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ABSTRACT: 

In this work, we present a frequency-drift compensated (Fd-C) closed-form solution for stereo RGB-D SLAM. The intrinsic parameters 

for each sensor are first obtained with a standard camera calibration process and the extrinsic orientation parameters achieved through 

a coarse-to-fine scheme that solves the initial exterior orientation parameters (EoPs) from control markers and further refines the initial 

value by an iterative closest point (ICP) variant minimizing the distance between the RGB-D point clouds and the referenced laser 

point clouds. With the assumption of fix transformation between the frames with the same timestamp, we define one sensor as reference 

sensor and the other sensor as slave sensor and the slave frames can be mapped to the timeline of the references sensor. Rather than 

endow the camera pose of the nearest frame to the slave frames, we derive the accurate camera pose for slave frames in a spatially 

variant way. Therefore, the pose relations between the slave frame and the adjacent reference frame can be derived, which provided 

opportunity to use the more accuracy observations from multiple frames for better tracking and global optimization. We present the 

mathematical analysis of the iterative optimizations for pose tracking in multi-RGB-D camera cases. Finally, the experiments in 

complex indoor scenarios demonstrate the efficiency of the proposed multiple RGB-D slam algorithm. 

1. INTRODUCTION

Creating detailed 3D maps of indoor environments is critical for 

mobile robotics applications, including indoor navigation, 

localization and path planning. Simultaneous localization and 

mapping (SLAM) is key to reliable 3D maps, as it estimates the 

camera pose accurately, regardless of sensors (Thrun, 2002). 

Recently, the widespread availability of RGB-D sensors (such as 

Kinect and Structure Sensor devices) has led to rapid progress in 

indoor mapping. These tools have several advantages. They are 

low cost, lightweight and highly flexible and are capable of high-

quality 3D perception (Endres et al., 2012; Newcombe et al., 

2011). The accuracy of the 3D maps produced by RGB-D devices 

is highly dependent on the accuracy of the frame registration. 

RGB-D SLAM systems can be categorized into two types based 

on the registration method: the dense style and the sparse style 

(Darwish et al., 2019; Kerl et al., 2013; Mur-Artal and Tardos, 

2017; Tang et al., 2018; Tang et al., 2016; Whelan et al., 2012). 

In order to achieve more robust pose tracking and mapping of 

visual SLAM, the robotics researcher has recently shown a 

growing interest in utilising multiple camera, which is able to 

provide more sufficient observations to fulfil the frame 

registration and map updating tasks. This implies that better pose 

tracking robustness can be achieved by extending monocular 

visual SLAM to utilise measurements from multiple cameras. 

(Yang et al., 2015) proposed a visual SLAM method using 

multiple RGB-D cameras, which integrate the observations from 

multi-camera for camera tracking. Their experiments results 

implied that dual-Kinects SLAM provided better pose tracking 
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performance than the results from single Kinect. However, they 

ignored the time-drift between the frames obtained by different 

cameras, which may result at inaccurate positions of observation 

used for map updating. Besides, loop closure detection was not 

been implemented. (Chen et al., 2018) constructed a multiple 

RGB-D system with three Kinects V2 camera. Three Kinects V2 

are mounted on a rig with different directions and synchronized 

by OpenKinect driver. However, this work mainly concentrated 

on the intrinsic and extrinsic calibration and verify the 

effectiveness of mapping using multiply RGB-D cameras. 

In this paper, we present a frequency-drift compensated closed-

form solution for multiply RGB-D SLAM, which is enable to 

eliminate the influence of time-drift between different camera 

during motion tracking. The intrinsic parameters for each sensor 

are obtained with a standard camera calibration process and the 

extrinsic orientation parameters achieved through a coarse-to-

fine scheme that solves the initial exterior orientation parameters 

(EoPs) from sparse control markers and further refines the initial 

value by an iterative closest point (ICP) variant minimizing the 

distance between the RGB-D point clouds and the referenced 

laser point clouds. While in theory, a fix rigid transformation 

should be sufficient to register the frames with the same 

timestamp from two sensors. Since synchronising multiply 

Kinect sensors is impossible, there existed frequency-drift due to 

different topic publish rate of sensors. Then with the assumption 

of fix transformation between the frames with the same 

timestamp, we define one sensor as reference sensor and the other 

sensor as slave sensor and the slave frames can be mapped to the 
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timeline of the references sensor. Rather than endow the camera 

pose of the nearest frame to the slave frames, we derive the 

accurate camera pose for slave frames in a spatially variant way. 

For each slave frame, we make a hypothesis that there exist a 

corresponding reference frame with the same timestamp and two 

adjacent frames can be found for each fictitious frame. A linear 

basis is imposed on the translation and rotation to recover the 

camera pose of the fictitious frame. A scale parameter is 

computed from the time interval between the fictitious frame and 

the adjacent frames.  While trilinear interpolation is used to 

interpolate translation quantities, rotations have to be 

interpolated over the sphere to achieve constant-speed motion. 

This is achieved by the slerp operation. Therefore, the pose 

relations between the slave frame and the adjacent reference 

frame can be derived, which provided opportunity to use the 

more accuracy observations from multiple frames for better 

tracking and global optimization. Finally, the experiments in 

complex indoor scenarios demonstrate the efficiency of the 

proposed multiple RGB-D slam algorithm. 

Figure 1. Left: Stereo RGB-D mapping system setup, the two Kinects mounted on a Jetson Tx2, one facing upwards and the other 

one facing downwards. Middle: Camera views of two camera at the same time-stamp. Right: The built dense point cloud using the 

two Kinect 

2. CAMERA CALIBRATION PROCEDURE

Since the stereo cameras in our multiple RGB-D system are 

mounted with few overlapping in their FOVs, we solve the initial 

EoPs of two cameras by the corresponding points detected from 

the chessboard. We defined the downward Kinect as the 

reference camera  𝐶𝑟 and the upward Kinect as slave camera 𝐶𝑠.

As shown in Figure 2(a), two sets of frame pairs are collected in 

different position and direction, and the corresponding point pairs 

in the chessboard are detected automatically, 𝑃𝑟and 𝑃𝑠 represent

the corner points in reference sensor and slave sensor 

respectively. Therefore, an initial transformation 𝑇𝐼𝑁𝐼  between

downward and upward cameras can be derivate by minimizing 

the distance between 𝑃𝑟 and 𝑃𝑠.

𝑃𝑟 = 𝑇𝐼𝑁𝐼 ∗ 𝑃𝑠 (1) 

As the overlapping region is two small to obtain an accurate EoPs. 

We further refine the results by an ICP variant minimizing the 

distance between the RGB-D point cloud and the referenced laser 

point clouds 𝑃𝐿. We first register the laser point clouds to the

point clouds from reference sensor. Since the ICP processing 

requires a fine initial transformation. Therefore, based on the 

initial transformation of  𝐶𝑟 and 𝐶𝑠, we first transform the point

cloud from slave sensor to the coordinate system of reference 

sensor, then the transformation can be refined by an ICP variant 

minimizing the distance between the transformed point cloud 

from slave sensor and the laser point clouds. 

𝑃𝐿 = 𝑇𝑅𝑒𝑓𝑖𝑛 ∗ 𝑃𝑠′ (2) 

Based on Equation (1) and Equation (2), accurate external 

orientation parameters of reference sensor and slave sensor can 

be derived as following. 

𝐶𝑟 = 𝑇𝑅𝑒𝑓𝑖𝑛 ∗ 𝑇𝐼𝑁𝐼 ∗ 𝐶𝑠 (3) 

Figure 2. Exterior orientation calibration for stereo cameras 
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3. FREQUENCY-DRIFT COMPENSATED MULTIPLY

CAMERA TRACKING 

3.1 Fd-C strategy 

Theoretically, a fix rigid transformation should be sufficient to 

register the frames with the same timestamp from two sensors. 

Since synchronising multiply Kinect sensors is impossible, there 

existed frequency-drift due to different topic publish rate of 

sensors. Rather than endow the camera pose of the nearest frame 

to the slave frames, we derive the accurate camera pose for slave 

frames in a spatially variant way. To enable accurate utilizing of 

observations from multiple cameras, a frequency-drift 

compensated strategy is proposed to eliminate the discrepancy of 

the corresponding frames. In our frequency-drift compensated 

strategy, for each slave frame, we make a hypothesis that there 

exist a corresponding reference frame  𝐹𝑓𝑖𝑐
𝑖  named

“fictitious frame” with the same timestamp and the slave frames 

can be mapped to the timeline of the references sensor. Therefore, 

for each slave frame, two adjacent frames 𝐹𝑓𝑤
𝑖 , 𝐹𝑏𝑤

𝑖  can be found.

As shown in Figure 3, the red dots are the reference frames, the 

blue dots are the slave frames and the yellow are the fictitious 

frames. For each slave frame, the corresponding adjacent frames 

are listed in the table.  A linear basis is imposed on the translation 

and rotation to recover the accurate camera pose of the 

fictitious frame. A scale parameter S is first computed based the 

time interval between the fictitious frame and two adjacent 

frames in Equation(4) and the camera positon of the fictitious 

frame can be calculated as Equation(5). 

S =
(𝑡𝑓𝑖𝑐 − 𝑡𝑓𝑤)

(𝑡𝑏𝑤 − 𝑡𝑓𝑤)
(4) 

𝑥𝑓𝑖𝑐 = 𝑥𝑚𝑖𝑛 + [𝑎𝑏𝑠(𝑥𝑓𝑤 − 𝑥𝑏𝑤) ∗ 𝑆]

𝑦𝑓𝑖𝑐 = 𝑦𝑚𝑖𝑛 + [𝑎𝑏𝑠(𝑦𝑓𝑤 − 𝑦𝑏𝑤) ∗ 𝑆] (5) 

𝑧𝑓𝑖𝑐 = 𝑧𝑚𝑖𝑛 + [𝑎𝑏𝑠(𝑧𝑓𝑤 − 𝑧𝑏𝑤) ∗ 𝑆]

Where 𝑡𝑓𝑤 , 𝑡𝑏𝑤  are the timestamp of two adjacent reference

frames respectively. 𝑡𝑓𝑖𝑐 is the timestamp of the fictitious frame,

which is equal to the timestamp of the current slave frame.  

(𝑥𝑓𝑤 , 𝑦𝑓𝑤 , 𝑧𝑓𝑤) and  (𝑥𝑏𝑤 , 𝑦𝑏𝑤 , 𝑧𝑏𝑤) are the camera position of

two adjacent reference frames. (𝑥𝑓𝑖𝑐 , 𝑦𝑓𝑖𝑐 , 𝑧𝑓𝑖𝑐)   are the derived

camera position of the fictitious frame.  

While trilinear interpolation is used to interpolate translation 

quantities, rotations have to be interpolated over the sphere to 

achieve constant-speed motion. This is achieved by the slerp 

operation.  

slerp(S, 𝑟𝑓𝑤 , 𝑟𝑏𝑤) =
sin((1 − 𝑆)𝛼)

sin(𝛼)
𝑟𝑓𝑤 +

sin(𝑆𝛼)

sin(𝛼)
𝑟𝑏𝑤

, 𝑤𝑖𝑡ℎ 𝑆 ∈ [0,1] 

(6) 

Which linearly interpolates between two quaternions 𝑟𝑓𝑤, 𝑟𝑏𝑤

respectively, and where cos(α) = 𝑟𝑓𝑤 ∙ 𝑟𝑏𝑤. More information

on the slerp operation is descripted in (Shoemake, 1985). 

Figure 3. Fd-C strategy 

3.2 Multiply camera tracking based on the drift-

compensated frames 

The implementation of our SLAM system is based on the ORB-

SLAM  framework. It mainly consists of two separate threads, in 

which images from multiple sensors are utilised: The first thread 

are responsible for reference camera tracking by observations 

from the adjacent frames. The second thread integrates the slave 

frame for pose refining. The transformation between the slave 

frame and the reference frames are obtained by the strategy in 

Section 3.1. As shown in Figure 4, in the first thread, the initial 

pose are derived with the reference camera.  The second thread 

detected the adjacent frames for the slave frame continuously, the 

rigid transformation 𝑇𝑟𝑠  between the slave frame and its

corresponding reference frame is calculated.  Therefore we make 

a combination for each reference frame and its closest slave 

frame. The adjacent combinations are then used for pose refining. 

Initial tracking

Frequency-drift 
compensated

Trs(1,1)

1
2

3

1 2

3

1
2

Trs(2,2)
Trs(2,1)

Trs(3,2)

Map Refining

T rs(1,1)

1 2

3

1

2
T rs(2,2)

Figure 4. Framework for multiple camera tracking 

After the Fd-C procedure, each combination are consisted of one 

reference frame 𝐹𝑟
𝑖  and one closest slave frame 𝐹𝑠

𝑗
, which’s

relation can be represented by a rigid transformation 𝑇𝑟𝑠(𝑖, 𝑗). As

the initial poses are derived from a single camera, the observation 

from the slave frames are underused. The frame combinations are 

used for pose refining. For the adjacent combination, two set of 

feature points 𝑃𝑟𝑓𝑤 = {𝑃𝑟𝑓𝑤
1 , 𝑃𝑟𝑓𝑤

2 , … , 𝑃𝑟𝑓𝑤
𝑁 }  and  𝑃𝑟𝑏𝑤 =

{𝑃𝑟𝑏𝑤
1 , 𝑃𝑟𝑏𝑤

2 , … , 𝑃𝑟𝑏𝑤
𝑁 }   can be obtained from the reference

frames and two set of feature points 𝑃𝑠𝑓𝑤 =

{𝑃𝑠𝑓𝑤
1 , 𝑃𝑠𝑓𝑤

2 , … , 𝑃𝑠𝑓𝑤
𝑀 }  and 𝑃𝑠𝑏𝑤 = {𝑃𝑠𝑏𝑤

1 , 𝑃𝑠𝑏𝑤
2 , … , 𝑃𝑠𝑏𝑤

𝑀 }  can

be obtained from the slave frames. The relations between 𝑃𝑟𝑓𝑤

and  𝑃𝑠𝑓𝑤, 𝑃𝑟𝑏𝑤 and 𝑃𝑠𝑏𝑤 can be represented as following:

𝑃𝑟𝑓𝑤 = 𝑇𝑓
𝑟𝑠 ∗ 𝑃𝑠𝑓𝑤

(7) 
𝑃𝑟𝑏𝑤 = 𝑇𝑏

𝑟𝑠 ∗ 𝑃𝑠𝑏𝑤

In which 𝑇𝑓
𝑟𝑠  and 𝑇𝑏

𝑟𝑠  are the rigid transformation of the slave

frame and the corresponding reference frame, which derived with 

the transformation from frequency-drift compensating and the 

external orientation parameters.   

Thus, the multiply camera tracking means solving the following 

minimizations problem: 

𝑚𝑖𝑛
𝑃, 𝑅, 𝑡

(∑ ‖𝐶𝑟𝑃𝑟𝑓𝑤
𝑖 − [𝑝𝑟𝑓𝑤

𝑖 , 1]
𝑇

‖
2

+𝑀+𝑁
𝑖=0,𝑗=0

‖𝐶𝑟(𝑅𝑃𝑟𝑓𝑤
𝑖 + 𝑡) − [𝑝𝑟𝑏𝑤

𝑖 , 1]
𝑇

‖
2

+ ‖𝐶𝑟𝑃𝑠𝑓𝑤
𝑗

−

[𝑝𝑠𝑓𝑤
𝑗

, 1]
𝑇

‖
2

+ ‖𝐶𝑟𝑇𝑓
𝑟𝑠−1

(𝑅𝑃𝑟𝑓𝑤
𝑖 + 𝑡)𝑇𝑏

𝑟𝑠 −

[𝑝𝑟𝑏𝑤
𝑖 , 1]

𝑇
‖

2
) 

(8) 
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Where  𝑝𝑟𝑓𝑤
𝑖 , 𝑝𝑟𝑏𝑤

𝑖 ,  𝑝𝑠𝑓𝑤
𝑗

, 𝑝𝑟𝑏𝑤
𝑖  are the corresponding image 

points of the points 𝑃𝑟𝑓𝑤 , 𝑃𝑟𝑏𝑤 , 𝑃𝑠𝑓𝑤 , 𝑃𝑠𝑏𝑤  respectively. [𝑅, 𝑡] 

is the refined pose by multiple camera tracking method. 

This can be solved by iterations of nonlinear least squares. The 

pose updates of the adjacent frame would be refined and updated.  

  

4. EXPERIMENTS AND ANALYSIS 

In order to evaluate the accuracy of the camera trajectory, we use 

the trajectory of the GeoSLAM ZEB-REVO system(Cadge, 

2016). As shown in Figure 5, to make sure the consistency of the 

trajectory between the Kinects system and ZEB-REVO system, 

ZEB-REVO device is fixed on the multiple Kinects system. The 

time-drift between two devices is compensated to insure the same 

initial position. To verify the performance of the proposed 

multiple RGB-D mapping solution, two set of datasets are 

collected. With the assumption of fix transformation between the 

position of Kinect and the laser at the same timestamp. The 

RMSE of the trajectory error of Kinect system can be calculated 

by Equation (9): 

 

𝑅𝑀𝑆𝐸𝑋 = √
∑ [𝑎𝑏𝑠(𝑋𝑖

𝑘 − 𝑋𝑖
𝑙) − 𝐷𝐼𝑆𝑋]2𝑁

𝑖=0

𝑁
  

𝑅𝑀𝑆𝐸𝑌 = √
∑ [𝑎𝑏𝑠(𝑌𝑖

𝑘 − 𝑌𝑖
𝑙) − 𝐷𝐼𝑆𝑌]2𝑁

𝑖=0

𝑁
  

𝑅𝑀𝑆𝐸𝑍 = √
∑ [𝑎𝑏𝑠(𝑍𝑖

𝑘 − 𝑍𝑖
𝑙) − 𝐷𝐼𝑆𝑍]2𝑁

𝑖=0

𝑁
 (9) 

RMSE = √
∑ [𝐷𝐼𝑆𝑖 − 𝐷𝐼𝑆]2𝑁

𝑖=0

𝑁
  

In which, 𝐷𝐼𝑆𝑖 = √(𝑋𝑖
𝑘 − 𝑋𝑖

𝑘)2 + (𝑌𝑖
𝑘 − 𝑌𝑖

𝑙)2 + (𝑍𝑖
𝑘 − 𝑍𝑖

𝑙)2, 

and 𝐷𝐼𝑆 = √𝐷𝐼𝑆𝑋
2 + 𝐷𝐼𝑆𝑌

2+𝐷𝐼𝑆𝑌
2
 

 

 

 

Figure 5. Data collection system and the point cloud of ZEB-

REVO and RGB-D system 

 

The absolute trajectory error (ATE) is calculated by Equation (6). 

It calculates the RMSE of the Euclidean distances between the 

camera trajectory and the timestamp associated ground truth, and 

it is used to evaluate the procedure’s accuracy.  

As shown in Table 1, it lists the absolute trajectory error of the 

results with single sensor and with multiple sensor. The results 

shows that the proposed Fd-C multiple RGB-D SLAM method 

achieve better in all conditions comparing with the results from 

single sensor. This can be explained by that more reliable visual 

features can be obtained using the dual Kinects. Lacking of 

reliable visual features in the single-Kinect system could 

introduce larger pose drifts, which will be accumulated during 

the whole operation.  

   

Table 1. Comparisons of the absolute trajectory error for 

incremental registration of RGB-D sequences with single 

Kinect and dual Kinects 

Dataset Sensor 
count 

RMSE.X 
(m) 

RMSE.Y 
(m) 

RMSE.Z 
(m) 

RMSE 
(m) 

Set1 1 0.119 0.145 0.081 0.205 

2 0.113 0.143 0.069 0.194 

Set2 1 0.223 0.217 0.121 0.334 

2 0.185 0.193 0.092 0.283 

 

Figure 6 and Figure 7 show the point cloud build by the system 

without Fd-C and with Fd-C. In Figure 6(a), the point cloud are 

obtained by directly merging the point cloud from upward sensor 

and downward sensor with the calibrated EoPs.  In Figure 6(b), 

the point clouds are obtained by the tracking results with the Fd-

C solution. Significant discrepancy appeared in the point cloud 

before Fd-C, which can be found from components structure in 

different views. Rather than large discrepancy in point cloud, our 

proposed multiple RGB-D mapping method produces a better 

results. The inconsistency of tracking results between different 

sensor was eliminated and generated more accurate point cloud. 

As expected, in Figure 7,  the  mapping results in dataset 2 shows 

a similar results.  The proposed multiple RGB-D mapping 

method achieve more accurate results and again verifying its 

effectiveness. 

 

View1

View2

View3

Discrepency 
between S1 and S2

Discrepency 
between S1 and S2

View3

View2

View1

Fine Registration Fine Registration

(a)Dense point cloud before frequency-
drift compensated (Dataset 1)

(b)Dense point cloud after frequency-
drift compensated (Dataset 1)  

Figure 6. Comparison of the dense point cloud between before 

and after Fd-C of Dataset1  

 

View1

View2
View3

Descripency 
between S1 

and S2

View1

View2

View3

Descripency 
between S1 and S2

(a)Dense point cloud before frequency-
drift compensated (Dataset 2)

(b)Dense point cloud after frequency-
drift compensated(Dataset 2)

Fine Registration

Fine Registration

 

Figure 7. Comparison of the dense point cloud between before 

and after Fd-C of Dataset2 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-293-2019 | © Authors 2019. CC BY 4.0 License.

 
296



 

5. CONCLUSION 

In this paper, we proposed using multiple RGB-D cameras in 

visual SLAM for better pose tracking performance and more 

detailed indoor environment mapping. We proposed a frequency-

drift compensated method to eliminate the influence of time-drift 

between different camera during multiply camera motion 

tracking. Detailed mathematical analysis is presented to explain 

how to fuse all measurements from multiple camera for pose 

tracking. Through theoretical analysis and experimental 

validation, we conclude that the dual-Kinect mapping system is 

able to achieve better pose performance than single Kinect, and 

the proposed Fd-C multiply RGB-D mapping solution can 

eliminate the inconsistency between different sensors and 

produce better mapping results.   
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