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ABSTRACT:

Geomorphic processes occur spatially variable and at varying magnitudes, frequencies and velocities, which poses a great challenge
to current methods of topographic change analysis. For the quantification of surface change, permanent terrestrial laser scanning (TLS)
can generate time series of 3D point clouds at high temporal and spatial resolution. We investigate how the temporal interval influences
volume change observed on a sandy beach regarding the temporal detail of the change process and the total volume budget, on which
accretion and erosion counteract. We use an hourly time series of TLS point clouds acquired over six weeks in Kijkduin, the
Netherlands. A raster-based approach of elevation differencing provides the volume change over time per square meter. We compare
the hourly analysis to results of a three- and six-week observation period. For the larger period, a volume increase of 0.3 m*/m? is
missed on a forming sand bar before it disappears, which corresponds to half its volume. Generally, a strong relationship is shown
between observation interval and observed volume change. An increase from weekly to daily observations leads to a five times larger
volume change quantified in total. Another important finding is a temporally variable measurement uncertainty in the 3D time series,
which follows the daily course of air temperature. Further experiments are required to fully understand the effect of atmospheric
conditions on high-frequency TLS acquisition in beach environments. Continued research of 4D geospatial analysis methods will

enable automatic identification of dynamic change and improve the understanding of geomorphic processes.

1. INTRODUCTION

Geomorphic processes shape natural landscapes in any topo-
graphic setting at different magnitudes, frequencies, and veloci-
ties. A fundamental part of improving our understanding of these
spatially variable processes is their observation and quantifica-
tion of properties, such as location, size, shape, deformation, and
movement rate. For recording the topography of an area at
(sub-)cm-accuracy, terrestrial laser scanning (TLS) is a technique
capable of acquiring billions of 3D point measurements of sur-
faces in a target scene using the Light Detection and Ranging (Li-
DAR) principle, and obtaining a 3D point cloud of the scene.
Through repeated scanning, the time dimension is added to the
point cloud data and the 4D geospatial dataset serves as basis to
quantify change over time (Eitel et al., 2016). The analysis is ide-
ally conducted at an interval appropriate to the change rate of the
observed phenomenon. This can be highly variable for natural
landscapes from slow-rate movement, such as the creeping of a
rock glacier (e.g., Avian et al., 2009), to rapid displacements,
such as flowing lava (e.g., Crown et al., 2013).

To obtain LiDAR data at high temporal resolution of daily to sub-
hourly intervals over longer periods, permanent TLS is an emerg-
ing acquisition technique (Eitel et al., 2016). In this static setup,
the instrument records a target scene from a fixed position in reg-
ular intervals typically defined by the operator for the intended
application. To date, permanent TLS has been deployed in few
use cases, such as landslides (Kromer et al., 2017; Hofle et al.,
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2016), rockfall monitoring (Williams et al., 2018), and sandy
beaches (Vos et al., 2017). In this research, we use the 3D time
series of a beach in the Netherlands acquired by Vos et al. (2017).

Sandy beaches are a topographic setting characterized by highly
complex behavior of wind- and wave-driven sand transport oc-
curring at multiple temporal and spatial scales (Cowell et al.,
2003). The combination of these multiscale sand transport pro-
cesses, for example, contributes to the restoration of the beach
after a storm event. Particularly the corresponding dune-ward
transport of sand is not well understood. High-frequency 3D time
series data enable to analyze sand transport at high temporal de-
tail and with the geometric measurement accuracy of TLS data.

In this paper, we investigate how an hourly TLS time series im-
proves morphologic process observation for a sandy beach. We
hypothesize that change processes can be observed at greater
temporal detail with the hourly data. Typically, multitemporal
data is acquired at intervals of months to years, such as the coun-
trywide annual airborne LiDAR surveys conducted in the Neth-
erlands (AHN, 2018). For such low acquisition frequencies, the
multitemporal data can contain the states before and after the evo-
lution or deformation of a morphologic form. Then it is not pos-
sible to derive the process characteristics, such as movement rate
or a gradual change in shape. Further, at higher temporal resolu-
tion the time series can disclose change that is completely missed
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at lower observation intervals. For example, erosion and accre-
tion have a counteracting effect on the volume budget if they suc-
cessively occur at the same location on the beach in between re-
peated acquisitions.

Further, there is an opportunity to use data sampled at high tem-
poral resolution to reduce the uncertainty of measurements and
improve the level of detection of an observation. With level of
detection, we refer to the minimum detectable change between
time steps. This is influenced by different factors:

e  The instrument’s measurement accuracy

e  The scanning geometry, i.e. measurement range and inci-
dence angle at each location within the target scene

e  The alignment accuracy of the multitemporal point clouds

e  Physical properties of the recorded target, such as surface
roughness and laser return intensity (LRI)

e  Temporally variable atmospheric conditions, such as tem-
perature, humidity, and air pressure

With high-frequency sampling, errors in elevation measurement
can be identified by comparing to temporal neighbors, i.e. the
same location measured at previous and successive points in time
(Kromer et al., 2015). This increases the confidence of quantified
surface change and can hence improve the level of detection. In
the following, we outline related research on TLS time series
used for geomorphic change observation.

An hourly time series of point clouds was used by Williams et al.
(2018) to assess the magnitude-frequency distribution of rock-
falls on a cliff. The authors specifically address how the acquisi-
tion interval influences the derived event frequency of rockfalls.
As rockfalls often coincide or coalesce, multiple discrete events
can only be identified individually at an adequate acquisition in-
terval.

Comparing to the observation of sand transport on the beach,
there is an important conceptual distinction in the type of change
process that is observed. Rockfalls occur as single, irreversible
events with exclusively eroding effect on the topography, mean-
ing that there is no process opposing the loss of volume. Thus,
for the case of continuous observation, it would be possible to
distinguish every single rockfall event. Surface change on the
beach takes place as (potentially) continuous process of sand be-
ing transported away from and to a location depending on the
conditions of wind direction and velocity, wave forcing, as well
as external influences such as intentional shifting of sand. This
adds a new aspect of relevance to high-frequency sampling and
change analysis for observation of geomorphic processes.

Continuous surface change is studied by Kromer et al. (2017) for
a landslide. Using a half-hourly TLS time series made it possible
to identify deformation preceding the failure of the slope into a
rockfall event. The observed deformation occurred over a period
of'six days, so that it would likely not have been captured through
conventional multitemporal TLS surveying. For their TLS time
series, the authors describe a noticeable effect of temporally var-
iable environmental conditions on data quality. For example,
point density and the total number of measurements were
strongly reduced for acquisitions during and after rainfall events,
as the reflectivity of targets was lowered due to wetness of the
surfaces. Permanent laser scanning implies data acquisition
through varying atmospheric conditions over time, which influ-
ences the repeated LIDAR measurements. The influence of at-
mospheric conditions on TLS range distances is known (e.g.
Hejbudzka et al., 2010), but difficult to assess as it is not practi-
cable to measure all relevant variables directly on site (Fey and

Wichmann, 2017). Further, the properties of the recorded target
and the scanning geometry influence the accuracy of the recorded
TLS data (Soudarissanane et al., 2011).

Different methods have been established to account for these ac-
curacy issues in multitemporal point clouds. Systematic errors
that occur, for example, due to movement of the sensor between
acquisitions, might require an alignment correction, which is typ-
ically done based on stable areas in the target scene (Wujanz et
al., 2018). All residual distances of stable parts between mul-
titemporal point clouds determine the level of detection for
change quantification. To reduce this uncertainty in 3D time se-
ries, Kromer et al. (2015) propose temporal averaging, which
makes use of point redundancy in the temporal domain within
local neighborhoods. This approach requires the averaging win-
dow to be much smaller than the observed change rate to avoid
averaging out actual change and consequently lose information.
Thus, data acquisition at very high frequency increases the ability
to improve the level of detection without smoothing the temporal
trend of the observed process itself.

Against this background, we examine the 4D dataset of the beach
for the level of detection and temporally variable measurement
uncertainty associated to the 3D point clouds in the time series.
The primary objective is to analyze the data for change processes
under particular consideration of the influence of the observation
frequency on the quantified volume budget. This shows the ben-
efit of high-frequency sampling for the aspect of reversible
changes that are completely lost to the observer depending on the
temporal resolution of available data.

We investigate how the temporal observation interval influences
the quantified volume change regarding (i) the temporal detail of
the change process and (ii) the volume budget regarding missing
change information due to the counteracting effects of accretion
and erosion. For this, we quantify the volume change on the
beach for every time step of the time series and assess how the
result is influenced by temporal resolution for exemplary change
occurrences on the beach: overall accretion and erosion through
sand transport and the higher-magnitude formation of a sand bar.
With this, we contribute first steps of a new analysis approach for
3D time series acquired by permanent TLS for the use case of a
sandy beach. We further strengthen the concept of 4D geo-
morphic observation enabled by temporally high-resolution TLS.

2. DATA AND METHODS

In this section, we present the data and explain the methods used
for analysis, for which the main steps are depicted in Fig. 1.

3D point cloud
time series

Level of detection
assessment
Volume change
quantification

(

e Fine alignment using stable parts
¢ Determination of alignment accuracy
and measurement uncertainty

¢ DTM generation and differencing
e Temporal averaging of change values

Assessment of different observation intervals )

Beach deformation for a
three- and six-week period

Hourly volume change at
selected point locations

Assessment of relationship between observation frequency and
total observed volume change

Figure 1. Overview of main analysis steps
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Figure 2. (A) Terrain elevation of the study site (based on TLS
data) with extent designated in (B) aerial imagery of the beach
at Kijkduin. (C) Overview map with location of the study site in
the Netherlands. Data: Aerial imagery © pdok.nl 2017, World
Borders © thematicmapping.org 2017

2.1 Study Site and Dataset

The 3D time series dataset used in this paper is acquired on the
beach of Kijkduin in the Netherlands (52°04°14” N 4°13°10” E,
Fig. 2). A Riegl VZ-2000 TLS (Riegl LMS, 2017) was mounted
in a stable reference frame on a hotel roof overlooking the beach
in the winter season of 2016/2017 (cf. Vos et al., 2017). In this
paper, we use the hourly 3D point cloud dataset of the period
from 2017-01-15 to 2017-02-28. We choose this subset of the
time series as it follows a storm event in the days before and con-
tains particular change occurrences associated to beach restora-
tion. The time series subset acquired at the study site is complete
except for a few missing timestamps due to poor meteorological
conditions (cf. Section 2.2). Data was acquired every full hour
with a vertical and horizontal point spacing of 9 mm at 10 m
measurement range. Each day at noon, an additional high-resolu-
tion scan was acquired with a point spacing of 2 mm at 10 m
measurement range. The target area of the beach is at a range of
approximately 100-600 m from the sensor on the hotel roof. For
every scheduled scan, latest weather information was retrieved
online and passed to the TLS for temperature, air pressure, and
humidity correction of the LIDAR measurements.

All point clouds in the time series were fine aligned to the high-
resolution scan of the first day (2017-01-15). The rigid transfor-
mation matrix of each point cloud to the global reference was
computed for stable parts distributed in the scene (pavement, fa-
cades, information signs; Fig. 3), using an Iterative Closest Point
method (Besl and McKay, 1992).

A Range [m]

Neighboring
building

Hotel roof -
(TLS position) A

e . =
= e -

Figure 3. (A) Extract of the point cloud scene colored by range
with stable parts used for fine alignment (red) and control
planes (blue). Below, exemplary control planes are shown

(B) on the tiled floor near the scanner and (C) on an information
sign next to the dunes

Measurements with a Global Navigation Satellite System
receiver were acquired in Real-Time Kinematic mode for
georeferencing of the TLS data using one fixed global
transformation matrix.

2.2 Level of Detection Assessment

2.2.1  Accuracy of Multitemporal Point Cloud Alignment
We determine the alignment accuracy between multitemporal
point clouds based on planar surfaces that are expected to be sta-
ble throughout the acquisition period, but independent from the
parts used for fine alignment. We choose ten control planes on
the pavement, building fagades and information signs with dif-
ferent orientation distributed in the stable area adjacent to the
beach area itself (Fig. 3).

ID| Loca- | Range |Incidence | LRI | Point count |Surface type
tion [m] |Angle [°]|[dB]|(ref./ comp.)

1 P 158 80 -10 34/3 Pavement
2| P 106 77 -11 123/8 Pavement
3 P 85 72 -9 252 /17 Pavement
4 P 89 72 -10 | 227/13 Pavement
5 P 141 60 -5 191/11 Info sign
6| P 87 70 -7 387/22 Info sign
7| H 3 62 -8 P350k />23k| Balustrade
8| N 333 2 -4 69/5 Facade
91 N 360 2 -5 56/5 Facade
10/ H 5 75 -11 | >60k / >3k | Tiled floor

Table 1. Location and properties of control planes in the paved
area (P), on the neighboring building (N), and on the hotel
roof (H). Given properties are the measurement range to the
TLS sensor, incidence angle, laser return intensity (LRI) and
number of points representing the plane in the reference (high-
resolution) and an exemplary compare point cloud

The properties of the control plane locations are listed in Tab. 1.
The given incidence angle of the LIDAR measurement is defined
as the angle between the laser beam originating from the TLS
sensor and the local surface normal at the measurement location
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(Soudarissanane et al., 2011). In the flat terrain of the beach en-
vironment, we assume all surface normals to be oriented verti-
cally, i.e. calculated the incidence angle to the perfectly horizon-
tal plane. Only for the control planes in vertical position, the in-
cidence angle is calculated using the plane surface normal.

To determine the alignment of two point clouds, we fit planes to
the global reference point cloud at the location of the control
planes within fixed 3D search radii of 0.3 m. Subsequently, we
compute the mean point-wise distances of 3D points in the com-
pare point cloud to the reference planes. For each point cloud in
the time series, we average the mean distance values obtained for
all control planes. The final average value describes the align-
ment accuracy of two point clouds.

2.2.2 Temporally Variable Measurement Uncertainty

In addition to the overall alignment of multitemporal point
clouds, we examine the temporal variability of measurements at
individual locations. The measurement error in the point clouds
can vary over time, for example, due to changing atmospheric
conditions, and cause measurement uncertainty, which propa-
gates into the quantification of surface change. As the distance to
the sensor is constant over time for stable surfaces, any deviation
of repeated elevation measurements at these locations, beyond
random noise, indicates errors.

We derive measurement variability as the difference in elevation
to a fixed reference, according to the raster-based method de-
scribed in Section 2.3.1. We choose this simplified method of one
elevation value per pixel location in the raster having confirmed
a high correspondence to the distribution of originally measured
Z coordinates in the 3D point cloud data at these locations.

We expect the degree of this variability to be dependent on the
scanning geometry. Given the setup of the permanent laser scan-
ner and the topographic setting, it is not possible to separate the
variables range and incidence angle for this dataset, as both in-
crease more or less linearly towards the beach (cf. Fig. 2). There-
fore, we consider two locations at different distances from the
TLS sensor (cf. Tab. 2). Location A is situated on the pavement
in the paved area close to the dunes but not on the sandy area
itself. Location B is situated on the upper part of the beach, which
is generally subject to sand transport but assumed to be quite sta-
ble on the short-term during calm periods.

ID Location Range | Incidence | Surface type
[m] Angle [°]

A Paved area 106.6 76.5 Pavement

B Beach 148.5 76.9 Sand

Table 2. Locations and respective properties used to assess tem-
porally variable measurement uncertainty

To assess a potential link to atmospheric conditions, we use me-
teorological data from the same period and check the values for
similar variability compared to elevation measurements at the
point locations. As there is no meteorological station at the study
site, we use data from Hoek of Holland (approximately 12 km
southwest of Kijkduin), namely hourly measurements of air tem-
perature, precipitation, wind speed, and wind direction (KNMI,
2017). Further, we use tide height data from Scheveningen (ap-
proximately 6 km northeast of Kijkduin) (Rijkswaterstaat, 2017).

2.3 Volume Change Quantification

2.3.1 DTM Generation and Differencing

We choose a raster-based approach for quantifying the volume
change in the time series dataset, given the flat topography and
low microtopographic variability of the study site. Thus, the vol-
ume change at any location on the beach is given by the elevation
change resulting from the difference between two terrain eleva-
tion rasters over the area of a pixel. These Digital Terrain Models
(DTMs) are derived from each 3D point cloud in two steps. First,
we filter off-terrain points based on the relative height of points
over the local minimum in a neighborhood of 1.0 m. We set the
filter threshold to 0.2 m to account for surface roughness and the
slightly sloping terrain morphology. Then we rasterize the DTM
using the median elevation value within a cell size of 1.0 m. We
fill gaps in the DTMs with the mean value in the one pixel neigh-
borhood of empty pixels. We use the software OPALS (Pfeifer et
al., 2014) to generate the DTMs.

By stacking all volume change rasters of the time series, we ob-
tain a 3D matrix of volume change per pixel area (2D + time).
Each 2D coordinate in the matrix represents a location on the
beach and volume change over time at this location can be ex-
tracted as 1D time series using the respective pixel values along
the temporal dimension.

2.3.2 Temporal Neighborhood-Based Averaging

The 1D time series of volume change at a location can contain
values that notably deviate from their temporal neighbors. These
can represent either sudden change within the continuous change
process at a location or outliers caused by other effects. To iden-
tify exceptional change values in the time series, we use the tem-
poral neighborhood for applying the median filtering approach of
Eltner et al. (2017). The method is based on the 4D filtering ap-
proach proposed by Kromer et al. (2015) which filters noise both
in the spatial and temporal dimensions. We do not adopt the spa-
tial filtering for our dataset as the terrain is already filtered in the
frame of the DTM generation (Section 2.3.1).

The averaging is applied using a moving median, i.e. by setting
the change value at a point in time to the median of all values
within a temporal window around the point. We use a temporal
window of 48 hours. Thus, all values 24 hours prior and succes-
sively are considered. We keep the raw change values for analy-
sis and use the averaged time series in the presentation of results.

2.4 Influence of Temporal Resolution on the Observation

The derived time series of volume change over time provides the
basis to investigate the influence of temporal resolution on the
observation. We first analyze elevation change on the beach for
two dates in our time series compared to the reference date,
2017-02-06 and 2017-02-28, corresponding to a three-week and
six-week period, respectively. This serves to assess the change
that is derived from data acquired at lower temporal resolution
similar to a conventional multitemporal LiDAR survey. From the
volume change on the beach resulting for these periods, we select
exemplary locations that are examined at higher temporal detail.
Based on this, we assess the gained detail on the underlying mor-
phologic change process.

Subsequently, we investigate the implication of hourly sampling
on the observed sand transport. We quantify the total observed
volume change in a defined sub-area (90 x 130 m) for every pos-
sible observation frequency in the time series, i.e. at hourly inter-
vals up to a six-week interval. Via this relation, we can derive
how much information is missed as change is being eliminated
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between acquisitions due to the accretion and erosion counteract-
ing on the volume budget.

3. RESULTS AND DISCUSSION
3.1 Level of Detection

3.1.1  Accuracy of Multitemporal Point Cloud Alignment
Resulting from the plane-based assessment (Section 2.2.1), the
full period of the time series used in this paper achieves a mean
alignment accuracy of 0.4 cm with a standard deviation of
0.2 cm. Fig. 4A contains the result plotted for a subset of the time
series. The plane-based alignment has distinct outliers for some
time stamps and there is a temporal variability of values.

To examine a possible dependence of high values on the proper-
ties of individual control planes, we show the mean point dis-
tances over time per control plane in Fig. 4B. For better visabil-
ity, we separate the plots into two groups of control planes.
Group 1 has generally low point-to-plane distance values. These
planes are located on the hotel roof, with a very consistent result,
and on the neighboring building as well as in the paved area, with
more variable values, assumingly due to the higher measurement
range (plane IDs 1-4 and 7-10, cf. Tab. 1). The large peak on
2017-01-24 derives from a series of point clouds acquired during
a heavy rain event. These points in time appear as temporal gaps
in the analysis, as they do not contain data in the target area of
the beach due to strongly decreased measurement ranges under
the conditions of heavy rain.

Group 2 in Fig. 4B illustrates two control planes in the scene that
have a much larger variability of point-to-plane distances and
thus strongly influence the final, averaged alignment accuracy
value per point cloud (Fig. 4A). These control planes are located
on information signs in the paved area before the beach (plane
IDs 5-6, cf. Tab. 1).
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Figure 4. A) Alignment accuracy of hourly scans to the refer-
ence point cloud. B) Mean absolute point-to-plane distances per
control plane (distinguished by color) separated into two groups
with (1) little variability, and (2) strong fluctuation of values
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Figure 5. Relation of elevation differences to the course of air
temperature. Elevation difference is quantified using the DTM
differences at a location on the beach that is assumed to be sub-
ject to little change throughout the displayed period

3.1.2 Temporally Variable Measurement Uncertainty

We compare deviations in elevation measurements at stable lo-
cations to the course of meteorological and tide height data (Sec-
tion 2.2.2). We did not find a relation with any of the variables,
except a visual correspondence to the course of air temperature.
The plot in Fig. 5 depicts air temperature compared to elevation
differences for the location on the beach, expected to be stable
throughout the period of the assessment (Tab. 2, location B).

The course of measurement deviation on the beach follows the
course of air temperature, intermittently in an inverse manner
(Fig. 5). For the location on the pavement (Tab. 2, location A),
the fluctuation of measurement deviations is strongly visible only
before the fine alignment of point clouds, but with lower magni-
tude than on the beach. One possible explanation is an influence
of air temperature on the material of the TLS mounting frame,
which leads to slight tilting of the sensor over time. As the area
of the beach is at larger distance to the sensor, deviations due to
angular misalignment of scans increases towards the beach,
which is lacking any stable parts, though, and cannot be included
in the alignment correction. Considering the pattern of measure-
ment deviation, we hypothesize that there is an effect in the Li-
DAR measurement itself through factors such as humidity or near
surface moisture, which are indirectly linked to air temperature
and influence the refraction of the laser beam. The component of
this effect which is linear in range is removed by the point cloud
alignment.

Regarding the presented temporally variable measurement devi-
ation, the minimum detectable change in this study cannot be ex-
pressed primarily with the obtained alignment accuracy values as
commonly expected from TLS data. A possible solution in future
permanent TLS setups on the beach could be to place targets for
fine alignment in the area itself or at further distance beyond. The
installation of fixed targets in the sandy ground that are stable
over long periods and under the variable external forcing of wind
and waves will pose a great challenge. We do not investigate fur-
ther improvements of the data here and accept that the level of
detection is hence strongly limited in the target area on the beach,
as the focus of our paper is on the change analysis of the 3D time
series.

3.2 Volume Change Quantification

We analyze geomorphic change over time on the beach based on
the quantified volume change (Section 2.3.1). Fig. 6 contains the
result for the two observation periods of three and six weeks.
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Figure 6. Volume change for a period of (A) three weeks and
(B) six weeks as DTM difference to the reference. Points A-C
mark the locations used for the time series assessment (Sec-
tion 3.3). The black rectangle marks the area used to assess the
volume budget at different observation intervals (Section 3.3.3)

The volume change over the three-week period (Fig. 6A) shows
little change over most of the beach area, but high volume in-
crease and decrease for local areas. Near the path from the paved
area to the beach, an area of large volume decrease is visible.

This is the result of bulldozer works after the storm event imme-
diately before the onset of our time series, to which we compare
the topographic state three weeks later. These works relocated the
sand towards a lower part on the beach, appearing as elongated
accumulation form spread out in front of the higher beach part.
Towards the sea, a very distinct accretion form along most of the
beach stretch is visible. This form represents a sand bar, which
developed after the storm from sand being transported landwards
by waves.

From the volume change over the six-week period (Fig. 6B), it
becomes visible that more bulldozer works of relocating sand
took place and large volumes of sand are distributed along the
center of the entire beach. The sand bar, which was distinctly vis-
ible three weeks before, has disappeared. The comparison to the
previous date in Fig. 6A suggests that the sand forming the sand
bar is now spread out almost evenly over the beach area, which
is indicated by the overall, small volume increase dune-wards
from the (former) sand bar.

The results for the three- and six-week period exhibit how certain
change processes are lost to the analysis at larger acquisition in-
tervals. If only the result of the six-week period were available,
the formation and disappearing of the sand bar would be com-
pletely missing. Further, it does not necessarily become apparent
from the displayed results, what change processes the different
structures of volume change represent and what caused their for-
mation. A temporal resolution of three weeks already provides a

valuable 3D point cloud time series with much higher return in-
tervals than commonly available, for example with annual coun-
trywide surveys (cf. Section 1). Still, the analysis is still lacking
important parts of information. With higher-frequency sampling,
the formation of the sand bar can be characterized in temporal
detail. Sudden changes, such as the relocation of sand through
human interference, can be located in the temporal domain and
analyzed for its effects over time. This aspect is subject of the
next section.

3.3 Influence of Temporal Resolution on the Observation

In this section, we pick three exemplary locations for which we
extract the volume change on the beach as 1D time series. The
locations are marked in Fig. 6: A) a sand bar location, B) a loca-
tion on the lower part of the beach, and C) a location on the bor-
der between the upper and lower part that is subject to relocation
of sand by bulldozers. Fig. 7 displays the time series of these lo-
cations as both raw and temporally averaged change values.
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Figure 7. Time series of volume change at locations A-C
(Fig. 6). Black arrows mark the points in time of the three- and
six-week period. Raw values are visualized together with the re-
sult of the temporal averaging. The dashed line marks the align-
ment accuracy derived for the entire time series. Vertical axes
have different scales

3.3.1 Temporal Neighborhood-Based Averaging

The averaged line of the temporal median in Fig. 7 visualizes that
the volume change values are smoothed to the longer-term
change. The raw values are more scattered, which could be
caused both by the temporal measurement deviation (Sec-
tion 3.1), or represent temporary change as actual volume
change. Thus, for change analyses at hourly to daily scales, the
uncertainty given by the level of detection takes a large influence.
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A better distinction of these two aspects will require to improve
the level of detection. This can be achieved through advanced 4D
filtering by considering the spatial domain. For this, we could
leverage spatial autocorrelation inherent in morphologic change
processes. If similar change values occur in the neighborhood of
a location, it is more likely they represent actual surface change.

3.3.2  Observation of Change Process Details

The hourly time series of locations A-C in Fig. 7 enable a de-
scription of the occurring change processes at high temporal de-
tail. For comparison to results of the three- and six-week period,
respectively, black arrows in the time series mark the points in
time which are displayed in Fig. 6.

Location A is situated on the sand bar (Fig. 6A). With the higher-
resolution time series, it can now be traced how the sand bar de-
veloped at this location and a more or less gradual accretion over
time becomes visible. Compared to the three-week period of the
volume change raster, the time series also discloses that the sand
bar had a state of much higher volume at this location, which re-
mained over a period of approximately two weeks. Thus, for a
three-week interval, a volume increase of 0.3 m*/m? is missed,
which corresponds to almost half the volume of the sand bar at
this location. While the sand bar has formed gradually, it disap-
pears quickly starting on 2017-02-24 during a storm and strong
rainfall event. Though point cloud data is missing at the exact
time due to these meteorological conditions, the point in time can
be determined from the averaged time series within a time frame
of few hours. Location B exhibits only small-scale change values
fluctuating between volume increase and decrease. The result
might be caused at least to some degree by the temporal effects
in the LiDAR measurements and represent the corresponding
fluctuation of the level of detection (cf. Section 3.1). The course
of change values at Location C is disrupted by the accumulation
of sand through the bulldozer work. This can be seen in the time
series in the sudden volume increase on 2017-02-06. The volume
increase occurs immediately after the data presented in Fig. 6A
was acquired. This emphasizes that the three-week analysis only
contains a short snapshot of the morphologic state of the beach,
which only little time later is heavily reworked.

The time series at the selected locations reveal that a higher tem-
poral resolution has a strong influence on the detail of beach ob-
servation and ultimately on the information that is extracted in
the geomorphic analysis and interpretation. Only through the
dense time series in the period of sand bar formation and disap-
pearance a detailed insight can be gained on the geomorphologic
process, rather than only the identification of its existence. The
next step of the geomorphic object observation will be to extract
its spatial properties and ultimately derive the spatial-temporal
characteristics, such as change in shape and movement rate.

3.3.3  Relation of Observation Interval and Observed Vol-
ume Budget

In the previous section, we present examples of change processes
on the beach, where geomorphic observation can strongly benefit
from higher-frequency data acquisition of at least daily intervals.
Besides the gain in temporal detail on the geomorphic process,
the sand bar example illustrates that for larger return periods im-
portant increases in volume are lost, as they are eliminated before
the next data acquisition.

Fig. 8 visualizes the relation of observation interval and observed
volume change. We perform this assessment for the area marked
by the black rectangle in Fig. 6 and quantify the average total
volume change per square meter.
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Figure 8. Relation of observation interval to the volume budget
observed in the time series dataset over a period of six weeks

The relation exhibits that there is a large influence of the temporal
resolution on the observed volume budget. The total volume
change starts to increase particularly strongly when the interval
is decreased to less than 100 hours, i.e. approximately four days.
The larger the interval of the analysis, the more occurrences of
accretion and erosion are lost to the observation. In our study over
a period of six weeks, with a decrease of the observation interval
from daily to weekly, the amount of sand that is missed in the
analysis corresponds to around 10-14 truckloads of sand being
transported within an area of 10x10 m?. Further, the variability of
observed change for increasing intervals emphasizes how the
timing of acquisition greatly influences the observation.

It needs to be noted that the measurement error contained in each
of the datasets accumulates in the quantified volume. To evaluate
the observed volume budget including small-scale changes at
high temporal resolution, the error contribution requires quanti-
fication. In the future, this can be investigated with independent
measurements or using an experimental setup with an additional
TLS instrument simultaneously recording a target area from a
different perspective and at a closer measurement range.

4. CONCLUSIONS AND OUTLOOK

In this paper, we investigate the analysis of a TLS time series of
high temporal resolution for the observation of surface change on
sandy beaches. These change processes are dominated by highly
dynamic sand transport leading to both accretion and erosion in
local areas of the beach.

Our change analysis shows that the high temporal resolution of
the 3D time series provides a source of 4D geoinformation for an
improved understanding of morphologic change processes on the
beach. By increasing the temporal interval of the analysis over
long periods, object information and process characteristics can
be extracted at more appropriate temporal levels of detail than in
conventional TLS surveys, with either high-frequency acquisi-
tion over short periods or large return intervals.

Further factors need to be investigated to better assess the spa-
tially and temporally variable uncertainty of change analysis, par-
ticularly regarding the measurement effect in the high-frequency
TLS data. From our results, this seems to be related to atmos-
pheric conditions, influencing the LiIDAR range measurement to
deviate in inverse correspondence to the course of air tempera-
ture. Future permanent laser scanning setups on the beach should
examine this more closely by performing complementary meas-
urements of on-site atmospheric conditions, such as temperature
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and humidity. Moreover, the installation of large and stable re-
flector targets in the scene would strongly support the identifica-
tion errors, which assumingly both vary over time.

High-frequency sampling can be used to increase the confidence
of the geomorphic change analysis. In this paper, we apply this
only in the temporal domain. We will further develop our method
to using spatial neighborhood information both locally and glob-
ally in the point cloud scene and improve the level of detection
by leveraging spatial autocorrelation in geomorphic change.

We will continue the presented research to automatically extract
dynamic areas in the target scene and subsequently characterize
the morphologic change types for their spatial and temporal prop-
erties.
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