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ABSTRACT: 

 

Automated reconstruction of 3D interior models has recently been a topic of intensive research due to its wide range of applications in 

Architecture, Engineering, and Construction. However, generation of the 3D models from LiDAR data and/or RGB-D data is 

challenged by not only the complexity of building geometries, but also the presence of clutters and the inevitable defects of the input 

data. In this paper, we propose a stochastic approach for automatic reconstruction of 3D models of interior spaces from point clouds, 

which is applicable to both Manhattan and non-Manhattan world buildings. The building interior is first partitioned into a set of 3D 

shapes as an arrangement of permanent structures. An optimization process is then applied to search for the most probable model as 

the optimal configuration of the 3D shapes using the reversible jump Markov Chain Monte Carlo (rjMCMC) sampling with the 

Metropolis-Hastings algorithm. This optimization is not based only on the input data, but also takes into account the intermediate stages 

of the model during the modelling process. Consequently, it enhances the robustness of the proposed approach to inaccuracy and 

incompleteness of the point cloud. The feasibility of the proposed approach is evaluated on a synthetic and an ISPRS benchmark 

dataset. 

 

 

1. INTRODUCTION         

                                                                                                                                                                                                                                                                                                                                  

As-is three dimensional (3D) models of building interiors are of 

paramount importance for a variety of applications such as 

building management, indoor navigation, location-based 

services, and emergency responses. However, existing interior 

models are often not up-to-date, and therefore, do not represent 

the as-is condition of the buildings. Lidar scanning and 

photogrammetry are the two main techniques, which can 

effectively capture the as-is representation of a building 

(Khoshelham, 2018). However, a manual reconstruction of a 3D 

interior model from these data is a time-consuming, tedious, and 

error-prone task. An automatic approach, which is efficient in 

time and cost, for generation of the 3D models from the data (e.g., 

point clouds, images) is therefore needed. Yet, the automated 

reconstruction generally suffers from not only the complexity of 

building geometry, but also the presence of clutters in the indoor 

environment and the defects of input data. 

 

In the literature, the approaches to reconstruction of a 3D model 

of a building interior from a point cloud either rely on local 

properties of the input data (Tran et al., 2017; Díaz-Vilariño et 

al., 2015; Xiong et al., 2013) or are based on global knowledge 

on the model plausibility with respect to the data and the 

interrelation between building elements (Mura et al., 2016; 

Ochmann et al., 2016). In practice, each strategy has its own pros 

and cons. The local approaches are generally efficient with the 

high-quality input data. Meanwhile, the global approaches are 

likely to enhance the global plausibility of the model with lower-

quality data. However, the reconstruction of elements captured 

with high-quality can fail due to the influence of irrelevant lower-

quality data points.   

 

In this paper, we propose a stochastic approach to reconstruct 

volumetric models of interior spaces from point clouds using the 
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reversible jump Markov Chain Monte Carlo (rjMCMC) sampling 

with Metropolis-Hastings algorithm (MH) (Hastings, 1970). The 

idea is, in addition to the input data, the intermediate stages of a 

model can be beneficial to the reconstruction of its final model. 

The main contribution of our approach is the integration of both 

local properties of the input data and the global knowledge on the 

model’s plausibility as well as taking advantage of intermediate 

stages of a model in the 3D reconstruction process.   

 

The following sections provide a review of related works 

(Section 2. Literature review) followed by a detailed description 

of the proposed method (Section 3. Methodology), and the 

experiments and results (Section 4. Experiments and Results). 

 

 

2. LITERATURE REVIEW 

 

Reconstruction of as-is 3D interior models from point cloud has 

been an intensive research topic in recent years (Pătrăucean et al., 

2015). There are approaches for reconstructing the 3D models of 

building interior based on the interpretation of local properties of 

input data (Budroni and Böhm, 2010; Adan and Huber, 2011; 

Sanchez and Zakhor, 2012). For example, Sanchez and Zakhor 

(2012) reconstruct surface-based models of Manhattan-world 

buildings from point clouds by first classifying the data points 

into different building structures (i.e., walls, ceilings, and floors) 

using the point normals, followed by the application of plane-

fitting to locally estimate the geometry of each building surface 

individually. Several researchers favour the combination of local 

features of input data and contextual knowledge to model each 

building elements separately (Khoshelham and Díaz-Vilariño, 

2014; Hong et al., 2015; Macher et al., 2017). Xiong et al. (2013) 

applies a region-growing algorithm to extract planar surfaces of 

building interiors from voxelized data. The semantic information 

is then added using surfaces’ local features (e.g., point density, 
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dimension, orientation) and the constraints on their contextual 

relationships (e.g., parallelism, orthogonality) with their 

neighbours. Similarly, in Nikoohemat et al. (2018) the semantics 

and geometries of building elements are derived from points 

belonging to each planar surface and the adjacency relationship 

between the surfaces. Khoshelham and Díaz-Vilariño (2014) and 

Tran et al. (2018) take into account the presence of points on 

surfaces of cuboid shapes and the spatial relationship with 

neighbours to classify a cuboid as a navigable space (i.e., rooms, 

corridors) or a non-navigable space (i.e., walls, ceilings/floors, 

exteriors) by iterative application of shape grammar rules. In 

general, the local approaches strongly depend on the data quality, 

and are suitable for the reconstruction of buildings which are well 

observable and are captured with high-quality data. These 

methods are less successful when applied to data with varying 

point density and high levels of occlusion and are likely to be 

more susceptible to clutter. Unfortunately, these are common 

features of data captured in most building interiors.  

 

Several methods have been developed to reconstruct 3D interior 

models from point clouds by taking advantage of the global 

plausibility of the models with respect to the input data and 

interrelation between building elements (Oesau et al., 2014; Mura 

et al., 2016; Ochmann et al., 2016). Oesau et al. (2014) proposes 

an approach which can be applied to both Manhattan and Non-

Manhattan architectures. The authors formulate the 3D interior 

modelling as a binary classification of building sub-spaces into 

solid cells (i.e., building elements, exteriors) and empty spaces 

(i.e., rooms, corridors). The classification is defined as a global 

minimization problem, which is solved by using a graph-cut 

algorithm. The global objective function is formulated as the 

combination of data faithfulness and model complexity. 

Similarly, Mura et al. (2016) reconstruct volumetric models by 

solving a multi-label optimization problem. The energy function 

is based on the visibility overlaps from different viewpoints of 

each sub-space and the areas covered by data points between two 

adjacent ones. Ochmann et al. (2016) propose to reconstruct 

building layouts and permanent structures of building interiors 

from point clouds by classifying their 2D floor regions into inside 

or outside areas. The classification is formulated as a 

minimization optimization problem, in which the global energy 

function is defined based on the projections of input point clouds 

on each floor region and the supporting points of the surfaces 

separating two adjacent cells.  

 

The advantage of the global approaches lies in the consideration 

of the global plausibility of the output models with respect to 

input data and the interrelation between building elements. In 

practice, compared to local approaches, global approaches are 

likely to be more robust to the defects of input data due to the 

consideration of the model plausibility in the reconstruction 

process. For example, an interior sub-space of a building may be 

classified as an exterior space in a local approach due to the lack 

of points on its surfaces, while it can be correctly modelled as an 

interior cell in a global approach since it is connected to other 

interior sub-spaces and there are no actual surfaces separating 

them. However, global approaches treat the data with varied 

quality (i.e., point density, occlusions) equally. In addition, the 

influence of irrelevant low-quality data capturing one building 

part on the reconstruction of other building parts can hamper the 

quality of output models. This can be seen in the case of an 

interior cell covered with data points which can be labelled as 

exterior due to its connectivity relations with other cells having 

no supporting points.  

 

Stochastic methods such as rjMCMC and MCMC algorithms 

have been used quite successfully for 3D modelling of objects in 

various applications. Oude Elberink and Khoshelham (2015) and 

Oude Elberink et al. (2013) used MCMC with MH algorithm to 

integrate local and global geometric properties of pieces of rails 

to model long rail tracks from point clouds. Schmidt et al. (2017) 

proposed a method to extract networks from raster data using 

rjMCMC process. Ripperda and colleagues applied the rjMCMC 

algorithm to reconstruct building façades in a series of papers 

(Ripperda, 2007; Ripperda and Brenner, 2008, 2009). Merrell et 

al. (2010) used rjMCMC to optimize the floor plans of residential 

buildings. In this paper, we propose a stochastic approach to 

reconstruct building spaces from point clouds using the rjMCMC 

sampling with MH algorithm. Our strategy is to integrate local 

properties of input data and model global plausibility by taking 

advantage of intermediate stages of a model in the reconstruction 

process. 

 

 

3. METHODOLOGY 

 

Our approach to reconstructing 3D models of interior spaces 

from point cloud consists of two main steps: space partitioning 

and model optimization. In the space partitioning step, the indoor 

scene is first partitioned into a set of volumetric cells as the 

arrangement of potential permanent building structures. 

Meanwhile, the model optimization step aims at finding the 

optimal configuration of the indoor model, in which each cell is 

classified as a navigable space or a non-navigable space using the 

rjMCMC with Metropolis-Hastings sampling algorithm 

(Hastings, 1970). The final model of an interior space is a union 

of its final navigable spaces (i.e., rooms, corridors). 

 

3.1 Space partitioning 

 

The point cloud is first segmented into vertical points, which are 

likely to belong to vertical structures (i.e., walls), and horizontal 

points, which potentially belong to horizontal structures (i.e., 

floors, ceilings) by using the point normal. A point is classified 

as a vertical point or a horizontal point if it has the normal 𝑛𝑝 , 

which are parallel with the vertical direction or horizontal 

direction, respectively, up to a certain angle 𝜃. The horizontal and 

the vertical structures are then extracted from horizontal points 

and vertical points separately by using the Random Sample 

Consensus plane-fitting algorithm (Schnabel., 2007) to reduce 

the influence of clutters and to eliminate the involvement of 

irrelevant points in the extraction of permanent structures. Each 

extracted plane must have a considerable number of supporting 

points to be considered as a building structure. Fig. 1 shows an 

example of a point cloud and the extraction results of horizontal 

and vertical planar structures of a building interior.  

 

 
  

(a) (b) (c) 

Fig. 1: Extraction of potential permanent structures of a 

building interior: (a) a point cloud as input data, (b) extraction 

of horizontal structures from horizontal points, (c) extraction 

of vertical structures from vertical points. 
 

The interior space is partitioned into a set of 3D shapes formed 

by the intersection between the vertical plane segments and 

horizontal plane segments, which are limited by the bounding 

box of the point cloud. Fig. 2 illustrates the intersection between 

the vertical planar structures and horizontal structures to generate 

3D decomposition of the building space. 
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(a) (b) 

Fig. 2 An illustration of 3D decomposition of an interior space: 

(a) intersection between horizontal and vertical structures (the 

ceiling plane has been removed for a better visualization), (b) 

the 3D decomposition.  

The geometry of each shape is represented with a boundary 

representation {𝑉, 𝐹}, where V is the set of vertices and F is its 

bounding faces. Meanwhile, the semantic information is stored 

as an attribute type indicating whether the shape is navigable 

(𝑡𝑦𝑝𝑒 = 1) or non-navigable (𝑡𝑦𝑝𝑒 = 0). At the space 

partitioning step, each shape has no semantic information 

(𝑡𝑦𝑝𝑒 =  ∅). 

 

3.2 Model configuration 

 

The 3D model of an interior space is a set of cells comprising 

both the geometric {𝑉, 𝐹} and semantic {𝑡𝑦𝑝𝑒} information. An 

interior model is considered as the union of navigable spaces (i.e., 

rooms, corridors) of a building space. We define the number of 

shapes, the shape geometry {𝑉, 𝐹}, and the sematic information 

{𝑡𝑦𝑝𝑒} as the parameters of a model. The reconstruction of an 

interior space is to search the optimal configuration of the model 

parameters, which vary in relation to possible changes in the 3D 

model and a joint probability distribution.  

 

3.2.1. Transitions in the model configuration: we define four 

transitions likely to occur between two models in the space of all 

possible 3D models of a building interior:  

 

(1) adding: a shape which has no semantic information (𝑡𝑦𝑝𝑒 =
 ∅), and is not in adjacency relationship with any navigable space 

is labelled as a navigable space (𝑡𝑦𝑝𝑒 = 1);  
 

(2) removing: a navigable space  (𝑡𝑦𝑝𝑒 =  1) which is not 

adjacent with any navigable space is changed to a shape with 

empty semantics (𝑡𝑦𝑝𝑒 = ∅);  

 

(3) adding and merging: a shape which has no semantic 

information (𝑡𝑦𝑝𝑒 =  ∅) is labelled as a navigable space 

(𝑡𝑦𝑝𝑒 = 1), and is then merge with its adjacent navigable spaces 

to form a new navigable space;  

 

(4) splitting and removing: This is the reciprocal of the transition 

in (3). A navigable space which was formed by merging two or 

more navigable spaces is split into its components, and the 𝑡𝑦𝑝𝑒 

of the navigable space which is added before the merging is 

changed to 𝑡𝑦𝑝𝑒 = ∅.  

 

With these defined transitions, we allow the changes of not only 

geometries and semantics, but also the number of shapes in the 

proposed 3D models. Fig. 3 gives examples of the transitions 

between two 3D models of an interior space. 

 

 

   𝐴𝑑𝑑𝑖𝑛𝑔   
(1)

→        

𝑅𝑒𝑚𝑜𝑣𝑖𝑛𝑔 
(2)

←        

 
(a)  (b) 

 

𝐴𝑑𝑑𝑖𝑛𝑔−

𝑚𝑒𝑟𝑔𝑖𝑛𝑔 (3)
→          

  𝑆𝑝𝑙𝑖𝑡𝑖𝑛𝑔−   
𝑟𝑒𝑚𝑜𝑣𝑖𝑛𝑔 

(4)

←         

 

(c)  (d) 

Fig. 3 Examples of transitions between two models in the 

model space of an interior space. Adding: from (a) to (b) by 

adding a navigable shape (dark green). Removing: from (b) 

to (a) by removing a navigable shape (dark green). Adding 

and merging: from (c) to (d) by adding a navigable shape and 

merging it with the adjacent space. Splitting and removing: 

from (d) to (c) by splitting a merged navigable space and 

nulling the semantics of one component.  

 

3.2.2. Model probability function: We aim at reconstructing the 

most probable 3D model 𝑀 of an interior space from given data 

D. According to Bayes’ rule, the probability 𝑃(𝑀|𝐷) of a model 

𝑀 given an input data 𝐷 is proportional to the product of 

likelihood 𝑃(𝐷|𝑀) and the prior 𝑃(𝑀): 𝑃(𝑀|𝐷)  ∝
𝑃(𝐷|𝑀)𝑃(𝑀). We define the prior 𝑃(𝑀) as a uniform 

distribution. This means without any data all models are 

considered equally likely and we do not prefer one model over 

another. Meanwhile, the likelihood 𝑃(𝐷|𝑀) is defined as a joint 

probability distribution of the local likelihood 𝑃𝐿(𝐷|𝑀) and the 

global likelihood 𝑃𝐺(𝐷|𝑀): 𝑃(𝐷|𝑀) =  𝑃𝐿(𝐷|𝑀) 𝑃𝐺(𝐷|𝑀). The 

details of these terms are described as follows: 

 

Local likelihood: The local likelihood 𝑃𝐿(𝐷|𝑀) is defined based 

on the local knowledge and the interpretation from the data 

enclosed in each individual shape. In general, a shape, which has 

points covering its top surface (i.e., ceiling) is likely to be a 

navigable space (Tran et al., 2018). Otherwise, the shape 

potentially represents a non-navigable space. We therefore 

formulate the local likelihood as follows: 

 

𝑃𝐿(𝐷|𝑀) = ∏
𝐶𝑜𝑣(𝑀(𝑖). 𝑡𝑜𝑝)

𝐴𝑟𝑒𝑎(𝑀(𝑖). 𝑡𝑜𝑝)
 

𝑛

𝑖=1
 

(1) 

 

Where n is the number of navigable spaces in the model M. 

𝐴𝑟𝑒𝑎(𝑀(𝑖). 𝑡𝑜𝑝) denotes the area of the top surface of a 

navigable shape 𝑀(𝑖). Meanwhile, 𝐶𝑜𝑣(𝑀(𝑖). 𝑡𝑜𝑝) denotes the 

area of the top surface of 𝑀(𝑖) that is covered by points. This area 

is computed as the area of the 2D alpha-shape (Edelsbrunner and 

Mücke, 1994) derived from the Delaunay triangulation of the 

projection of data points on the top surface for each shape (Tran 

and Khoshelham, 2019).  
 
The local likelihood 𝑃𝐿(𝐷|𝑀) ranges from 0, indicating that the 

proposed model has at least one navigable space without 

supporting points, to 1, indicating that all the navigable spaces 

are totally covered by the input point cloud. 

 

Global likelihood: The global likelihood 𝑃𝐺(𝐷|𝑀) is defined to 

measure the fitness of the model M to the input data D and the 

model plausibility with respect to the data. We define the global 

likelihood as the combination of three data terms, i.e., horizontal 

fitness 𝑃ℎ𝑐𝑜𝑣, vertical fitness 𝑃𝑣𝑐𝑜𝑣, and model plausibility 𝑃𝑝 as 

follows: 

 
𝑃𝐺(𝐷|𝑀) = 𝜆1𝑃ℎ𝑐𝑜𝑣 + 𝜆2𝑃𝑣𝑐𝑜𝑣 + 𝜆3𝑃𝑝 (2) 
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𝜆1, 𝜆2, 𝜆3 are the normalization factors, which are used to weight 

the contribution of each term to the global likelihood and satisfy 

the condition 𝜆1 + 𝜆2 + 𝜆3 = 1. 

 

Horizontal fitness: The horizontal fitness measures how well the 

horizontal structures of the proposed model fit the horizontal 

structures of the building space captured in the input point cloud. 

For each proposed model, we first measure the point coverage of 

the top surfaces of navigable spaces, so called horizontal 

coverage 𝑀ℎ𝑐𝑜𝑣: 

 

𝑀ℎ𝑐𝑜𝑣 =∑ 𝐶𝑜𝑣(𝑀(𝑖). 𝑡𝑜𝑝)

𝑛

𝑖=1

 
(3) 

 

Where n is the number of navigable spaces in the proposed 

model. 

 

The horizontal fitness 𝑃ℎ𝑐𝑜𝑣 is obtained by the normalization of 

the horizontal coverage 𝑀ℎ𝑐𝑜𝑣 and is computed as the ratio of the 

coverage 𝑀ℎ𝑐𝑜𝑣 to the total of the horizontal areas of the building, 

which is covered by the horizontal points ℎ𝑝𝑜𝑖𝑛𝑡𝑠 : 

 

𝑃ℎ𝑐𝑜𝑣 =
𝑀ℎ𝑐𝑜𝑣

𝑎𝑟𝑒𝑎(ℎ𝑝𝑜𝑖𝑛𝑡𝑠)
 

(4) 

 

Vertical fitness: Akin to horizontal fitness, the vertical fitness is 

measured based on the vertical coverage 𝑀𝑣𝑐𝑜𝑣. The coverage 

𝑀𝑣𝑐𝑜𝑣 is computed as the area of side surfaces (i.e., wall surfaces) 

which is covered by the input point cloud, summed over all 

navigable spaces of a proposed model:  

 

𝑀𝑣𝑐𝑜𝑣 =∑ 𝐶𝑜𝑣(𝑀(𝑖). 𝑠𝑖𝑑𝑒𝑠)

𝑛

𝑖=1

 
(5) 

 

We normalize the vertical coverage to formulate the vertical 

fitness as the proportion of the vertical coverage in the proposed 

model to the total area of the vertical structures of the building 

which is supported by all the vertical data points 𝑣𝑝𝑜𝑖𝑛𝑡𝑠:  

 

𝑃𝑣𝑐𝑜𝑣 =
𝑀𝑣𝑐𝑜𝑣

𝑎𝑟𝑒𝑎(𝑣𝑝𝑜𝑖𝑛𝑡𝑠)
 

(6) 

 

Model plausibility: In addition to the surface coverages, which 

are encoded in the horizontal and vertical fitness terms, we 

measure the reliability and plausibility of the proposed model by 

measuring the areas covered by points (both horizontal and 

vertical), which fall inside the navigable spaces and therefore do 

not represent the vertical or horizontal structures. The more 

vertical and horizontal areas covered by inside points, the lower 

the model plausibility is. We formulate the model plausibility as 

follows: 

 

𝑃𝑝 =  1 − 
∑ 𝑎𝑟𝑒𝑎(𝑀(𝑖). 𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠)𝑛
𝑖=1

𝑎𝑟𝑒𝑎(ℎ𝑝𝑜𝑖𝑛𝑡𝑠) +  𝑎𝑟𝑒𝑎(𝑣𝑝𝑜𝑖𝑛𝑡𝑠) 
 

(7) 

 

Where 𝑀(𝑖). 𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 is the vertical and horizontal points which 

fall inside the navigable space 𝑀(𝑖).  
 

The value of 𝑃𝑝 may be influenced in the environments with a 

high level of clutter. In these cases, the contribution of the model 

plausibility 𝑃𝑝 to the global likelihood should be small, and it can 

be adjusted by reducing the value of its normalization factor 𝜆3 

in Eq. (2).  

 

3.3 Model optimization 

 

The model optimization is to search for the most probable model 

in the space of all possible models of a building space with a 

given input data. We adapt the rjMCMC with the Metropolis-

Hastings algorithm (Hastings, 1970) to solve this problem, as it 

is suitable for searching in the space of models with unknown 

distribution and when the set of model parameters varies (see 

section 3.2.1).  

 

The rjMCMC with the MH algorithm simulates a discrete 

Markov Chain based on random walks on the model 

configuration spaces. The process starts with the 3D model, 

called the starting model 𝑀0, which contains a navigable space 

having the highest local likelihood. Whether a jump from a 

current model 𝑀𝑡 to the next proposed model 𝑀𝑡+1 is accepted 

or not depends on the acceptance probability 𝛼. In other words, 

the modelling process is based on not only input data, but also 

the intermediate stages of the model. The general workflow, the 

transition kernel J from one model to another, and the formula of 

the acceptance probability 𝛼 are described as follows. 

 

The general workflow of the rjMCMC sampler with MH 

algorithm contains three main steps: 

(1) Initialisation: starting model 𝑀0 (𝑡 = 0)  
(2) Iteration: 

- Generate a proposed model 𝑀𝑡+1 by sampling 

model transitions according to a predefined 

transition kernel 𝐽(𝑀𝑡+1|𝑀𝑡) 
- Computing the acceptance probability 𝛼 

𝛼 = 𝑚𝑖𝑛 {1,
𝑝(𝑀𝑡+1|𝐷) ∙ 𝐽(𝑀𝑡+1|𝑀𝑡)

𝑝(𝑀𝑡|𝐷) ∙ 𝐽(𝑀𝑡|𝑀𝑡+1)
  }  (8) 

- Generate a uniform random number 𝑈 ∈ [𝛽, 1] with 

𝛽 ≥ 0 

- Decide to accept (if 𝛼 ≥ 𝑈) or to reject (if 𝛼 < 𝑈) a 

jump from the current model 𝑀𝑡 to the proposed 

model 𝑀𝑡+1 

- Set 𝑀𝑡+1 as the current model 

(3) End: The process is ended when it reaches a 

predefined number of iterations 

 

We introduce a new parameter 𝛽 ≥ 0, called a convergence 

parameter, in the generation of a uniform random number 𝑈 to 

allow users flexibility to search for the most probable model 

either in the sub-space of models, which has high probability, or 

in the whole model space as default. This way ensures that the 

proposed model satisfies a certain level of quality. Thus, it 

facilitates a faster convergence of the optimization process as 

well as reducing the influence of incompleteness and inaccuracy 

of data on the proposed model. However, deciding a suitable 

value for 𝛽 is important as the high value of 𝛽 may lead to a local 

optimum instead of a global optimum. 

 

The transition kernel 𝐽(𝑀𝑡+1|𝑀𝑡) represents the probability for 

the change from the current model to the next proposed model. 

We adapt the concept of minimum description length (Rissanen, 

1978) to define the transition kernel. As the final model is formed 

as the union of the final navigable spaces (i.e., rooms, corridors), 

we define the transition kernel based on the number of the final 

navigable spaces of the model. In other words, we consider the 

complexity of a 3D model into the reconstruction process. The 

final model should be the most compact model, which is not only 

the most fitted to the input data, but also has the smallest number 

of final navigable spaces (i.e., rooms, corridors) as the result of 
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the condition that all the adjacent spaces should be merged to 

form a unified navigable space.  

 

We formulate the complexity of a model as: 

 

𝐶(𝑀) = 𝑙𝑜𝑔2
𝑛 (9) 

 

Where n is the number of navigable spaces in the model M. 

𝐶(𝑀) = 1, when 𝑛 = 1. 
 

The transition kernel 𝐽(𝑀𝑡+1|𝑀𝑡) is defined as follows: 

 

𝐽(𝑀𝑡+1|𝑀𝑡) =  
𝐶(𝑀𝑡)

𝐶(𝑀𝑡+1)
 

(10) 

 

The optimization process is to reconstruct final navigable spaces 

of a building interior. Once the process is finished, all the 3D 

shapes which are not classified as navigable spaces will be 

automatically assigned as non-navigable spaces 𝑡𝑦𝑝𝑒 = 0. The 

sampled models are ranked according to the model probabilities. 

The user interactions can select the best model among the most 

probable models sampled from the space of all possible models 

of an indoor space. 

 

 

4. EXPERIMENTS AND RESULTS 

 

Experiments with a synthetic dataset and an ISPRS benchmark 

dataset were conducted to evaluate the feasibility of the proposed 

method for the reconstruction of 3D models of interior spaces 

with different architectures (i.e., Manhattan and Non-Manhattan 

designs) from point clouds.  

 

The synthetic dataset represents a hexagon building comprising 

a connected and large hall.  The building has a large exterior 

space with several small plants and a tree surrounded by the 

walls. The synthetic point cloud was created with an average 

point spacing of 5 cm with low level of noise. The real dataset 

TUB1 from the ISPRS benchmark dataset was captured by a 

Viametris iMS3D mobile scanning system with a nominal 

accuracy of 3 cm (Khoshelham et al., 2017). The dataset 

represents a large Manhattan building with the presence of 

clutters and moving objects (i.e., people). The normalization 

parameters 𝜆1, 𝜆2, 𝜆3 are set to 1/3 empirically in both 

experiments. The convergence parameter 𝛽 is set to 0.2 and 0.1 

for the experiments on the synthetic and real datasets 

respectively. 

 

4.1 Results for the synthetic dataset 

 

The synthetic point cloud of a hexagon building was first 

segmented into horizontal points and vertical points, from which 

the potential building surfaces can be extracted. Fig. 4 shows the 

input point cloud, potential surfaces of the floor and the ceiling, 

and the potential wall surfaces.  

 

Fig.5(a) shows the cell decomposition of the building space, 

which comprises 89 shapes in total.  As can be seen from the 

figure, the hall of the building space is partitioned into 24 

individual shapes. In the reconstruction process, these 3D shapes 

are classified as navigable spaces. Those spaces which are 

adjacent to each other will iteratively be merged together to form 

the final unified navigable space, i.e., the large hall. Fig. 5(b) 

shows the classification results containing both navigable spaces 

(green) and non-navigable spaces (light pink). The final model 

containing a final navigable space, which corresponds to the large 

and connected hall of the environment, is shown in Fig. 5(c). The 

final model was selected by users among the sampled models 

ranked with the highest model probabilities. The large exterior 

with the plants and tree, surrounded by walls, is not classified as 

an interior navigable space (i.e., rooms, corridors) as there is no 

point on its top surface, and as it is separated from other navigable 

spaces by walls. 

 

 
(a) 

 

 

(b) (c)  

Fig. 4. Extraction of potential building structures of the 

synthetic building: (a)  synthetic point cloud (the ceiling is 

removed for better visualization), (b) vertical structures, i.e., 

walls, (c) horizontal structures, i.e., the ceiling and the floor. 

 

 
 

(a) (b) 

 
(c) 

Fig. 5. Results for the synthetic dataset: (a) 3D cell 

decomposition, (b) the classification of cells into navigable 

spaces (green) and non-navigable spaces (light pink), (c) the 

final model. 

 

4.2 Results for the ISPRS benchmark dataset 

 

The real point cloud represents the TUB1 building from the 

ISPRS benchmark dataset, which contains a long corridor and 9 

separate rooms. The quality of the point cloud varies in different 

parts of the building. In the data, several rooms are completely 

captured, while parts of the building are partially presented in the 

data.  

 

Fig. 6 shows the point cloud, the horizontal planes of the ceiling 

and the floor, and vertical planes representing wall surfaces. Each 

extracted plane must have at least 80 supporting points to be 

considered as a building structure in this experiment. There are 

totally two horizontal planes (i.e., the ceiling and the floor) and 

32 vertical planes, which are then used to form the cell 

decomposition of the building space.  
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(a) 

 
(b) 

 
(c) 

Fig. 6. Extraction of building structures of the TUB1 building: 

(a) the point cloud (the ceiling is removed for a better 

visualization), (b) vertical structures (c) horizontal structures. 

 

Fig. 7 shows the reconstruction results for the TUB1 dataset of 

the ISPRS benchmark datasets. The environment is partitioned 

into 216 individual cells (Fig.7a), which are then classified into 

navigable spaces (green) and non-navigable spaces (light pink) 

(Fig.7b) to form the final model (Fig. 7c).  

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Results for the TUB1 dataset: (a) 3D cell 

decomposition, (b) the classification of cells into navigable 

spaces (green) and non-navigable spaces (light pink), (c) the 

final model. 

Akin to the synthetic dataset, the adjacent navigable spaces are 

merged together in order to produce the final model with a low 

complexity. The final model, which contains a long corridor and 

9 separated rooms, is interactively selected by the user. The user 

interaction can ensure that the most suitable model is selected as 

the final model among the most probable models given the input 

data.  

 

We evaluate the performance of our approach by comparison 

between the final reconstructed model and the ground truth 

building spaces of TUB1 which is generated manually by an 

expert (Khoshelham et al., 2017). Fig. 8 shows the ground truth 

interior space of the building TUB1.  

 
Fig. 8. The ground truth interior space of the TUB1 dataset 

It can be seen by visual inspection that the majority of the 

building spaces are reconstructed in the final model. The total 

area of surfaces bounding the rooms and the corridor in the final 

model is about 967 𝑚2  in comparison with about 978 𝑚2 for the 

ground truth model. A quantitative evaluation of the final 

reconstructed model in comparison with the ground truth based 

on the framework proposed by Khoshelham et al. (2018) reveals 

that the model is reconstructed with a high completeness 

(𝑀𝐶𝑜𝑚𝑝 > 92%) and a high correctness (𝑀𝐶𝑜𝑟𝑟 > 92%). 

However, about 10% of the surfaces bounding navigable spaces 

are reconstructed with a large deviation (buffer size > 15𝑐𝑚). 

The median absolute distance between surfaces in the final model 

and their corresponding ones in ground truth is about 𝑀𝐴𝑐𝑐 ≈
2.65 𝑐𝑚. The quantitative evaluation of the final model in terms 

of completeness 𝑀𝐶𝑜𝑚𝑝, correctness 𝑀𝐶𝑜𝑟𝑟, and accuracy 𝑀𝐴𝑐𝑐 

is shown in detail in Fig. 9. 

 
(a) 

 
(b) 

            
(c) 

Fig. 9. Quality evaluation of the 3D model of the interior space 

of the TUB1 building: (a) Completeness; (b) Correctness; (c) 

Accuracy. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W5, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-299-2019 | © Authors 2019. CC BY 4.0 License.

 
304



5. CONCLUSION AND FUTURE WORK 

 

In this paper, we presented a stochastic approach to reconstruct 

3D models of building interiors from point clouds using the 

rjMCMC with the Metropolis-Hastings algorithm. We take 

advantages of not only input data, but also the intermediate stages 

of the model to reconstruct the final model. The initial 

experiments on both a synthetic and a real dataset demonstrate 

the potential of our method, which can be applicable to both 

Manhattan and non-Manhattan architectures, as well as to 

incomplete and inaccurate data. 

 

Currently, our method can reconstruct navigable spaces (i.e., 

rooms, corridors) of indoor environments. The building 

structures are considered as the surfaces of these navigable 

spaces. Future work will extend the method to reconstruct 

volumetric building elements (i.e., walls, ceiling, floors) as well 

as the topological relations between spaces. We will further 

evaluate our method with more complicated indoor environments 

and with higher level of clutter and occlusions.   
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