. 
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The advanced network illustrated in Figure 7 (bottom) shows a 

more elaborated network that goes around the obstacles and 

depict all the accessible spaces. The nodes of such graph are 

derived specifically from the R-Spaces, which guarantee the 

availability of free space, but also from F-Spaces that are of 

interest to the agent. No node is provided for the O-Spaces. 

Additionally, the R-Spaces are subdivided into sets of convex 

pieces, to ensure that the provided nodes lie inside them. 

 

 

5. EVALUATION 

Our methods are tested on two datasets. One dataset is one floor 

of a large Fire Brigade building (Fb1) and the other is a two-floor-

building of another Fire Brigade building (Fb2). Both datasets are 

acquired using mobile laser scanner devices. The details are in 

the Table 1. The original point clouds are subsampled while 

keeping the average point distance of 0.05 m.  

 

Parameter Selection Our pipeline starts with the planar surface 

growing segmentation. The smoothness threshold is crucial 

parameter for surface growing which depends on the noise in the 

data. In our datasets a value between 8 and 10 cm is appropriate. 

The next important value is the adjacency threshold (dadj) which 

explains whether two segments are close enough to be considered 

adjacent. We use the same parameters suggested in the original 

work for the adjacency graph (dadj < 10 cm) (Nikoohemat et al., 

2018).  

 

For creating volumetric walls from two opposite faces of each 

wall, their plane’s distance should be less than 0.8 m and their 

normal angle should deviate less than 10 degrees. In merging the 

second floor of Fb2, a lower angle threshold (θ < 5 degrees) 

should be used; otherwise the neighbouring wall segments 

constructing the curved wall will be merged (Figure 8, Fb2-2). 

Another important threshold is the extension distance for the 

topology correction of the adjacent walls. The extension distance 

(d undershoot) should not be more than the distance between the two 

closest walls in the data. For example, in the congested structures, 

the distance between walls could be an indicator for the selection 

of d undershoot. In our experiment, we used a value between 0.8 and 

1.0 meter.  

 

Visual Inspection and Correction After labelling the permanent 

structures (walls, floor and ceiling), an amateur user looks at the 

data, and corrects the label of segments where needed. For our 

datasets, this process took less than 5 minutes per dataset and in 

total less than 6% of the total number of segments (see Table 1) 

are relabelled. Most of the corrections happen for the clutter near 

the wall and the ceiling, where the clutter could be misclassified 

as the permanent structure. 

 

Results The results are shown in Figure 8. Comparing the results 

with the ground truth shows that more than 90% of the rooms are 

correctly reconstructed, but some are over-segmented (Table1, 

Fb2). Moreover, we do not count the small rooms in the rest 

rooms as a separate room. However, our model subdivides them 

to separate rooms. The visual comparison of the results with the 

professionally generated BIM model for Fb2 indicates that the 

thickness of the walls in most cases is close to the real data. 

Spaces which do not have a door can be easily identified during 

the production of the navigation graph. More than 75% of the 

doors are detected in our pipeline. The number of doors in the 

Fb2-1 is high and the trajectory does not cross all the doorways. 

Therefore our algorithm in Fb2-1 does not detect the closed doors 

which are not traversed by the trajectory. Further investigation is 

required to detect and add missing doors to the model. Our final 

models are true 3D models and not just the extrusion of the 2D 

walls. At some spaces the height of the ceiling is changing (fire 

brigade’s truck hall) and this is modelled correctly in our result. 

Moreover, our algorithms handle any arbitrary building structure 

such as slanted walls, although the curved wall is represented by 

smaller planar segments (Figure 8, Fb2-2). 

 

Furthermore, the generated 3D vector models make the point 

clouds suitable for the FSS approach. The produced watertight 

structural volumes and the simplified furniture give the right 

environment to proceed to the spatial subdivision based on the 

space occupancy. 

 

Limitations Modelling walls with a lot of intrusions and 

extrusions (e.g. windows frame, heating system and curtain) 

could be challenging. In such cases, normally, we fit a plane to 

the dominant wall segment and extract the thickness of the wall 

from faces of two sides of the wall if exist. Hence, the 

reconstructed volumetric wall does not reflect the details of the 

wall. Also, places such as cabinets in the kitchen or shelves built 

in the wall can be classified and modelled as part of the wall when 

they are connected to the ceiling. Our method does not enforce 

any perpendicularity, vertical or horizontal constrains for the 

reconstruction of permanent structures. Some walls with adjacent 

clutter could lead to under-segmentation. As a consequence, 

some of the walls are skewed or inclined incorrectly. However, 

this limitation does not jeopardize the purpose of indoor 

navigation and space subdivision.  

 

   

Datasets #points MLS #Rooms/ #Detected #Doors/ #Detected #Segments 

(structure/clutter) 

 #Visually 

relabelled 

Figures 

Fb1 4.4 M Zeb1 16 / 15 17 / 11 414 (70/ 344) 13 4, 5, 6, 7 

Fb2-1 4.1 M Viametris 18 /16 21 / 13 1465 (121/1344) 26 2, 3, 8 

Fb2-2 1.5 M Viametris 9 / 8 8 / 8 341 (65/276) 23 1, 8 

 

Table 1:   Details of the datasets, and the number of detected rooms and doors. The sixth column indicates the number of planar 

segments with supporting points more than 500 and in the brackets number of permanent structure and clutter segments. The last 

column shows how many of the segments are visually identified and corrected. 
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Figure 8 : The result from Fb2 dataset. For each floor in order, we represent the segmented point clouds, the space subdivisions with 

walls, the occupied spaces (red boxes) and the remaining spaces (R-spaces in white) and finally the ground truth. The first row is the 

second floor of the Fb2 dataset. 

 

 

6. CONCLUSIONS AND FUTURE WORK 

We presented a reconstruction pipeline of indoor 3D models that 

allows to produce an advanced navigation network from point 

clouds of complex indoor environments. The processes are 

designed to be suitable for emergency responses where critical 

information has to be identified as fast as possible to increase the 

chance of a successful intervention. In this context, point clouds 

are more valuable than 2D floor plans that are often outdated. The 

first step of our process consists of identifying the permanent 

structures of building model from the point cloud before 

providing it with semantic information. A volumetric-wall vector 

model is produced from the point clouds and is handed to the 

navigation part which starts by reconstructing the space 

subdivisions. This process including the visual inspection takes 

less than 10 mins for Fb2-1 with almost 20 rooms. The visual 

inspection improves the result by 10%, and it is not meant to 

achieve the total correctness of the model. The operator only 

checks obvious mistakes such as a mislabelled clutter. According 

to our experiments, the process on the point clouds such as 

segmentation, generalization of the segments and reconstructing 

the adjacency graph take the most computational time. Rest of 

the process on the rectangles and generating the spaces takes one 

or two minutes. The FSS framework is then applied, taking into 

account the occupied spaces in the building. The resulting 

subdivision allows to generate an advanced navigation network 

that encapsulate the 3D accessibility of the indoor environment. 

This can support path planning for pedestrian, robot and even 

flying objects such as drones. With minor modifications our 

pipeline can also be applied to other applications such as scan-to-

BIM, as-built models and energy minimization in large buildings.  

 

Our approach allows the reconstruction of indoor complexes 

from point clouds and using it for a high level space subdivision. 

The topology correction method assures the enclosure of the 

spaces. The suggested method for volumetric wall creation is 

robust to cluttered environments and missing data. Since we 

generate a watertight model based on the space enclosure, the 

extraction of spaces is not limited to a priori knowledge such as 

the number of scans per room. Proposed algorithms in this work 

can be extended to include more rules to model the details of the 

walls and to add stairs. Future work would be devoted to the 

creation of the navigation graph for a multi-storey building and 

to test the graph based on the various agents and the function of 

the space. 
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