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ABSTRACT:

This paper presents a deep learning feature-based method for registration of indoor mobile LiDAR data. Our method is to input point
cloud directly, which is more robust to noise than traditional algorithms. The proposed method involves three steps. We first extract the
key points by Harris3D algorithm and get their local patches by our sampling method. Second, a Siamese network is trained to describe
the patches as local descriptors. Finally, we obtain the final matching pairs depends on the distance which is between two descriptors,
and then solve the transformation matrix. The accuracy of registration is within 6 cm when the overlap is greater than 35%. In order to
improve the registration accuracy, the ICP algorithm is used to fine-tuning the registration results. And the final registration accuracy is
within 3.5 cm. The experiments show that our method applied to the registration of indoor mobile LiDAR data robustly and accurately.

1. INTRODUCTION

In recent years, the high definition maps (HD maps) based on
mobile LiDAR data draw more and more attention. Individual
point cloud data is incomplete due to factors such as limited s-
canning distance and occlusion. Complete and sufficient detailed
HD maps can be obtained by registering multi-view data or mul-
tiple scanned data. Traditional registration methods are mainly
implemented by hand-crafted descriptors. However, because of
the big noise in the mobile LiDAR point cloud, such descrip-
tors are difficult to be applied to the registration of the HD maps.
Thus, developing a feature descriptor that can be used in the HD
maps is necessary.

Registration is a basic and important technology in 3D recon-
struction. Considering that feature descriptor is one of the impor-
tant factors in registration, many research teams have proposed
different kinds of hand-crafted 3D feature descriptors for 3D data
registration, like Spin Images (Johnson and Hebert, 1999), A-
COV (Zai et al., 2017), Rotational Projection Statistics (RoPS)
(Guo et al., 2013) and local surface description (Tombari et al.,
2010). However, Spin Image relies on the resolution of direction
and is sensitive to noise. RoPS requires mesh data and cannot be
directly applied to the point cloud. With the rapid development
in the deep learning network, some feature descriptors based on
networks are proposed. A data-driven model (3DMatch (Zeng
et al., 2017)), learned a local volumetric patch descriptor for es-
tablishing correspondences between partial 3D data of RGB-D
data. The descriptor of 3Dmatch is more robust than traditional
descriptors. (Simonyan et al., 2012) achieved viewpoint invariant
matching using sparse feature detectors, which was trained by de-
scriptor learning from a deep learning network. This descriptor
achieves good results. However, it only works on images. There-
fore, it is meaningful to develop a deep learning feature descrip-
tor for mobile LiDAR data. Deep learning networks proposed for
processing point clouds, such as ShapeNet (Chang et al., 2015),
PointNet (Qi et al., 2017a), OctNet (Riegler et al., 2017), Point-
Net++ (Qi et al., 2017b), PointSift (Jiang et al., 2018) are mainly
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used for classification or semantic labeling. Thus, there is a po-
tential, with great challenges, to apply these networks for regis-
tration.

In this paper, we structure a deep learning feature descriptor,
which is extracted by a Siamese network based on the PointNet
for registration of mobile LiDAR data. Firstly, to generate local
data for training network, we extract key points by The Harris3D
algorithm and get local patches by sampling their neighborhood
data. Secondly, with many pairs of patches labeling positive or
negative manually based on whether they are around the same key
points, we train a network to generate feature descriptor. Then,
with Euclidean distance between descriptors, we find the match-
ing features and solve the transformation relationship. Finally,
fine registration is achieved by an Iterative Closest Point algorith-
m (ICP). Our contribution are mainly include two points: 1. For
the input of PointNet network, a sampling method is proposed,
which can be applied to point cloud data with uneven density
distribution. 2. A descriptor based on PointNet twin network is
constructed for point cloud registration.

2. METHOD

In this section, a local descriptor is proposed. The method in this
research leverage on mobile LiDAR data, which includes data
preprocessing, network architecture construction, and descriptor-
based registration.

2.1 Data Preprocessing

The quality of data acquired by mobile laser scanning equipmen-
t is relatively low, and there are many noise points in the data.
Therefore, we first use statistical filtering (Rusu and Cousins,
2011) to remove noise points and voxel filter (Rusu and Cousins,
2011) to sample data. Point clouds registration is to get a rigid
body transformation for coordinate alignment of point clouds.
The transformation can be obtained from the matching pairs of
points between point clouds. In order to improve the efficiency
of registration, the key points in point clouds are used instead of
all points. Firstly, Harris3D method (Sipiran and Bustos, 2011) is
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Figure 1. The Siamese network architecture

used to extract key points. Then, in order to improve the accuracy
of key point matching, the key points are expressed by its neigh-
borhood points. Because the descriptor generated by PointNet
Siamese network is used in this paper, it is necessary to extract
the neighborhood points of fixed points. The specific sampling
algorithm is as follows:

Firstly, the key points of point clouds data are extracted by Har-
ris3D algorithm.

Then, we sampled a patch representation for the local region sur-
rounding each key point. The specific algorithm is as follows:

With each key point (O), we extract points (P ) whose distance to
O is less than r. The number of points in P is Pn. We divide P
into eight subsets (P1, P2 ... P8). The number of points in Pi is
Pin (i=1...8). The distance (di) from points in Pi to the key point
O satisfies:

r · (i− 1)

8
< di ≤

r · i
8

(1)

Point clouds are mainly distributed on the surface of objects and
the form of local distribution trend surface. For extracting m
points uniformly from P , the number of points extracted from
each subset is proportional to the area it forms. The number of
points (ni) that should be extracted from Pi is as follows:

ni =
π · i2

π · 82 ·m−
π · (i− 1)2

π · 82 ·m =
2 · i− 1

82
·m (2)

We use Algorithm 1 to accommodate point clouds with uneven
density distribution.

Finally, the three-dimensional coordinates of the points in the
sampled patch are normalized.

pnj =
(pj −O)

r
(3)

Where pnj is the normalized coordinate, pj is the original coor-
dinate. Final sampling result is shown in Figure. 2.

2.2 Network Architecture

With the neighborhood points of key points, descriptors can be
generated. In the registration process, descriptors are used to

Algorithm 1 Adjustment

if Pn < m then
Data around this key point is too sparse, so we abandon the
key point;

else
Set the flag for each point in P and initialize it to 0;
count=0;
% Sampling Fixed Points from Subsets
for i = 1→ 8 do

if ni ≤ pin then
There are enough points in the subset. Randomly ex-
tract ni points in pi and set the flag of these points to
1;
count=count+ni;

else
There are not enough points in the subset. Extract all
points in Pi and set the flag of these points to 1;
count=count+Pin;

end if
end for
When the number of points in subsets is insufficient. Ran-
domly extract (m-count) points in the points where the flag
is 0;

end if

(a) (b)

Figure 2. Data preprocessing. (a) Key points are extracted from
the point cloud, (b) Local patches are extracted from the point

cloud.
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measure the similarity of key points, We use PointNet Siamese
network to generate descriptors and evaluate the similarity of key
points.

Our model is a Siamese network (Mou et al., 2017), which has
two parts that are composed of PointNet. As shown in Figure. 1,
Part 1 and Part 2 shared the parameters. Each part consists of five
layers of convolution and one layer of pooling. The convolution
layer is used to extract features, and the pooling layer is used to
compress features and achieve rotation invariance.

Conv1 consists of the convolutional layer, relu layer, and bn lay-
er. The size of the convolution kernel is 3x3 and the number of
channels is 64. Conv2 consists of the convolutional layer, relu
layer, and bn layer. The size of the convolution kernel is 1x1 and
the number of channels is 64. Conv3 consists of the convolutional
layer, relu layer, and bn layer. The size of the convolution kernel
is 1x1 and the number of channels is 128. Conv4 consists of the
convolutional layer, relu layer, and bn layer. The size of the con-
volution kernel is 1x1 and the number of channels is 256. Conv5
consists of the convolutional layer, relu layer, and bn layer. The
size of the convolution kernel is 1x1 and the number of channels
is 1024. The type of the pooling layer is max pooling and the
pooling size is [Numberpoints,1].

The input of the network is the neighborhood data of two key
points. Part1 and Part2 in the network generate two feature vec-
tors based on the input neighborhood data. Then the normalized
distance (d) of the two feature vectors is calculated. d is used to
measure the similarity of key points. Positive samples are neigh-
borhood data of two similar key points, and the ground truth of
d is 0. Negative samples are neighborhood data of two different
key points, and the ground truth of d is 1.

The contrastive loss of d is used in our model as follows:

Loss =
1

2N

N∑
k=1

(yd2 + (1− y) ·max(margin− d, 0)2) (4)

Where N is the number of samples, y is the label of d, margin
is the threshold of d(with margin = 1 in this work).

2.3 Registration

Empirically, for source point cloud (A) and target point cloud
(B), we can extract n and m key points respectively. Directly
matching key points need to run n ∗m times, and the time com-
plexity is relatively high. So the nearest neighbor method is used
to match descriptors. The specific process is as follows:

Firstly, the description set( Fa{a1, a2, a3, ... , an} and Fb{b1,
b2, b3, ... , bm}) of the source point cloud and the target point
cloud are generated by used by the part1 of the Siamese network.

Then, the kd tree ka andkb are constructed from the set of two
descriptors. For each feature descriptor in Fa, we search for
its nearest feature descriptor in kb. n pairs of closest feature
descriptors(Fn{ab1, ab2, ab3, ... , abn}) are found. In the same
way, for each feature descriptor in Fb, we find m pairs of closest
feature descriptors(Fm{ba1, ba2, ba3, ... , bam}).

Finally,abi and baj are same matching pair when they have the
same feature description. Fu (the union of Fn and Fm) and Fi

(the intersection of Fn and Fm) can be get. As shown in Fig. 3
(a) is the matching pair in Fu and the accuracy is 31.5%. (b) is

(a) (b)

Figure 3. The matched point pairs. Red matching pairs are
wrong matching pair and green matching pairs are right

matching pair. (a) is the Fu matching pairs, the accuracy is
31.5%. (b) is the Fi matching pairs, the accuracy is 39.7%.

the matching pair in Fi and the accuracy is 39.7%. Therefore, Fi

is selected as the final candidate matching pair.

Our goal was to find a rigid body tranformation (η) to minimize
the distance of η(A) and B. The rigid body transformation is in-
clude rotation transformation (R) and translation transformation(T ).
The distance of η(A) and B is as follows:

J =
∑

ai∈A,bi∈B

‖ bi − (Rai + T ) ‖ (5)

where ai is the point inA. bi is the nearest point inB to the point,
ai after the rigid body transformation. Setting threshold ρ for J ,
rough registration is completed when the J is less than threshold
ρ.

Candidate matching pairs have correct pairs and wrong pairs, and
can not be directly used to calculate rigid body transformation.
Four matching pairs can calculate a set of rigid body transforma-
tion relations, so we use RANSAC method to randomly extract
four matching pairs to calculate transformation relations until J
is less than the threshold ρ. Finally, the ICP algorithm is used to
fine the tuning registration results. We set the distance threshold
α of corresponding points, the new distance threshold β of Jw
and the number of iterations threshold c.

1. we set the weight wi of each point in B. When the distance
between bi and ai after rigid body transformation is less than α,
wi is 1, otherwise wi is 0.

2. New distance function is constructed as follows:

Jw =
∑

ai∈A,bi∈B

wi ‖ bi − (Rai + T ) ‖ (6)

Jw is solved by SVD method, new rigid body transformation and
B are obtained.

3. if Jw is less than threshold β and the number of falls is less
than c, the iteration stops, otherwise repeat 1 and 2.

3. EXPERIMENTAL RESULTS

In this paper, point clouds were obtained by a backpacked mobile
mapping system (Gong et al., 2018). This system has two 16-line
laser scanners (Velodyne VLP-16). Each laser scanner has six-
teen laser-detector pairs individually aimed in 2 increments over
the 30(-15 to +15) field of view. The experimental scene include
2 scenes. As shown in Figure. 4, the data of the two scenes have
been rendered by lighting. Scene 1 is an underground garage and
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(a) (b) (c)

Figure 4. Experimental scenes. (a) Scene 1: underground garage. (b) The internal scene of the underground garage. (c) Scene
2:Two-story corridor.

scene 2 is a corridor. Scene 1 covers an area of 11874.29 m2 and
includes 16,186,035 points. Scene 2 covers an area of 360 m2

and includes 4,924,335 points.

The training data includes 30,000 positive samples and 30,000
negative samples. The number of points in a patch is 512, and
the distance threshold r=0.8m. The size of the input data for
the network is 512×3×2. The network is built by tensorflow-
GPU, and training took around 13 hours on a Nvidia Geforce
GTX1080Ti, and it is running offline.

Experiments are divided into two parts. Firstly, we compared the
descriptors learned by the network with the traditional descrip-
tors(FPFH and SHOT).

The test data consists of 800 samples, which are randomly sam-
pled from each scene by 400 samples (200 positive samples and
200 negative samples).

To compare the different features of descriptors, we normalize
the features to a sphere with a radius of 1.

fo =
fi
‖fi‖

(7)

Where fi is the original feature, fo is the normalized feature.
Each sample includes two patches, and it can generate two de-
scriptors. The distance between the two descriptors is as follow:

df = ‖fo1 − fo2‖ (8)

do1 and do2 are normalized feature in a sample. df is the distance
between two features.

Compared with negative samples, the patches of positive samples
are more similar, so the df of positive samples is smaller than that
of negative samples. All normalized descriptors are distributed
on the sphere with radius 1, so the ground truth of df of posi-
tive samples is 0 and that of negative samples is 1. To compare
the accuracy of descriptors, definition e is the difference between
df and its ground truth. The smaller e is, the more accurate the
descriptor is. The distribution of e on the test set is shown in Fig-
ure. 5. In Figure. 5. (a) (b) (c) is the result of scene 1, and (d) (e)
(f) is the result of scene 2. (a) (d) is the e of the FPFH descriptor.
(b) (e) is the e of SHOT descriptor. (c) (f) is the e of the descriptor
proposed in this paper. The abscissa of each small figure is the
ordinal number of the sample and the ordinate is the value of e.

(a) Scene 1:FPFH (b) Scene 1:SHOT (c) Scene 1:OUR

(d) Scene 2:FPFH (e) Scene 2:SHOT (f) Scene 2:OUR

Figure 5. The e distribution of different descriptors on two test
scenes.

FPFH SHOT OUR

scene 1
MEAN 0.3837 0.3716 0.3385

STD 0.3208 0.28815 0.1798

scene 2
MEAN 0.3627 0.3886 0.3332

STD 0.3168 0.2819 0.1742

Table 1. Comparison of different descriptors

As shown in Table 1, MEAN is the average of e. STD represents
the standard deviation of e.

From the Figure. 5 and TABLE 2, we can obtain that the MEAN
and STD of our descriptors are lower than that of FPFH and
SHOT. Our descriptors are more accurate and robust.

In this paper, we set a threshold for df . The samples whose df
is greater than the threshold are positive samples and the others
are negative samples. According to different thresholds, the ac-
curacy and recall rate of different descriptors can be calculated.,
as shown in Figure. 7. The curve of our method has the largest
integral area. Intuitively, the proposed method achieves the best
accuracy.

Then, we discussed the effect of different overlapping rates on
the results of the registration. The experimental data were col-
lected twice (one week apart) from the underground garage. The
registration errors are measured by the root mean square error
(RMSE). Mgt is the known transformation, which perfectly
aligns both point clouds Q and S. Mour is the transformation
produced by our method. Then, the RMSE of our method is
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(a) (b) (c) (d) (e)

Figure 6. Different overlap scenes. The first line is the distributions of the original two point clouds. And the second line is the
distributions of the point clouds after registration. (a) data overlap rate is 95%, (b) data overlap rate is 75%, (c) data overlap rate is

50%, (d) data overlap rate is 35%, (e) data overlap rate is 30%.

(a) Scene 1 (b) Scene 2

Figure 7. The PR curves of different descriptors on the two test
scenes.

measured by

RMSE =

√∑N

i=1
‖Mgt ·Q−Mour ·Q‖2

N
(9)

we set the distance threshold dr between the corresponding points.
If the distance between the corresponding points is less than the
threshold dr , the corresponding points are considered correct and
the point pair is added to the calculation of RMSE. Otherwise
the point is not added to the calculation of RMSE. In this work,
dr is 10 cm.

Ovelap(%) 95 75 50 35 30

RMSE(cm)
Before ICP 3.18 3.82 3.99 5.81 -
After ICP 1.98 1.70 3.39 2.89 -

Table 2. Comparison of different descriptors

As shown in Figure. 6 and Table 2, Before ICP, the accuracy of
registration is less than 4 cm when the overlap of the point clouds
is higher than 50%. The accuracy of registration is less than 6 cm
when the overlap of the point clouds is higher than 35%. After
ICP, the accuracy of registration is within 3.5 cm when the over-
lap of the point clouds is higher than 35%. And the registration
cannot be completed when the overlap rate is less than 30%.

4. CONCLUSION

A deep learning feature-based method for point clouds registra-
tion of mobile LiDAR data is presented in this paper. In order to
adapt to the input of our network, we propose a novel sampling
method. And we built a Siamese network to obtain the descrip-
tor of the extracted feature points. The deep learning feature de-
scriptors of the point clouds are used to register and the results
show that RMSE is less than 4 cm when the overlap is greater
than 35%. In the future, we will experiment on more scenes to
improve the robustness of the descriptor. Instead of RANSAC,
we will selecte the final matching pair using a clustering method
based on graph structure.
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